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Abstract— We discuss motion planning in the configuration
spaces of robots containing continuum elements. The config-
uration space structure of extensible continuum sections is
first analyzed, with practical constraints unique to continuum
elements identified. The results are applied to generate the
configuration space of a hybrid continuum lamp/mobile base
robot. A conventional motion planning RRT/A* approach
is subsequently applied for the robot in an aging in place
application scenario.

I. INTRODUCTION

This paper addresses the nature of the configuration space
of, and its use in motion planning for, continuum robots.
Continuum robots are composed of one or more continuum
sections. A continuum section is kinematically described by
continuous and smooth curvature [1], [2]. Continuum robots
theoretically possess infinite degrees of freedom (DoF),
unlike standard rigid-link robots which have finite DoF.
Continuum sections are most often tendon or pneumatically
driven, or composed of concentric tubes. These robots are
often inspired by elements in biology, like plant tendrils,
an elephant trunk, or octopus tentacles. Because of their
underlying curvature, continuum robots are often compliant
in nature and are used to explore hard-to-reach areas [3], [4].

For conventional, non-continuum robots, classical motion
planning techniques using configuration space have been
well studied [5]. For example, rapidly exploring random tree
(RRT) algorithms have been shown to successfully span the
configuration space for mobile robots and rigid-link robots
[6]. The A* algorithm, given a graph and proper heuristic
function, will guarantee the optimal path between any 2
nodes if one exists [6].

In the past, a variety of motion planning techniques
have been implemented for continuum robots. The mo-
tion planning problem for active cannulas (concentric tube
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Fig. 1: Continuum Robotic Lamp Element.

robots in medical applications) within tubular environments
is formulated as an constrained optimization problem in
[7]. Constrained optimization is also used in [8] to for-
mulate and solve the motion planning problem for a soft
planar continuum manipulator. Grasp planning for contin-
uum robots using a bounding circle technique was in-
vestigated in [9] and [10]. A follow the leader approach
for tendon-driven continuum robots is introduced in [11].
Researchers have used sampling based approaches based
on the techniques of Rapidly-Exploring Roadmaps (RRM)
[12], Rapidly-Exploring Random Graphs (RRG) [13], [14],
and Rapidly-Exploring Random Trees (RRT) [15] to plan

2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
Macau, China, November 4-8, 2019

978-1-7281-4003-2/19/$31.00 ©2019 IEEE 2559



u=0     
u= /4 

u= /2 

u= u=2
u=9 /4

u=3

z

y

u=0      
u=- /4 

u=- /2 

u=-u=-2
u=-9 /4

u=-3

z

y

(a) (b)

Fig. 2: Single section continuum robot bending (a) counter-
clockwise and (b) clockwise in the yz-plane.

motions for concentric tube continuum robots in tubular
environments for medical applications.

However, it appears that the principles of the classical
motion planning techniques such as RRT and A* have not yet
been applied to tendon-actuated continuum robots in general
non-tubular environments. This is in part due to a lack of
formal analysis of the nature of the configuration space of
tendon-actuated continuum robot elements. In this paper, we
define and discuss the configuration space of single section
extensible continuum robots and use the configuration space
to path plan using RRT. The analysis is applied to the specific
example of CuRLE shown in Fig. 1. CuRLE is an element of
home+, our collection of robotic home furnishing elements
designed to assist in the home with aging-in-place [16]. In
the process, we illustrate and highlight several structural
constraints imposed by tendon-actuated continuum geometry.
This is described further in IV after we investigate the
configuration space of continuum robots in II and compare to
the configuration of a kinematically similar rigid link robot
in III.

II. CONTINUUM CONFIGURATION SPACE

We begin by considering the underlying structure of con-
tinuum robot configuration space in the presence of physical
and actuation constraints. Specifically, we consider the c-
space of the basic element of continuum robots: a single
extensible section. We assume the section to be of constant
curvature.

A. Single Section Continuum Robot

A single section extensible continuum robot can be de-
scribed by 3 kinematic variables: {u,v,s} where is s is
the arc-length of the section and u and v represent the
components of a rotation axis with respect to the base of
the section [17]. Let c ∈ C3

space be a configuration in the
configuration space of the robot where c = [u v s]T .

