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We present a semi-implicit return mapping algorithm for integrating generic nonsmooth elastoplastic
models. The semi-implicit nature of the algorithm stems from ‘‘freezing” the plastic internal variables
at their previous state, followed by implicitly integrating the stresses and plastic multiplier. The plastic
internal variables are incrementally updated once convergence is achieved (a posteriori). Locally, the algo-
rithm behaves as a classic return mapping for perfect plasticity and, hence, inherits the stability of impli-
cit integrators. However, it differs from purely implicit integrators by keeping the plastic internal
variables locally constant. This feature affords the method the ability to integrate nonsmooth ðC0Þ evolu-
tion laws that may not be integrable using implicit methods. As a result, we propose and use the algo-
rithm as the backbone of a semi-concurrent multiscale framework, in which nonsmooth constitutive
relationships can be directly extracted from the underlying micromechanical processes and faithfully
incorporated into elastoplastic continuum models. Though accuracy of the proposed algorithm is step
size-dependent, its simplicity and its remarkable ability to handle nonsmooth relations make the method
promising and computationally appealing.

� 2009 Elsevier B.V. All rights reserved.
1. Introduction

Elastoplasticity is perhaps the most widely utilized and reliable
framework used to capture material nonlinearities and inelastic
behavior [1]. From metals to composites to aggregates, most solids
can be simulated using elastoplastic models. Furthermore, many
elastoplastic models make use of nonsmooth functions (in general,
C0 functions) to either represent yield surfaces, e.g. [2–4] or hard-
ening (evolution) laws, e.g. [5,6]. In the case of cohesive-frictional
materials, C0 yield surfaces have been proposed to model two sali-
ent properties. On the one hand, the yield surface is generally
dependent on the third invariant of stress. Using multiple smooth
functions to describe the third invariant dependency [2,7] consti-
tuted one major source for nonsmoothness. On the other hand,
cohesive-frictional materials feature very distinct responses under
deviatoric and volumetric stresses. These two features have been
accounted for by proposing models with two distinct yield sur-
faces, providing a potential source for discontinuities in the gradi-
ent function [3,4,8]. Nevertheless, the past decades have seen a
great advance in the development of smooth yield surfaces aimed
at capturing the behavior of complex geomaterials [5,9–13]. Natu-
rally, smooth plastic potentials can also be derived based on their
similarity to the yield surfaces.

In contrast, C0 functions are very much still used to describe the
evolution of internal plastic variables via nonsmooth hardening
ll rights reserved.
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laws. It is well-known that the evolution of plastic internal vari-
ables (PIVs) is difficult to obtain and is mostly based on phenome-
nology. Hardening laws that conform well to experimental data
may not necessarily yield smooth evolutions. Unsurprisingly, many
nonsmooth hardening laws have been proposed to capture the
behavior of complex elastoplastic materials accurately [5,6]. In this
paper, we refer to a relation defining the variation of a PIV as an
evolution law. Nonsmooth evolution laws permeate the plasticity
literature. Accurately handling these C0 evolution laws within a
computational framework is not a trivial task and defines the
objective of this work.

From a physics standpoint, one limitation of plasticity models
emanates from the underlying phenomenology. Essentially, plas-
ticity relations, especially evolution laws, are determined from lim-
ited experiments or simply based on empirical intuition.
Furthermore, a plasticity model only describes an average behavior
at the macroscopic scale but fails to account for the underlying
microscale mechanisms. In contrast, multiscale computational ap-
proaches can derive the constitutive relationship from a funda-
mental level ‘on-the-fly’ [14–18]. In particular, for granular
matter this fundamental level corresponds to the grain scale, from
which the micromechanical phenomena—including particle geom-
etry, force chains, fabric arrangement—intrinsically govern the
macroscopic response of the material. These grain-scale phenom-
ena can be explicitly simulated using micromechanical models
[19–21]. An alternative and recently proposed technique is to link
micromechanical models with elastoplasticity using a multiscale
framework [18]. The main idea is to replace phenomenological
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evolution laws with direct extraction of physically meaningful PIVs
from the micromechanics. The resulting micromechanically-based
evolution of PIVs is nonsmooth and falls within the realm of C0

evolution laws tackled in this work.
Among the few previous efforts to address nonsmooth elasto-

plasticity problems, the nonsmooth Newton method [22] is respon-
sible for laying down an important theoretical foundation for
integrating nonsmooth plasticity relations. However, as pointed
out in [22], the derivation of the method relies on the assumption
of J2-plasticity and, hence, the applicability of this method to other
type of plasticity models (e.g. pressure-dependent models) remains
to be determined. There have been other semi-implicit algorithms
proposed in the literature (see [23,24] for example), but these have
been aimed at explicitly integrating the hardening or evolution law
and the flow rule, while the rest of the algorithm is fully implicit.

In this work, a simple semi-implicit algorithm is proposed to
effectively combine the strengths of implicit and explicit architec-
tures. Implicit integration algorithms easily lose their advantages
when integrating nonsmooth relations. At the same time, though
explicit algorithms have the ability of accommodating nonsmooth-
ness, they may suffer shortcomings such as drifting and small crit-
ical time steps [24,25]. Further, combining explicit stress
integrators with implicit FE schemes may be problematic [26].
We unveil a semi-implicit algorithm that conserves all the features
of the implicit schemes except for integration of the plastic internal
variables. Specifically, the method ‘freezes’ the plastic internal
variables (PIVs) incrementally. Hence, the method resembles im-
plicit perfect plasticity integrators at the local level and therefore
inherits unconditional stability. The PIVs are then updated a poste-
riori at every time increment. The combination of local freezing and
the a posteriori update of PIVs affords the method the ability to
handle nonsmooth ðC0Þ evolution laws. It is also shown that incre-
mental updating is efficient computationally and its application to
recent multiscale techniques will be clearly demonstrated. The
robustness and accuracy of the proposed algorithm is investigated
using several numerical examples.

