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Abstract—Over the past few years, modeling of continuum
robots has been the subject of considerable attention in the
research community. In this paper, we compare a set of forward
kinematic models developed for continuum robots, with the
underlying assumption of piecewise constant curvature. A new
approximate kinematic model based on phase and actuator length
differences is also introduced for comparison. The comparative
evaluation consists of computer simulation and physical exper-
iments on a multisection continuum robotic manipulator, the
OctArm. The experiments include both elongation and bending
in 3D space. The comparative accuracy of the models is reported,
along with relative numerical stability. Further conclusions are
drawn on the applicability of the models to different real-world
scenarios.

I. INTRODUCTION

Interest in continuum robotics continues to grow rapidly.

Continuum robots feature a continuous backbone and can

bend at any point along their structure. Often they are viewed

as ”invertebrate” robots as opposed to ”vertebrate” nature of

traditional rigid-link robots [1]. Owing to their novel physical

characteristics, novel and unique applications have been identi-

fied. Continuum robots have found their application in, and are

well suited to, narrow and cluttered environments in compar-

ison with highly structured industrial factory floors and work

cells. Their inherent compliance and maneuverability enable

applications which were previously not feasible for robotics,

including search and rescue tasks, underwater inspection and

repair, and, most notably, minimally invasive surgery [2], [3],

[4].

From the perspective of computing, the emergence of

continuum robots presents new and interesting challenges

in robotics. Unlike traditional robots composed from rigid

elements, which can only change shape at discrete points in

their structure, continuum robots can, at least in theory, change

shape at any point along their structure. This significantly

complicates their modeling (motivating, for example, a move

from discrete to continuum shape models), and, as we shall

discuss, introduces significant algorithmic issues and practical

problems related to the interplay between the algorithms

modeling them and their physical structure.

The physical structure of continuum robots has been largely

inspired by biological creatures, and researchers have at-

tempted to imitate nature’s continuum examples such as

octopus arms, mammalian and reptile tongues, and elephant

trunks, to varying degrees of success [5], [6] [7]. The diversity

of potential applications for continuum robots has led the

emergence of various designs [8]. Tendon-based continuum

designs, which consist of remotely actuated tendons routed

along the backbone of the robot have been developed for

space operations and surgical procedures. Designs which are

intrinsically or locally actuated via some type of artificial

muscle within the backbone have seen numerous realizations

in the recent years. Some examples include the ”Octarm”,

the ”European Octopus” and the ”Bionic Assistant”. These

types of continuum robots have also been used for medical

procedures such as endoscopic stitching, obesity treatment and

colonoscopic insertion. Concentric-tube designs have shown

significant progress in medical applications, specifically in

minimally invasive surgery, with numerous surgical systems

appearing in the commercial market [9]. An emerging class

of continuum robots have controllable backbone stiffness.

Stiffness regulation can be achieved with the help of ei-

ther a suitable pneumatically actuated tube design, fluid-

based actuation (magnetorheological or electrorheological), or

through jamming of granular media. Regardless of the physical

architecture, almost all continuum robots exhibit the property

of constant curvature (constant curvature along the length

of individual sections of the backbone), and hence, constant

curvature modeling of continuum robots is of key importance

in the field [1].

The field of theoretical continuum robot kinematics has

grown rapidly along with the related hardware development,

with a steadily increasing richness and diversity in theoretical

models proposed [1]. These models, the subject of this paper,

concentrate on constant curvature sections, as reviewed in the

following paragraphs.

Several approaches have emerged addressing the challenge

of kinematic modeling of continuum manipulators. In early

work, [10], Hirose proposed biologically inspired serpenoid
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curves, mimicking snake locomotion. A modal approach was

taken by Chirikjian and Burdick [11], where the authors

describe the robot shape using easily formulable modal func-

tions specified as the product of a Bessel function with sines

and cosines. Gravagne and Walker [12] employed a similar

approach but instead used wavelet decomposition. The dis-

crepancy between the shapes achievable by the finite number

of proposed model curves and those of the continuum robot’s

backbone curve limited the applicability of this approach.