To better envision C3
space, let us first consider the config-

uration space C1
space where only u varies. We restrict the

length s = s f ixed and set v = 0. A configuration is then
defined as c = [u] ∈ C1

space. As we vary u in the positive
direction (equating to counter-clockwise rotation), the section
will bend to the left in the yz-plane, as shown in Fig. 2a.
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Fig. 3: A visualization of C2
space. The blue plane extends

to ±∞. The red circle indicates C2
space with the physical

constraint of θ ≤ 2π .

Once u = 2π , the section’s tip will meet the base and
form a perfect circle. Continuing to increase u will cause
the robot to “bend within itself”’ and theoretically it would
continue to “encircle” itself as u→ ∞. Increasing u in the
negative direction (clockwise) will cause the same planar
motion mirrored across the z-axis (Fig 2b). As u→ (−∞),
the robot will continue to encircle itself to generate the
remaining set of possible planar configurations of the section.
Therefore, the configuration space of the robot where only
u varies is C1

space ≡ R.
If we remove the restriction on v and allow it to also vary,

then the configuration space changes to a 2D space where
any configuration is defined as c = [u v]T ∈C2

space. The total
“bend” of the robot, θ , in the plane of curvature is defined
by [17].

θ =
√

u2 + v2 (1)

When θ = 2π , the section once more forms a perfect
circle, with its tip touching the base. Varying the vector
[u v]T generates all bending directions (planes of curvature)
and increasing the magnitude of the vector generates all
possible configurations in each of these planes via (1). Since
u,v ∈ R, C2

space ≡ R2 and can be visualized as the infinite
plane described in Fig. 3.

If we now allow s to vary as well, a configuration is
defined as c = [u v s]T ∈ C3

space. Since s ∈ (0,∞), then
C3

space ∈ R3 s.t. s > 0.

B. Physical Constraints in a Single Section Continuum
Robot

At this point, however, we must discuss constraints in
the configuration space imposed by physical limitations of
the robot. The first constraint to consider is on length.
Any physical robot will have a maximum and minimum
length, imposing an upper and lower bound on arc-length:
smin ≤ s≤ smax.
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Fig. 4: An illustration of physical constraints of bending a
continuum robot. In (a), L1 = L2 = s. In (b), the robot has
bent counter-clockwise, causing L2 to lengthen and L1 to
shorten, while s remains constant.

Another constraint is imposed by the physical width of
the backbone of tendon actuated continuum robots. This
physical distance, dr > 0, is the distance from the center
of the backbone to its outer edge. With s being the length
down the exact center of the backbone, and L1 and L2 the
tendon lengths along its outside in the plane of bending (Fig.
4), when the robot is perfectly straight (i.e. u = v = 0), then
L1 = L2 = s. For the robot to bend counter-clockwise in
the plane, the length of the left side of the robot, L1, must
shorten at the same rate that the length of the opposite side
of the robot, L2, lengthens. This is illustrated in Fig. 4.

Because of this, the section cannot bend at all when
it is at maximum or minimum length. When s = smax
and u = v = 0, then L1 = L2 = smax. To bend, L1
or L2 must lengthen, but each is already at the maximum
length. The same reasoning is applied when s = smin. At
maximum/minimum length, C3

space = {
[
0 0 smax/min

]T }.
The practical configuration space can now be visualized in
Fig. 5(a). When s= smax−smin

2 the robot will be able to achieve
the greatest amount of bending and will have the largest “uv-
plane.”

A further practical constraint arises due to “encircling”
imposed when θ > 2π . Depending on the specific physical
construction of a practical continuum section, it is likely that
it will not be able to “encircle” itself. Even if it could, it
cannot continue doing so as u, v→ (±)∞. Therefore, there
will exist some boundary for u and v imposed by physical
constraints. For our purposes, we set this boundary to be at
θ = 2π , which bounds C2

space as shown in Fig. 3. Expanding
the θ ≤ 2π constraint to C3

space gives the space seen in Fig.
5(b), which is the practical configuration space for a single
section extensible continuum robot with physical constraints
exploited herein.

uv
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Fig. 5: A visualization of C3
space. In (a) the physical con-

straints of the backbone are illustrated. The maximum bend
can be achieved when s= smax−smin

2 , which is the widest plane
in the center of the pyramid. In (b), the physical constraint of
θ ≤ 2π is applied to (a), which forms the “rounded” pyramid
shape. The largest “uv-plane” indicated circle in (b) is the
same circle shown in Fig. 3.

