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Abstract— Continuum robots have long held a great potential
for applications in inspection of remote, hard-to-reach environ-
ments. In future environments such as the Deep Space Gateway,
remote deployment of robotic solutions will require a high level
of autonomy due to communication delays and unavailability of
human crews. In this work, we explore the application of policy
optimization methods through Actor-Critic gradient descent in
order to optimize a continuum manipulator’s search method for
an unknown object. We show that we can deploy a continuum
robot without prior knowledge of a goal object location and
converge to a policy that finds the goal and can be reused
in future deployments. We also show that the method can be
quickly extended for multiple Degrees-of-Freedom and that we
can restrict the policy with virtual and physical obstacles. These
two scenarios are highlighted using a simulation environment
with 15 and 135 unique states, respectively.

I. INTRODUCTION

Continuum robots have a number of characteristics that
distinguish them from their rigid-link counterparts. One such
characteristic is the source of actuation often being located
away from the core structure of the manipulator [1], trans-
ferring actuation through either tendons, pneumatic pressure,
or synthetic muscles that rely on external power sources
to drive local locomotion. This absence of the actuation
source in the body of the manipulator makes continuum
robots excellent candidates for exploration and manipulation
in restricted environments [2]–[5].

The “continuum” element of this class of robots draws
many parallels to the biological world, ranging from verte-
brates with continuum appendages such elephant trunks to
invertebrates whose entire body is made up of compliant,
soft material capable of extreme dexterity and manipulation
[6]–[8]. Along with the complexity of these continuum
structures found in nature, continuum manipulators carry
with them the potential for hyper-redundancy [9] and an
infinite number of degrees-of-freedom (DoF) due to their
structure being deformable at any point along their backbone.
This phenomenon manifests in complex kinematics [10]–[12]
and dynamics [13], [14].

There have been a number of explorations into motion
planning methods for continuum robots, which often can
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help avoid the challenges that redundancy and complex
configuration spaces bring to solving problems like inverse
kinematics. Configuration space exploration and exploration
through sample-based methods such as Rapidly-exploring
Random Tree (RRT) methods have been deployed for maneu-
vering continuum manipulators through various task spaces
[15]–[19], even adaptively updating the knowledge and
trajectory during execution [20]. Once configuration space
driven methods are implemented to locate points of interest
in the continuum manipulator’s task space, kinematics driven
methods such as visual servoing [21] can be used to refine
the manipulator’s interaction with the environment.

Reinforcement learning (RL) provides an attractive al-
ternative where a robot/agent learns to take actions that
maximize its cumulative reward through interactions with the
environment. Many early success stories exist, from training
robots to compete in RoboCup competitions to enabling
robots to acquire advanced manipulation skills [22]–[25].
More recently with the rise of deep learning, impressive
results have been obtained on physical articulated robots
for a wide range of motor and manipulation tasks [26]–
[29]. In the continuum robotics domain, a number of works
have explored the use of reinforcement learning to improve
motion planning methods and improve upon various control
schemes [30], [31]. Most relevant to this work is the use
of a Soft Actor-Critic (SAC) method in [32] to optimize
a continuum manipulators policy for reaching a point in
space with the robot’s end-effector. In that work, the authors
employ a Random Network Distillation (RND) method to
train a series of neural networks and then use the SAC
algorithm to maximize the return of the policy designed to
capture a known object in space. They report a dependency
on sparse reward and a need for the RND method in order
to promote adequate exploration. Of these works, many rely
on a need of a priori knowledge of the environment or of a
specific goal state.

Here, we investigate the feasibility of using a RL frame-
work to train policies on continuum manipulators. In par-
ticular, this paper explores the application of reinforce-
ment learning for continuum manipulators with the aim
of automating continuum robots being used for inspection.
An actor-critic policy gradient method is applied with the
purpose of locating a goal object and creating a global policy
that determines how the robot behaves when deployed with
the task of observing various points of interest in its task
space. The method can be expanded for encompassing extra
DoF, as well as be used to develop policies simultaneously
for different points of interest within the robot’s workspace.



We summarize the algorithm and problem specific adjust-
ments for our solution in Section II. Section III explores both
a simple and extended example of our method in action and
results, as well as the impact of learning rates on solution
convergence. Discussion and conclusions are presented in
Sections IV and V, respectively.