Perhaps the most commonly adopted approach to modeling

constant curvature continuum robot kinematics to date is that

of [2], which introduced models for forward and inverse

kinematics. The result, by relating backbone shape to actuator

variables, extends that obtained in [13] which used virtual

rigid-link kinematics and conventional D-H parameters to

relate backbone shape to task coordinates [1], [8], [14], [15],

which in turn can be shown to produce the same results as the

approach by Mochiyama and Suzuki [16], [17], [18] which

treats the robot backbone as a curve in space, and utilizes

Frenet-Serret frame floating along the curve to characterize it.

However, all these models suffer from numerical (algorithmic,

i.e. numerical instabilities at configurations where there is

no corresponding physical limitation) singularities and de-

mand special numerical treatment when close to straight (zero

curvature) section configurations. In response to the above

limitations, an alternative stable yet computationally intensive

approach was presented by Godage et al. [3], [19] using mode

shape functions, wherein the configuration space variables are

approximated using multivariate Taylor series. This approach

has until recently been established as the most numerically

stable currently in the literature. However, recently a new

singularity-free analytical approach for modeling constant

curvature kinematics has been introduced [20]. Herein we

compare this new approach with the mode shape approach

in [3], and the commonly used approach of [2] and an

approximation to it.

In other work in continuum kinematic modeling, the use of

exponential coordinates to define kinematics has also appeared

in the literature [14], [21], [22], and is shown to lead to essen-

tially the same results as other constant curvature kinematic

models. When assuming non-constant curvature, the theory of

Cosserat Rods has been particularly useful in deriving geomet-

rically exact kinematic models which account for external and

gravitational loading, but are harder to implement and complex

in nature [23], [24], [25].

This paper introduces a new approximate version of the

kinematic model in [26], and compares it with prevalent

constant curvature kinematic models with respect to its ac-

curacy. The new approximate model relies on the linear and

angular differences between actuator lengths to establish the

configuration space variables.

The models analyzed and compared in this paper are [2], [3],

[20] and the new approximate model, from here on referred as

the Jones Model, Godage Model, Allen Model, and Walker-

Frazelle Model, respectively. These algorithms are detailed

in Section II. Experiment based comparison considering both

spatial bending and elongation using the three section, nine

degree of freedom OctArm continuum robot [2], [6] and

supplemented with simulations is presented in Section III.

Discussion and conclusions are presented in Sections IV and

V, respectively.

II. KINEMATIC MODELS

A fundamental difference exists between the forward kine-

matics mapping for a conventional serial rigid link manipulator

and a continuum manipulator. For traditional rigid link robots,

a standard homogeneous transformation matrix T with vari-

ables (θ, d) obtained via the Denavit-Hartenberg formulation

transforms the local shape coordinates (θ, d) into task space

coordinates x, representing the position and orientation of end-

effector typically [2]. The transformation is straightforward

due to finite number of joints and uses one independent

variable per joint representing either a translation d or a

rotation θ. On the other hand, continuum manipulators have

a theoretically infinite number of joints leading to coupled

rotational and translational motions along the backbone.

A. Jones Kinematic Model

As can be seen in Figure 1, the piecewise constant-curvature

assumption affords decomposition of the mapping from actu-

ator space q to task space x into two independent steps [8].

This model maps the actuator space coordinates q with the

configuration space coordinates (s(t), κ(t), φ(t)), where s(t)
is the arc length, κ(t) represents curvature, and φ(t) is the

bending plane angle in the frame attached to the base of the

section. The homogeneous transformation matrix (HTM) A is

given by (1), where c(φ) = cos(φ) and s(sκ) = sin(sκ).