III. A COMPARISON: EQUIVALENT RIGID LINK
ROBOT CONFIGURATION SPACE

To highlight the unique issues presented by continuum sec-
tion structures, we compare with the case of a kinematically
similar rigid link robot.

A. Equivalent Rigid Link Robot

To analyze a rigid link robot structure with the same DoF
as the continuum robot section, we use for comparison a 3
DoF robot with a constrained RRPRR joint configuration,
where R and P indicate revolute and prismatic joints, re-
spectively. This kinematic arrangement extends to 3D the
modeling of a planar extensible continuum section by planar
RPR kinematics described in [18]. The underlying concept
is for the prismatic joint to provide the translation between
the ends of the section, and the initial and final pairs of
revolute joints to rotate the prismatic joint in the appropriate
direction (θ1) and align the initial and final tangents of the
section (θ2) [18]. To achieve this, we constrain the third
and fourth revolute joints to exactly match the values of the
first and second revolute joints, respectively, which gives the
configuration vector q = [θ1 θ2 d θ1 θ2]

T . The prismatic
joint can extend/retract between a maximum and minimum
length. We select this rigid link configuration since we can
construct a kinematic mapping between its configuration
space and the configuration space of the continuum robot
section that restricts the rigid link robot to the equivalent
task space of the continuum section. This mapping, F , is
described in section III-D. Fig. 6 shows the two robots
sharing the same task space for different values of u. Note
that in each case the end effector positions and orientations
are identical, and shown in red.

B. Configuration Space

For the two independent revolute DoF: θ1,θ2 ∈ [0,2π)
and q = [θ1 θ2]

T ∈ Q2
space. Rather than the infinite plane

in Fig. 3, the space manifests as a square with “wrapping”
phenomenon that causes θ1,θ2 ≥ 2π,∨ θ1,θ2 < 0 to “wrap”
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Fig. 6: The task space of both the continuum section (black)
and rigid link structure (green) for different values of u.
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Fig. 7: Q2
space of the rigid-link robot.The arrows indicate

the “wrapping” phenomenon that occurs when θ1 and θ2
go beyond the bounds [0,2π).

back to 0≤ θ1,θ2 < 2π , as seen in Fig.7. This space, while
2D, is best visualized as the surface of a torus,

Adding the prismatic joint modifies the square in Fig.
7 into the rectangular prism shown in Fig. 8. As with the
Q2

space, the same “wrapping” phenomenon occurs whenever
one of the joints goes beyond 0 or 2π . The configuration
space can be defined as ∀q = [θ1 θ2 d]T ∈ Q3

space s.t. 0 ≤
θ1 < 2π, 0≤ θ2 < 2π, dmin ≤ d ≤ dmax.

C. C-Space of Continuum Section vs Rigid-Link Structure

The key difference between the continuum and rigid-
link configuration spaces (c-space) is the “wrapping” phe-
nomenon that occurs in Q3

space. In the ideal continuum c-
space, there exists exactly one straight path connecting any
two configurations c1, c2 ∈ C3

space. For the rigid-link robot,

8
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Fig. 8: Q3
space of the rigid-link robot. The arrows indicate

the “wrapping” phenomenon that occurs when θ1 and θ2 go
beyond the bounds [0,2π).

there are always 2 straight paths between any configurations
that involve a change in θ1 or θ2 (crossing the boundary in
opposite directions in figure 7). For configuration changes
that exclusively involve the prismatic joint, there is exactly
1 path.

An interesting difference between the c-spaces is their
sizes. Since both C3

space and Q3
space are finite, their sizes can

be compared by calculating the volume of each space. This
can be done by calculating the volume of the 3D shapes
shown in Fig. 5(b) and Fig. 8. The size of Q3

space is the
volume of the rectangular prism. The size of C3

space is volume
of the “rounded” pyramid, which is slightly less than the full
2- sided square pyramid but greater than a 2 sided cone where
the base has radius = 2π .