II. POLICY OPTIMIZATION

A model-free policy optimization method is proposed in
this work in order to shape a continuum robot’s search policy
for objects of interest. This method allows us to develop
a global policy quickly while removing potential problems
that redundancy and aliased states cause for deterministic
methods.

A. Formulation

We formulate the control problem of a continuum robot
section as a discounted Markov Decision Process defined by
the tuple M = {S,A, P, r, γ}, where S denotes the state
space, A is the action space available to the robot, P : S ×
A → S is the state transition function, r : S ×A → R is the
reward that the environment emits on each transition, and
γ ∈ [0, 1] is the discount factor. Regarding S, for a single
continuum section, we define two DoF: κ, the curvature of
the continuum section, and φ, the plane of bending for each
section. Traditionally, many continuum robots also have the
ability to extend and retract along their backbone; we assume
fixed backbone length in this work. We create a discrete set
of all states by describing each DoF as spanning nκ ∈ N
and nφ ∈ N discrete values, distributed evenly over a defined
range for each value. Given i number of sections, the total
number of states is (nκ × nφ)i, giving Snκ×nφ×.... In this
work, we limit our actions to a single step transition along
one DoF at a time in order to simplify the list of available
actions and create simple connections between states. For
each DoF, we increment the DoF up (a = +1) or down
(a = −1) along their discrete set of values, or remain at
the current value (a = 0). Given i sections as before, the
total number of actions is 3× i× nDoF , where nDoF is the
number of DoF available to the section.

As is common among reinforcement learning methods,
we empirically define a series of rewards and penalties
associated with actions taken by the robot in order to shape
the final policy. The reward function is primarily designed
to promote actions that lead to a state that can view the goal
object. Equally, it penalizes actions that leave such states in
order to return to states that are not able to see the goal.
We design the largest penalty to occur when a chosen action
leads to an invalid state or invalid state transition. Examples
of this would be trying to bend a continuum section beyond
the physical limits of the robot or attempting to transition
to a neighboring state that is blocked by a physical object.
For all other actions, the algorithm issues a step penalty in
order to encourage reaching the goal state in a finite number
of steps. Thus, the reward structure, Ras we employ is as
follows:

Ras =


−100 , if s′ is invalid
5 , new state sees goal
−5 , leaves state that sees goal
−0.05 , general movement cost

(1)

B. Actor-Critic Policy Optimization

We assume a model-free reinforcement learning setup,
where the robot does not have direct knowledge about the
transition function, P , and reward, r, and can only experience
them through interacting with the environment. In particular,
at a given time step t, the robot observes the current state
st ∈ S and samples an action at ∈ A from a policy
π : S → A. This leads to a new state st+1 that rewards
the robot with rt. Our goal is to solve for the policy that
optimizes the robot’s expected sum of discounted rewards.

Policy gradient methods allow us to maximize the ex-
pected cumulative reward by directly searching in the policy
space, reducing the amount of memory needed to store
quality of states and actions information as with Value
Iteration and Q-learning methods, while they are also the
preferred class of methods for learning controls in continuous
state-action spaces. Here, we consider parameterized policies
πθ(a|s) and hence the objective of the learning process is to
find the parameters θ that maximize

J(θ) = EM,πθ [

∞∑
t=0

γtrt|πθ] (2)

Given the above objective function, J(θ), we adjust θ
through gradient ascent where the gradient of the expected
reward can be determined according to the policy gradient
theorem [33]:

∇θJ(θ) =

Eat∼πθ(·|st)

[∑
t

∇θ log πθ(at|st)Qπθ (s,a) | st

]
(3)

where Q(st,at) = Ea∼π(·|st),M
[∑

l=0 rt+l
]

denotes the
action-value Q function. To reduce the variance of the
policy gradient estimate and increase stability, we consider
an actor-critic policy gradient framework [33]. In particular,
we replace the estimate of the Q-value provided by the
cumulative reward in Eq. 3 with a function approximator
(critic) which is learned in tandem with the policy (actor).
The critic evaluates the quality of the policy for a current
set of policy parameters. The actor then shapes the policy
parameters in response to the output from the critic. It is
important to note that the vector value θ is of the same
dimension as our state-action feature vector, which we define
when implementing the solution in Section III.