Actuator Space

q

Cable Length l

    Pressure p

s, κ, �

Con�iguration Space

θ, d
f

Task Space

x

Arc params
D-H table

params
Position

Orientation

Fig. 1. Mapping from Actuator Space to Task Space

H(s, κ, φ) =⎡
⎢⎢⎢⎣
c(φ) −s(φ)c(sκ) s(φ)s(sκ) s(φ)(1−c(sκ))

κ

s(φ) c(φ)c(sκ) −c(φ)s(sκ) −c(φ)(1−c(sκ))
κ

0 s(sκ) c(sκ) s(sκ)
κ

0 0 0 1

⎤
⎥⎥⎥⎦ , (1)

Using purely geometrical means, the expressions for s(t),
κ(t), and φ(t) are found out to be as follows, whose values

are then substituted in equation 1 to obtain the final HTM.

Note that the HTM given above is different from the one in

[2] because it measures φ with respect to −Y axis, and does

not include the final rotation about Z axis for orientation at the

tip section. This is achieved by subtracting φ of the proximal

section by the immediately distal section, resulting in a more

concise form.

218



x

y

z

A

�

A
1

u

u
f

u
0

Fig. 2. Mapping from Actuator Space to Task Space

s =
(l1 + l2 + l3)nd√

l21 + l22 + l23 − l1l2 − l2l3 − l1l3

· sin
(√

l21 + l22 + l23 − l1l2 − l2l3 − l1l3
3nd

)
(2)

κ = 2

√
l21 + l22 + l23 − l1l2 − l2l3 − l1l3

d(l1 + l2 + l3)
(3)

φ = tan−1

(√
3

3

l3 + l2 − 2l2
l2 − l3

)
(4)

B. Godage Kinematic Model

The Godage Model uses parameters {λ(t), φ(t), θ(t)} to

describe a point along the neutral axis of a continuum arm

section. The parameter λ(t) is the radius of curvature, φ(t)
represents the elevation angle in section bending plane, and

θ(t) is the angle subtended by the section bending plane with

the +X axis in the base frame. The key idea behind this

model is given in (5), i.e. the displacement of any point on the

continuum structure can be expressed in terms of multivariate

Taylor series as the product of a vector of elastic coordinates

(qf ) and a shape matrix (S) defined by coefficients. q is

the joint variable vector of the section consisting of actuator

lengths, q(t) = {[l1(t), l2(t), l3(t)]T : q ∈ �3x1}. The scalar

ξ ∈ [0, 1] defines the points along the neutral axis where ξ
= 0 is the section base. Figure 2 illustrates the concept where

a point A on the neutral axis with u0 as the original position

vector is displaced to A1 after deformation [19].

uf (t, ξ,q) = S(ξ)qf (t,q) (5)

u(t, ξ,q) = u0(ξ) + S(ξ)qf (t,q) (6)

Referring to Figure 3, for any given section i, a homoge-

neous transformation matrix (HTM) T is defined as

x

y

z

�
1

θ
1

T
1

T
2

ξ
1

T
N

ξ
2

ξ
N

λ
1

Fig. 3. Mapping from Actuator Space to Task Space

i
i−1T(ξi,qi) = Rz(θi)Px(λi)Ry(ξiφi)Px(−λi)R

T
z (θi)

(7)

=

[
R(ξi,qi) p(ξ,qi)
01x3 1

]
(8)

i
i−1Tφ(ξi,qi) =

[
φR(ξi,qi) φP (ξi,qi)

01x3 1

]
(9)

where Rz and Ry are rotational matrices about the Z and

Y axes, and Px is the translation matrix along the X axis

[3]. Since every element of the HTM is essentially a linear

or angular displacement, the mode shape functions (MSFs) as

given in 7 and 9 can be obtained for each element, resulting in

a modal transformation matrix (MTM), i
i−tTφ, given in (8).

C. Allen Kinematic Model

The Allen model is first presented in [20]. Similar to

the Jones and Godage models, the Allen model uses three

parameters to describe a single continuum section in three

dimensional space. The first two parameters, denoted u(t) and

v(t), are part of a rotation vector ω(t) = [u(t), v(t), 0]T that

describes the orientation of the section’s end frame relative

to the section’s base frame. The value u(t) can be described

as the rotation around the X-axis in the base frame and

v(t) describes the rotation about the Y-axis. The rotation

component about the Z-axis is always zero. These values

equate to a total rotation θ =
√
u2 + v2 about the unit vector

ω/‖ω‖. The third parameter is the section length, or arc length,

as previously defined. We again use the variable s(t) to denote

the central length of the section.