(4π
2)(smax− smin)

(
π

3

)
<Vcont < (16π

2)(smax− smin)

(
1
3

)
Vrigid = (4π

2)(dmax−dmin) (2)

Since the rigid-link robot was chosen to be kinematically
similar to the continuum robot, we can set the limits of the
equivalent rigid link prismatic joint to those of the continuum
section (they will be the same at zero curvature). We then
conclude that the configuration space for a kinematically
equivalent continuum section is larger than the rigid-link
robot’s configuration space (3). This interesting observation
suggests advantages, from a configuration space planning
point of view, for continuum structures over equivalent
traditional rigid link ones.

smax = dmax , smin = dmin

⇒Vrigid <Vcont (3)

D. Making Equivalent Task Space

The only difference between the two task spaces is the
physical shape of the arm of the robot that creates them.
This is either a constant curvature curve between the base
and the end-effector (continuum) or a straight line (rigid-
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link), as shown in Fig. 6. This shape is important in the
context of motion planning, as it has to be accounted for
when checking for collision-free paths through the space.

For the rigid-link robot to have the same task-space as the
continuum robot, we construct a function F that maps every
configuration c ∈ C3

space to a configuration q ∈ Q3
space. This

function, F , is neither one-to-one nor onto, and is shown in
(4).

F : C3
space→ Q3

space s.t. F(c) = q where

c =

u
v
s

 ∈C3
space and q =

θ1
θ2
d

 ∈ Q3
space

⇒ F(c) =


u
2
v
2(

2s√
u2+v2

)
sin
(√

u2+v2

2

)
 (4)

Let QC
space , R{F} where R{F} is the range of the

function F . Then QC
space ∈ Q3

space is a subspace of Q3
space.

Since C3
space is centered at u = v = 0, and has a radius of 2π ,

QC
space will be centered at θ1 = θ2 = 0. Now, θ1,θ2 ∈ [−π,π).

While this appears to have the same effect as θ1,θ2 ∈ [0,2π)
and as such seems arbitrary to define, it is a necessity for
the prismatic joint to achieve the proper configuration. From
(4), we see that d directly depends on the magnitude of u
and v. So while θ1 = −π/4 and θ1 = 7π/4 are the same
configuration with respect to the revolute joint, they lead to
unique configurations of the prismatic joint.

(1) creates another restriction found in QC
space that is absent

in Q3
space. Sending θ through F produces the boundary√

θ 2
1 +θ 2

2 ≤ π . This removes the “wrapping” phenomenon
and causes QC

space to have the same “rounded” pyramid shape
as C3

space, as shown in Fig. 9.
Finally, the volume of QC

space is significantly smaller than
the volume of the C3

space, but the task space is equivalent.

IV. EXPERIMENTS/VALIDATION
Our key motivation for analyzing the configuration space

is to apply traditional motion planning techniques to contin-
uum robotics in healthcare applications. Specifically, we next
apply the understanding generated above to motion planning
for the robot shown in Fig. 1 as a part of a wider research
effort in robotic assistance for aging in place.

With the societal move towards smart devices in every
home, we envision a collection of robotic furnishing elements
that can provide at-home care and assistance. As we age,
we lose the ability to perform simple day-to-day tasks and
eventually reach a point where we can no longer live without
assistive care. Our suite of robots, collectively called home+,
collaborate with individuals over time in the home to help
with these day-to-day tasks and prolong the time that the
individual can live independently [16]. For instance, people
need help retrieving objects from high shelves, so we created
a robotic lamp, which we term CuRLE, that includes the
ability to do such tasks (in addition to functioning as a lamp).