In the problem we are exploring in this work, our contin-
uum manipulator is capable of assuming a discrete number
of states and to perform a discrete set of actions in order to
transition between these states. As such, we have chosen to
use the Softmax policy [33] which states that the probability
of an action is proportional to the exponential of a linear
combination of features Φ(s, a):



πθ(s, a) ∝ eΦ(s,a)T θ (4)

Using this policy, our learned policy parameters θ are defined
to be coefficients for each of our features.

Given the well-defined nature of the Softmax policy , the
relevant score function is:

∇θ log πθ(s, a) = Φ(s, a)− E[Φ(s, ·)] (5)

where E[Φ(s, ·)] is the expected feature vector at state s.
Regarding the critic that evaluates our policy, we consider

a linear approximation of the value function, Qπ(s, a), by
linearly combining the features via a weight vector w:

Qw(s, a) = Φ(s, a)Tw ≈ Qπθ (s, a) (6)

The critic is updated at each time step using linear Tempo-
ral Difference (TD) learning that adjusts the parameters w of
the Q-function based on the TD error, delta, and the state-
action features. We refer the reader to Algorithm 1 for an
overview of our actor-critic framework for learning an opti-
mal policy. Here, each learning iteration generates sample(s)
from the current policy, uses these samples to update the
critic function, and updates the policy parameters based on
the critic and the gradient of the objective function. Learning
rates α and β adjust step size for learned parameters, and the
discount factor γ determines the impact of future rewards.

Algorithm 1 Actor-Critic Policy Gradient
1: function QAC
2: Initialize s, θ
3: Sample a ∼ πθ
4: for each step do
5: Sample reward r = Ras , get transition s′ ∼ P as
6: Sample action a′ ∼ πθ(s′, a′)
7: δ = r + γQw(s′, a′)−Qw(s, a)
8: θ = θ + α∇θ log πθ(s, a)Qw(s, a)
9: w ← w + βδΦ(s, a)

10: a← a′, s← s′

11: end for
12: end function

III. SIMULATION VALIDATION

We verify the functionality of the algorithm using a
simulation model of the Tendril robot [34] placed in the
Gazebo physics simulator environment [35]. The Tendril is
a continuum robot comprising of a backbone made using a
carbon fiber tube, plastic spacers for the routing actuating
tendons, and an actuator package that pulls on the tendons
to create bending. The physical Tendril is long and thin,
with either 2 or 3 independent continuum sections. The
Tendril is simulated in Gazebo using a series of small, rigid
linkages connected in series that approximate the continuum
shape of the actual Tendril. The end-effector of the simulated
manipulator is fitted with a camera that is oriented in line
with the tendril’s backbone, much like an endoscope. In order

to simplify the image processing task and focus on the policy
optimization, the Tendril is placed in an empty simulation
world with a single object that represents the goal we wish
to locate with the robot’s camera. An example of the empty
world scenario and the viewpoint of the simulated Tendril is
given in Figure 1, where the view of the Tendril is seen in
the lower left corner.

Fig. 1. Empty World Simulation with Tendril Robot

A. Defining Features

Necessary to the implementation of our formulation is the
definition of the feature vector. As this solution is designed
for inspection purposes, our state feature vector Φ(s) is
defined based on feedback from a camera and low-level
image processing:

Φ(s) = [Iavg, Sobj ] (7)

where Iavg is the average intensity of the image and Sobj
indicates if a goal object is present and the size of the object
relative to the camera frame size. Both feature values are
normalized to the closed range [0, 1], and the size of goal
object is saturated to a threshold equivalent to occupying
1/10th the area of the camera view.

In order to simplify the execution of the method around
edge states (i.e. the boundaries of our state space), we
preserve the same action set for all states and instead apply
an action-based feature, and corresponding penalty in our
reward function, for state-action pairs that attempt to assume
an invalid state. The feature, represented as B in equation 8,
exists as a binary feature: 1 when the chosen action crosses
a boundary (such as exceeding bending limits), and 0 when
the chosen action leads to another valid state.

Φ(s, a) = [∆Iavg,∆Sobj , B] (8)



The remaining features in our state-action feature vector
(∆Iavg,∆Sobj) are the changes in the state features Iavg and
Sobj , respectively, between state s and the state s′ reached
upon performing action a.