The transformation matrix for the Allen model is given as:
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H(u, v, s) =

⎡
⎢⎢⎣
γv2 + 1 −γuv ζv −γsv
−γuv γu2 + 1 −ζu γsu
−ζv ζu cos(θ) ζs
0 0 0 1

⎤
⎥⎥⎦ , (10)

where ζ(θ) = sin(θ)/θ and γ(θ) = (cos(θ)− 1)/θ2. It can

be shown that the functions ζ(θ) and γ(θ) are still defined

when θ is zero. The equations for calculating u(t) and v(t)
for a three-tendon, 120◦ configuration manipulator are given

in equations (11) and (12), respectively. These are derived by

converting the four-tendon based equations presented in [20]

to a three-tendon model.

u(t) =
l2 − l3

d
√
3

(11)

v(t) =
s(t)− l1

d
(12)

The original reporting of the Allen model assumes a fixed

value for s(t). We cannot make this assumption, and therefore

have chosen to calculate arc length using equation (13).

D. Walker-Frazelle Approximation Model

The Walker-Frazelle Model is an approximation of the Jones

Model with the intent of low computational complexity and

elimination of singularities. Consequently, this approach only

introduces new approximate values for s(t), κ(t), and φ(t),
with rest of the transformation and implementation remaining

same. The expression for arc length (s(t)) is given as the

average of the three cable lengths, seen in equation (13). Note

that this value is accurate for pneumatic actuators which bend

continuously, and for cable actuated robots in case of pure

elongation (or contraction) [2].

s(t) =
l1 + l2 + l3

3
(13)

l
max

l
min

l
med

l m
ax

x

y

l m
in

l m
ed

z

l m
ax

y

l m
inl

BendingγPlane

�

O

A l0
max �ixed

datum

l0
min

l0
med

Fig. 4. Actuator Lengths Arranged Around Datum

The algorithm for calculation of φ(t) is given below. First,

at any particular instant of time the actuator lengths l1, l2,

l3 are ordered on the basis of largest to smallest magnitude

lmax, lmed, lmin, as shown in Figure 4. A datum is chosen

at the top cross-section, with respect to which we measure

angles subtended by different actuator lengths l0max, l0med,

l0min, all of which are fixed. Second, the algorithm calculates

the relative difference between the actuator lengths and uses

interpolation to get φ(t). Interpolation is the linear approxi-

mation employed in this case. When all the actuator lengths

are of equal value implying a case of pure elongation (or

contraction), φ(t) is undefined. The case of bending about

one actuator is given by (10) and when two or more actuators

are in operation, the value of φ(t) is given by (11). The value

of α is 1 when, l0min = l0max + 2π
3 , and -1 when, l0min

= l0max− 2π
3 .

φ(t) = l0max + π (14)

φ(t) = l0max + π − α

(
lmed − lmin

lmax − lmin

)
(15)

The curvature κ(t) expression is obtained by substituting

the values of s(t) and φ(t). Consider the case when a single

section continuum arm bends at an angle φ with curvature κ
and arc length s as shown in Figure 4. Let OA be the line at

which the bending plane intersects with the top cross-section,

and P and Q be two points on the line OA as shown in Figure

5. Let sp and κp be the arc length and curvature at point P, and

sq and κq be the arc length and curvature at point Q. Since θ
is constant,

sκ = spκp = sqκq =
Δs

Δr
= θ (16)

where Δs = sp - sq and Δr is the length PQ found below.

Let γ be the angle subtended by line OA with the line joining

the minimum actuator length and center C, in this case RC.

Thus, the ∠SCP shown in Figure 5 is equal to π
3 - γ.

O

A

l
max

l
min

γ

C

l
med

P

Q

S

R

d

30˚

30˚
T

6
0

-γ

d√3

Fig. 5. Mapping from Actuator Space to Task Space

Utilizing trigonometric relations in triangles PSC and QRC,

we get the value of Δr. The value of Δr and s(t) is then

substituted in equation (16) to obtain the value of κ(t).