12

dmax

dmin

d

Fig. 9: The configuration space (red) of the rigid-link struc-
ture, QC

space, once it has been restricted by F to have the
equivalent task space as the continuum section. This is
displayed within the full c-space (blue), Q3

space, from Fig.
8

A. Continuum Robotic Lamp Element (CuRLE)

CuRLE is a tendon-driven, non-extensible, single-section
continuum arm mounted onto a mobile base which is con-
trolled by a differential drive. CuRLE ’s end-effector is a 2-
fingered gripper featuring a series of LEDs to give the lamp
light. The continuum arm is mounted on a prismatic joint (L)
which serves to raise/lower the base of the continuum arm
but does not change the arc length s. The prismatic joint is
further mounted on a revolute joint (ω) which allows the
entire arm to be rotated about the z-axis (yaw). Another
revolute joint (γ) is mounted at the end of the continuum
arm to serve as a “wrist” for the gripper.

1) Adding Constraints: In order to visualize the configu-
ration space of CuRLE and conduct motion planning through
the home environment space, we constrain several DoF. For
the remainder of this work, we fix L to its minimum length.
Since the continuum arm is non-extensible, the arc-length s is
also constrained to be constant. The revolute joint γ serving
as the wrist for the gripper adds redundancy, but remains
fixed in the experimentation described here.

With these restrictions, we discuss the mobile base and the
kinematic variables [ω u v] for the continuum arm. Since the
base serves to move the continuum portion through the home
space and the continuum element performs manipulation, we
divide the configuration space into two parts. We assume that
there will not be obstacles that CuRLE has to “pass under”
meaning that nothing in the task space would collide with the
continuum arm but not the mobile base. As such, we form
the configuration space of the mobile base cb = [x y θb]

T ∈
C base

space and the configuration space of the continuum arm c =
[ω u v] ∈ Cspace. Since motion planning for mobile robots
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Fig. 10: Cspace of CuRLE.

-5 0 5

-4

-3

-2

-1

0

1

2

3

4

u

Start
Goal
Cobs

0.8 1 1.2 1.4 1.6 1.8 2 2.2
1.2

1.4

1.6

1.8

2

2.2

u

(a) (b)

Fig. 11: The configuration space obstacles for the simulation
scenario, along with the start configuration, are shown in (a),
while (b) is the magnified obstacle from (a) where the goal
configuration is located.

using their configuration space is well documented [6], we
focus our efforts on the continuum arm.

B. Configuration Space of CuRLE

Recall that for a fixed arc-length s, a single section
continuum robot has a practical configuration space of a
circle bounded by θ = 2π , shown in Fig. 3. Since the
continuum arm of CuRLE can physically collide with the
mobile base, we modify the boundary to θ ≤ π

√
2 (the value

of the θ when u = v = π).
The revolute joint at the base of the continuum arm is

described by ω ∈ [0,2π). In the ideal case, ω displays the
same “wrapping” behavior that the revolute joints in the
rigid-link configuration space. As such, adding ω changes
the configuration space to 3 dimensions by revolving the
“uv-circle” around a central axis. The shape, depicted in Fig.
10, echoes the torus described by Q2

space, the c-space of 2
revolute DoF. Unlike Q2

space, however, CuRLE ’s is “solid”,
i.e. true 3D, meaning that configurations c are not limited to
the surface of the torus only. ω selects the “slice” (a circle)
of the torus and u and v select the point c within that circle.
Due to physical constraints, however, we limit ω ∈ [−π,π)
and do not allow wrapping, which is represented in Fig. 10
by the solid black plane at ω =−π .

C. Motion Planning with RRT and A*

Now that the configuration space for CuRLE has been
established, we apply classical motion planning techniques
to map and navigate the space.

A rapidly exploring random tree algorithm (RRT) was
implemented using C++. Every node in the graph is a
configuration c∈Cspace and every edge is the “action” vector
δ needed to move from one configuration to the next.
The start and goal location, along with the location of all
configuration space obstacles, were known a priori. All of
the obstacles are convex polyhedrons.

At every iteration of the RRT algorithm, a random configu-
ration is generated and added to the closest node in the graph
(barring no collisions). Every N iterations (starting with the
first), the goal node is used instead of the random node.
Collisions are detected by treating the continuum backbone
as a series of finite spheres and sampling along the series
while checking if the sampled sphere collides with any of
the obstacles.