In analyzing the algorithm given this feature definition, it
can be seen that the nature of our state-action feature vector
will always produce a non-zero probability of staying in a
arbitrary state at any given time. In other words, Φ(s, a) =
[0, 0, 0] when the action is a = 0 across all DoF, giving
e[0,0,0]T θ = 1. Therefore, we modify the policy for these
actions in each state as:

πθ = Sobje
Φ(s,a)T θ (9)

This modification to the policy removes the probability of
choosing actions that stay in a state for any configuration
that does not see the goal object and scales the probability
of staying in a goal state according to how well the state
“sees” the goal, as designated by Sobj .

B. Planar Task Space Exploration

In this first experiment, we start with a two-section con-
tinuum manipulator capable of independent planar bending
in each section (i.e. nDoF = 1). For clarity of visualizing
the states, we indirectly provide curvature values (κ) as
bending angles, which can then be converted to curvature
for a fixed length backbone using κ = bending angle

arc-length . We allow
the proximal section three bending values: bending angle of
zero (straight backbone), and ±90°(i.e. bending left and right
at 90°). Separately, we allow the distal section five values:
straight, and bending angles of ±90°, ±180°. Therefore, the
total number of possible states is 15. Examples of physical
meaning for these states can be seen depicted in Figure 2.
In evaluating the ability to locate an object of interest, we
placed the singular goal object 0.8m left of the base of the
robot and 1m vertically up from the base, which is conveyed
by the blue orb in the upper left corner of each state image
in Figure 2. Finally, for this experiment, we set the learning
and discount rates to: α = 0.1, β = 0.3, and γ = 0.95,
which we experimentally found to work well for solution
convergence.

We ran the algorithm 10 times while initialized at each
of the possible configurations for a total of 150 executions.
Each execution was allowed to run for 1500 iterations with
the learning rates given above. The average of the policies
obtained from each of the 150 runs is described in Table I,
where the numbers given per action per state are the percent
chance that the action will be taken when in that state. The
actions listed in the table (Up/Down/Left/Right) refer to the
transitions seen in the visual interpretation of the final policy
in Figure 2. For each depicted state, the arrows flowing from
the state represent the possible action transitions and are
shaded according to the likelihood of that action being taken
and transitioning to a neighboring state. All action transitions
appearing as grey have a probability of either zero or near
zero (<0.5%) of being chosen. The three states capable of
seeing the goal are highlighted in the figure (States 5, 9, and

12), and are the only states that contain action transitions
indicating a probability of staying in the present state.

As can be seen in the results of our simplified example, in
the states where the goal object is well seen (States 9 and 12),
we see a greater chance of staying in those states. In states
neighboring the goal states (i.e. one action step), we also
observe a markedly high percent chance (>75%) of taking
the action that get us directly to a goal state. In states more
than a step away, we see nearly uniform distribution among
the valid actions, which is to be expected in an aliased state
that does not provide much feedback to the system. Also, as
designed in the feature set, in all edge states, any actions that
lead to states beyond the limitations of the robot converge to
zero or near zero percent chance of begin chosen. Overall,
this is the expected optimal policy.

C. Spatial Task Space Exploration

We extend the above example by adding two additional
DoF: direction of bending for the proximal section (φprox)
and for the distal section (φdis), giving nDoF = 2. The
number of states quickly extends beyond the amount that can
be reported here in detail. Instead, we report the total number
of states, location of the goal, and the convergence to a stable
policy. To start, we define our state set. In this experiment,
we allow φprox and φdis to have 3 values: 0°, 120°, and 240°.
We keep the same range of bending angles for the proximal
and distal sections as the planar experiment. Given this, our
total number of states is: 3·3·3·5 = 135. We can see a visual
expression of these states in Figure 3, where we have also
placed an example goal object at [x, y, z] = [−1, 0.5, 1.25].
We use the same learning rate α and discount value γ from
before. We modify the learning rate β to be 0.2, which we
found slightly improved performance on our hardware.

Given that our state space in this example is too large to
reproduce visually here, we instead track the convergence of
our policy parameters θ to a stable set of values. We ran
the optimization algorithm 5 times from randomly selected
starting states. Figure 4 depicts the average change in the
three θ values over 2000 iterations of the policy optimization
algorithm and includes the standard deviation of the 5 trials
as shaded regions.

As can be seen, values θ1 and θ3 settle around approx-
imately 800 iterations. The value of θ2 increases slightly
after this point, but generally begins to plateau enough to
consider it a sufficient condition to exit the learning process.
In practicality, we can design exit conditions (such as no
change in policy for x iterations) to exit the learning process.