Δr = PC + CQ = d[cos(
π

3
− γ) + cos(γ)] (17)

κ(t) =
lmax − lmin(

l1+l2+l3
3

)
d[cos(π3 − γ) + cos(γ)]

(18)
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Due to the geometry of the physical build, the value of γ
lies between 0 to π

3 . The value for δs is taken as lmax− lmin

rather than actual since the difference is negligible.

III. EXPERIMENTAL VALIDATION

The experimental trials include spatial bending and elon-

gation on the OctArm to delineate the accuracy of the four

models, namely Jones, Godage, Allen, and Walker-Frazelle

Model, under various configurations. The measurement of

the actual displacement is done with an ad-hoc calibrated

aluminum framing system, shown in Figure 7 along with the

OctArm. The set of trials were planned to be representative of

the entire configuration space.

A. Implementation

The OctArm is a soft continuum manipulator which consists

of three sections and nine degrees of freedom, each section

with two axes bending and elongation. The motion in every

section is achieved by circumferentially joining three or six

pneumatically actuated McKibben muscles, regulated via pres-

sure control valves. More details on the OctArm can be found

in [2], [6], [27], [28] . The simulation model was implemented

on Matlab 2011a.

Details of the experiments performed along with simulation

results are as follows. A total set of 11 configurations were

used, represented by their input pressure to each of the nine

muscle groups of the OctArm. The configurations consist of

3 pure elongation configurations, 7 curved configurations, and

a non-actuated case in order to observe any error inherently

present in the models or system. An example of the system

setup can be seen in Figure 6, which shows the unactuated

OctArm and the aluminum frame measuring tool used to

record actual end-effector locations for each experiment.

Fig. 6. Experimental setup for Kinematic Model Evaluation

Pure elongation motion is achieved by giving identical

pressure to all three actuators of a section. The input pressures,

measured in psi, for the 3 elongation configurations is given in

Table I along with the input for the control case. The maximum

input pressure for each of the pneumatic muscles is 90 psi.

Muscle CFG 1 CFG 2 CFG 3 CFG 4
(psi) (psi) (psi) (psi)

Base 1 0 0 65 52

Base 2 0 0 65 52

Base 3 0 0 65 52

Mid 1 0 52 0 52

Mid 2 0 52 0 52

Mid 3 0 52 0 52

Tip 1 0 0 39 52

Tip 2 0 0 39 52

Tip 3 0 0 39 52

TABLE I
INPUT PRESSURES FOR CONFIGURATIONS 1-4

Fig. 7. Configuration 2: Mid Section Extension

Figure 7 depicts the OctArm in configuration 2, where the

entire mid section is actuated at 52 psi.

Bending is achieved in a section by providing inputs to

one or two actuators of the section, which might be of

similar or differing value. The set of input pressures for the

7 curved configurations are seen in Table II. Figure 8 depicts

configuration 8, with each of the three sections curving in a

different plane.

Muscle CFG5 CFG6 CFG7 CFG8 CFG9 CFG10 CFG11
(psi) (psi) (psi) (psi) (psi) (psi) (psi)

Base 1 0 78 0 22 0 0 0

Base 2 0 0 65 0 46 0 72

Base 3 0 78 65 78 46 59 0

Mid 1 0 0 0 0 46 0 52

Mid 2 0 0 52 78 0 0 0

Mid 3 0 0 52 78 46 59 52

Tip 1 0 0 0 22 46 59 0

Tip 2 78 78 39 78 46 0 78

Tip 3 0 0 39 0 0 0 0

TABLE II
INPUT PRESSURES FOR CONFIGURATIONS 5-11
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Fig. 8. Configuration 8: Three Section Non-planar Bending

IV. EXPERIMENTAL RESULTS AND DISCUSSION

A. Model Comparison

Each model has its own pros and cons which consequently

dictates its suitability. The Jones model and Allen model

are geometrically exact approaches, while the Walker-Frazelle

model and Godage model are approximations.