Given the unique kinematic constraints of continuum
robots identified earlier, the RRT algorithm had to be mod-
ified to work for CuRLE . In order to pick up an object,
a cup on a shelf for instance, the continuum arm has to
bend in such a way so that the object ends between the
fingers on the gripper. Since the gripper has a maximum
width, the room for error is very small. In the configuration
space, this means that the goal location is always in a narrow
“canyon” created by the configuration space obstacles. For
RRT implementations, this can make it very difficult to
connect to the goal. We solved this issue by “projecting”
the goal node along a straight line until it was out of the
“canyon”. Once this projected goal could be attached to the
graph, the goal would then be achieved moving u or v in a
straight line.

Once the RRT algorithm connected the goal configuration
to the graph, we ran an A* algorithm to determine the opti-
mal path (given the tree generated by the RRT). The A* used
a heuristic of the L2-norm between a given configuration and
the goal configuration. The cost function was the L2-norm
between each node in the current path from the start node.
The algorithm then output the full graph and optimal path.

As noted in our discussion of the configuration space for
CuRLE, the mobile base and the continuum element can be
considered independent, enabling the use of separate RRT
algorithms for each space. We use the same core algorithm
discussed above for each space. In our experimentation, we
demonstrate the execution of the motion planning output in
serial and in parallel.

D. Simulation

To verify the motion planning algorithms, a simulated en-
vironment was created in Matlab and a model of CuRLE was
developed and added to the simulation. The simulation
involves a scenario where CuRLE is instructed to pick up
a cup off a shelf by the user. The task space obstacles
were converted to configuration space obstacles, shown in
Fig. 11. The start configuration of CuRLE cstart = [0 0 0]T
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Fig. 12: The simulated CuRLE in the start (vertical) and
goal (bent) configuration. The objective of the scenario was
to pick up the light grey cup on the shelf.

and the goal configuration for the example reported herein
was cgoal = [π/2 1.76 0]T , (i.e. the configuration needed to
pick up the cup). This goal was determined by using the
interactive GUI developed with the environment to bend the
simulated CuRLE until it was in the correct configuration.

The output of the RRT/A* was fed into the simulation and
Fig. 12 shows CuRLE achieving the goal configuration of
grasping the “cup”. For this simulation, we set v = 0 to keep
the configuration space 2D and allow for easy visualization
of the nodes from the RRT algorithm.

E. Hardware Testing and Integration

After successfully running the simulation, we first tested
the continuum controller’s ability to ”follow” an RRT path
by serially executing the transition from node to node. We
took the same RRT output (shown in Fig. 12) and passed this
path to CuRLE. We issued ”grasp” command to grab the cup
and then passed CuRLE a second path from the RRT to lift
the cup from the shelf. The results of this experiment are
shown in Fig. 13.

To demonstrate the full functionality of the system, we
explored a simple in-home scenario where the user has asked
CuRLE to fetch a cup from shelf, bring the cup into an
adjacent room and set it down on a different shelf, then
navigate to its ”docking station” in another portion of the
smaller room. Images from the video footage recording these
experiments are shown in Fig. 14, 15 and 16. For full details
of the implementation, see [19].

V. CONCLUSIONS
We have analyzed the practical configuration space for

a single section continuum robot and highlighted its unique
features focusing on tendon actuated continuum sections. We
have shown that classical motion planning techniques can be
applied in much the same way as with standard robots, once
certain features unique to continuum robots are taken into
account.

Fig. 13: (a) The state of CuRLE after ω has aligned with
the goal ω . (b) CuRLE has grasped the cup. (c) The results
of a second path generated by the RRT that guided CuRLE
to pick the cup off the shelf.

The efforts presented here to define the configuration space
for a single section, extensible continuum robot serves as a
necessary stepping stone to the description and visualization
of the c-spaces for multi-section extensible manipulators. In
addition, this work expands the opportunity for the appli-
cation of new motion planning methods that depend on the
configuration space with respect to continuum robots.
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Fig. 15: (a-b) Results from when CuRLE has been issued
the command ”Take the cup to the shelf in other room and
set it down”.

Fig. 16: (a) Results from when CuRLE has been issued the
command ”Return to your docking station”.
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