From our knowledge of the features that describe the state
of our robot, we can draw conclusions from the relative
magnitude and sign of the three θ values and their impact on
our policy. It can be seen that any action that crosses a bound-
ary (B=1), simulated or physical, will have a large negative
component in the exponent, giving a probability approaching
zero of that action being chosen. Even in the event that a goal
state is on the other side of the boundary, the magnitude of
the boundary associated parameter is generally higher than
that of the goal. This is in part due to the penalty associated
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Fig. 2. Optimized Search Policy for Planar Two-section Continuum Manipulator: Colors correspond to probability of state-action transition occurring.
Grey transitions indicate probability of zero.

TABLE I
STATE ACTION PROBABILITIES ACCORDING TO POLICY FOR PLANAR SEARCH

Action S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14 S15
Up 0.1 0.0 0.0 0.0 0.0 33.1 0.3 9.0 25.8 13.3 0.7 0.3 0.8 80.0 49.9
Stay 0.0 0.0 0.0 0.0 2.1 0.0 0.0 0.0 21.9 0.0 0.0 49.6 0.0 0.0 0.0
Down 49.9 33.7 47.5 77.0 8.5 33.2 98.8 9.0 2.3 9.6 0.0 0.0 0.0 0.0 0.1
Left 0.1 33.2 4.9 9.7 87.3 0.0 0.3 9.2 25.7 77.2 0.0 0.3 98.8 10.1 49.9
Stay 0.0 0.0 0.0 0.0 2.1 0.0 0.0 0.0 21.9 0.0 0.0 49.6 0.0 0.0 0.0
Right 49.9 33.1 47.6 13.2 0.0 33.7 0.7 72.7 2.3 0.0 99.3 0.3 0.4 9.9 0.1

Fig. 3. Task Space of Tendril in Open space

with crossing a boundary being significantly higher than the
reward for reaching the goal.

In evaluating values θ1 and θ2, we can see a positive
association with both the average intensity of the image
(Iavg) and the feature indicating the size of the goal object
(Sobj). Clearly, seeing the goal is more impactful on our
policy as indicated by the difference in magnitude of the
parameters. However, because our goal is a bright object
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Fig. 4. Convergence of Policy Parameters for 4 DoF (Solid lines denotes
the average and shaded regions the standard deviation of policy parameter
values over 5 trials.)

in a dark environment, there is still a positive association
between increased light intensity and reward for finding the
goal. Seeing this behavior, we can potentially draw parallels
to the policy slightly favoring an increase in brightness.



D. Impact of Learning Rates
Following our observations with the convergence of policy

parameters in the previous experiment, we conducted an
empirical study of the impact of varying the learning rates,
α and β, on the solution. For each learning rate, we adjusted
the values independently and averaged 10 samples at each
of the selected test values. For varying α, these values were:
0.001, 0.01, 0.1, 0.5, and 1.0. For β, we tested β values:
0.002, 0.02, 0.2, 0.3, 0.6, and 1.0. When varying α, we set
β = 0.2, and when varying β, α = 0.1. Figures 5 and 6
show the result of varying α and β, respectively on all three
of the policy parameters while using the same experimental
setup as the previous experiment.
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Fig. 5. Impact of learning rate α on solution convergence (β = 0.2)
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Fig. 6. Impact of learning rate β on solution convergence (α = 0.1)

As can be seen in Figure 5, we generally see an increase in
the rate of convergence as α increases, with some instability
when α = 1. With respect to the α value used in our
experiments, α = 0.1, we see that this choice of α shares
desirable characteristics with both the smaller and larger
α values. At α=0.1, the solution has a relatively smooth
convergence, similar to the small α values, while having a
faster rate of convergence like the higher values.

In observing the impact of β on our solution, it is clear that
the value of β does not an impact solution convergence with

the same distinction when observing policy parameters θ1

and θ2. However, in observing parameter θ3, we see a trend
similar to that of α, in that higher β values cause faster, less
smooth convergence, and lower values have smooth curves,
but are slower to converge. The one value that breaks this
trend for this example is β = 0.3, which acts closer to the
small values of β than values of a similar magnitude.