The Jones model’s numerical requirement of non-zero sec-

tion curvature introduces singularities and hence inaccurate

results for purely extending motions. A limiting-case analysis

for general class of continuum manipulators was presented

by the authors to address this issue [26]. With respect to the

experiments presented here, it was expected that the Jones

model would perform best in the curved configurations and

more poorly when measuring pure elongation.

The Godage Model is numerically stable at all configura-

tions. Despite being a modal approach, the Godage model is

computationally intensive. This is because the MSFs derived

for every element of HTM need to be of fairly high degree

in order to be a sufficiently accurate representation for all of

configuration space.

The Allen model presents a mathematically stable solution

while also reducing the complexity of implementation. Given

the stability of the model, it was expected to perform well in

both pure elongation and curved configurations.

The Walker-Frazelle Model is an approximate stable ap-

proach built upon the Jones Model. The intention of the

model is to simplify mathematical complexity and remove

the singularity presented by zero-curvature through the use

of piece-wise continuous model. A distinction should be made

that the enhanced stability in the Walker-Frazelle model comes

at the cost of increased computational complexity.

B. Results

The results of the experimental trials as well as simula-

tions are covered in this section. A comprehensive set of

experiments were conducted so as to represent the entire

configuration space. For example, in the case of the pure

elongation, the experiments included an idle case with no

Model CFG 1 CFG 2-4 CFG 5-11 Total
[cm] [cm] [cm] [cm]

Jones 3.5 5.3 6.8 6.3

WF Approx 3.3 5.0 8.0 7.1

Godage 3.6 2.7 13.1 9.9

Allen 3.5 5.3 6.8 6.3

TABLE III
AVERAGE EUCLIDEAN ERROR BY MODELS

input, actuation of a single section at a time, two sections at

a time, and finally three sections, and with changing pressure

inputs for every case. Extreme configurations, such as the one

shown in Figure 8 were also included.

The accuracy of the four kinematic models across 11 config-

urations are reported in Table III. The errors are calculated as

the euclidean error with respect to the manual measurements

recorded for each configuration. The model errors in the

control case are shown in column 2, the average model error

for both the elongation and curved configurations are presented

in columns 3 and 4, respectively. The total average error for

all configurations is given in column 5.

As predicted, the Godage model did perform better, on

average, than the other three models at approximating the

end-effector location in purely elongation cases. However,

the Godage model performed noticeably worse in all cases

involving any amount of section curvature.

The Jones model and Allen model returned measurements

that were identical for each of the test configurations. We

tested several scenarios in order to separate these two models

but were consistently met with the same result. While it was

expected for the two models to perform on average better than

the approximation models, it was not anticipated that the two

models would return identical measurements for every test

case. It was anticipated that the Allen approach would perform

better than the Jones approach for configurations close to zero

curvature. However, we were unable to find configurations for

which this was the case. As can be seen, the two models were

both several centimeters closer on average to the true value

than either of the approximation models.

The Walker-Frazelle approximation on average performed

better than the Godage approximation model but was incon-

sistent during configurations that tested the piece-wise nature

of the approximation.

Given the results as presented, it is difficult to draw a clear

victory for any singular model. When accounting purely for

average error, the Jones and Allen models could be said to be

equally reliable. Mathematically, the Jones model parameters

involve more complex calculations and is unstable when

approaching zero curvature. The Allen model is defined in

the case of pure elongation and has relatively simple model

parameter calculations.

V. CONCLUSION

A comparison of accuracy between four different for-

ward kinematic models for multisection continuum robots is
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presented. One of the models in comparison, the Walker-

Frazelle model is introduced in this paper. The selected models

cover a considerable spectrum of different constant-curvature

kinematic approaches, such as modal, virtual rigid-link, and

geometrically exact and approximate models.
Spatial bending and pure elongation experiments were con-

ducted on the OctArm. The results indicate that there is

no clear ”best model”, though the Jones and Allen models

on average present the strongest case as geometrically exact

constant curvature models. Contrary to our expectations, the

Jones approach performed as well as, indeed identically to,

the Allen method.
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