IV. DISCUSSION AND FUTURE WORK

A. Discussion

As we expand the DoF and range of motion, we quickly
arrive at a scenario where the state-space contains a multitude
of local states that are able to “see” the goal object. The
algorithm presented here does not guarantee that the robot
will arrive at exactly the “best state” that has the closest view
of the object. However, the method can arrive to one of the
local “best states” distributed throughout the state-space.

Indeed, when also taking into account our modification
in Eq. 9, we can see an example of the policy settling in
“good enough” states in our simple scenario. States 5, 9,
and 12 are candidates for acceptable states by simply seeing
the goal object. In purely quantitative reasoning, state 12 is
the “best” goal state in that it has the best view of the goal
(Sobj = 1), followed by state 9 (Sobj = 0.36), and then state
5 (Sobj = 0.05). The uniform random policy in aliased states
prevents the system from settling in, or oscillating between,
two non-goal states, and the remaining states clearly have an
eventual path to either state 12 or 9. Even in state 5, in part
receiving help from our modification, the policy has greater
chance of moving to state 4 and then to state 9 over staying
in 5. However, there is not an overwhelming likelihood of
the system leaving state 9 in order to settle at state 12.

In order to address scenarios in which the continuum robot
is given a higher number of states, we could able to add
additional features and reward values that could encourage
the robot to converge to states that have a “better” view
of the goal. For example, if the planar robot has multiple,
neighboring states in which the goal is visible, we could add
a feature and related reward based on the distance of the
object from the center of the camera. This could drive the
robot to take actions that align the object in the middle of
the camera for a better view.

In presenting this material, we simplify the image pro-
cessing method of recognizing our goal object. In practical
application, we can substitute our goal related features with
those corresponding to the location of an actual feature
of interest. Examples could be the results from a template
matching algorithm that returns confidence values and loca-
tions, among other details.

Another design choice was the use of configuration space
over actuation space. By using the configuration space, we
have a meaningful interpretation of the system states that
can be applicable to a variety of continuum manipulators.
In converting to actuation space, we can rely on closed-loop
controllers adapted to individual continuum robots to convert
values such as curvature and orientation to physical values
such as tendon lengths or pneumatic pressures.



As a function of using a simulation model, we make the
assumption in this work that our state space and actions are
well within the defined configuration space of our system. We
also assume that transitions between neighboring states are
guaranteed and deterministic. In practice, and subsequently
the scope of future application, we will have to rely on
control methods to achieve state transitions, and relax the
guarantee of expected state transition. The need for reliable
control methods in spatial motion is still a topic of research
in continuum robotics [7], but it will not be necessary to
require methods dependent on complex dynamic models to
perform state transitions for a set of static states.

B. Future Work

The simulation model in Gazebo enables us to quickly
test multiple scenarios and extend the size of the robot’s
state-space. Future work will explore applying this learning
algorithm to a physical continuum robot in real-time, as
well as exploring offline training in simulation with online
execution of the learned policy. The Tendril robot was
originally designed for deployment on, and inspection of,
the International Space Station. The application of Gazebo
and ROS can allow us to develop and test life-like scenarios
aboard the ISS and in collaboration with Robonaut [36].

Another expansion of this work will be to switch to a
more continuous state-space as well as a continuous action
space. We would then explore the refinement of a Gaussian
distribution based policy. As we move to continuous action
spaces, we plan to test high-capacity function approximators
such as neural networks to represent the policy and value
function where raw pixel data can be used as state inputs.
This will require a more robust policy optimization approach
such as the Proximal Policy Optimization [37] that uses
a modified objective to the MDP problem to estimate the
expectation of the current policy. We also want to see how
maximum entropy RL frameworks such as the recent Soft
Actor-Critic model [38] can extend to our domain, as they
are known to be sample efficient and more robust to hyper-
parameter tuning which will be needed when training neural
network-based Gaussian policies.

V. CONCLUSION

We successfully implement an actor-critic policy optimiza-
tion method in order to improve the search method of a
continuum manipulator used for inspection. Our scenario
involves a continuum manipulator deployed to locate objects
of interest without prior knowledge of the object’s location.
The implemented algorithm allows the robot to converge to
a desirable state with a view of the object while learning a
reusable search policy for future deployments. We provide
detailed results of a simple example and examine the global
implications of a more complex example with a high dimen-
sional state-space. Future work will convert the solution to
a continuous state and action space and see implementation
on a physical robot.
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