This paper is organized as follows. Section 2 summarizes the
rate elastoplasticity formulation and presents the classic implicit
return mapping scheme. In Section 3, the proposed semi-implicit
algorithm is presented based on the implicit return mapping algo-
rithm. Section 4 presents a detailed verification of the semi-impli-
cit algorithm where we focus on boundary value problems to
assess accuracy and robustness (convergence) of the algorithm
against the backdrop of the fully implicit return mapping integra-
tor. We conclude that the incrementally updated semi-implicit
algorithm furnishes an appropriate balance between accuracy
and robustness and, as a result, we utilize this method to perform
proof-of-concept micromechanically-based semi-concurrent mul-
tiscale computations in Section 5. We summarize our findings
and make some closing remarks in the last section.

As for notations and symbols used in this paper, bold-faced let-
ters denote tensors or vectors; the symbol ‘�’ denotes an inner
product of two vectors (e.g. a � b ¼ aibi), or a single contraction of
adjacent indices of two tensors (e.g. c � d ¼ cijdjk); the symbol ‘�’
denotes a tensorial (or dyadic) product (e.g. a� b ¼ aibj, or
a� b ¼ aijbkl); the symbol ‘:’ denotes an inner product of two sec-
ond-order tensors (e.g. c : d ¼ cijdij); the symbol ‘jj � jj’ denotes an L2

norm of a vector, e.g. jjejj ¼ ðe � eÞ1=2 or a tensor kAk ¼ ðA : AÞ1=2.
Stress and strain are expressed in Voigt notation, and as a result,
the associated stiffness/compliance are expressed as matrices.
Fig. 1. Flowchart for an implicit return mapping algorithm within a FE code.
2. Infinitesimal elastoplasticity and implicit integrators

The most salient ingredients of the infinitesimal elastoplasticity
theory are [27]:
� Additive decomposition of strain rate into elastic and plastic
components, i.e., _� ¼ _�e þ _�p.

� Generalized Hooke’s law, i.e., _r ¼ ce : _�e, where ce is the elastic
constitutive tensor.

� Elastic domain and yield condition such that the yield surface
F ¼ 0 defines the limit of the elastic domain.

� Non-associative plastic flow rule, i.e., _�p ¼ _kg, where _k P 0 is the
consistency parameter or plastic multiplier and g :¼ oG=or is the
direction of the plastic flow, where G is the plastic potential
function.

� Evolution laws for the PIVs involved in F and G. In this paper, we
use a vector a to represent the set of PIVs. In classical infinites-
imal elastoplasticity, the evolution relations for the PIVs are typ-
ically cast in rate-form, _a ¼ _kâðr; aÞ.

� The Kuhn–Tucker optimality condition, _kF ¼ 0, which induces
the consistency requirement _k _F ¼ 0.

The aforementioned ingredients are the foundation for most
plasticity models available, which are typically integrated numer-
ically into a finite element (FE) or finite difference code. Numerical
integration of these models is crucial for successful modeling of
boundary value problems in engineering. A well-established inte-
gration technique is the implicit return mapping algorithm. A sche-
matic showing the role of the implicit return mapping in the
material subroutine inside a FE code is shown in Fig. 1. As shown
in this flowchart, the material subroutine is at the heart of the FE
code and its main purpose is to compute, given an increment in
the strain D�, the resulting incremental change in state, i.e., Dr

and Da. Here we use the incremental notation D� :¼ �nþ1 ��n,
where �nþ1 corresponds to the value of the function evaluated at
time station tnþ1. In addition, the material subroutine computes
the consistent tangent algorithm defined as c ¼ ornþ1=o�nþ1. The
consistent tangent is available in closed-form when implicit inte-
grators are invoked and this is one of the reasons that make impli-
cit algorithms appealing. Consistent tangent operators afford
implicit nonlinear FE codes asymptotic rates of convergence, a
key feature for efficient engineering analyses.
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Implicit return mappings rely heavily on Newton–Raphson
schemes to iteratively arrive at a solution [12,28,29]. These
schemes typically construct residual vectors r as a function of
the unknowns x, i.e.,

rðxÞ ¼
ce�1 : Drþ DkG;r � D�

Da� Dkâðr; aÞ
Fðr; aÞ

8><
>:

9>=
>;; x ¼

r

a

Dk

8><
>:

9>=
>;; ð2:1Þ

where ce is the linear elastic stiffness matrix and Dk is the discrete
consistency parameter. Solution to the local system of generally
nonlinear equations is achieved when rðxÞ ¼ 0 and the rate of con-
vergence is intimately dependent on the consistent local tangent
(Jacobian) such that

r;x ¼
ce�1 þ DkG;rr DkG;ra G;r

�Dkâ;r d� Dkâ;a �â

F ;r F ;a 0

2
64

3
75; ð2:2Þ

where d is the second-order identity tensor. The above Jacobian
underscores the potential issues related to accommodating non-
smooth evolution laws for a. If these functions are only C0, the re-
quired derivatives appearing in the local Jacobian may not be
continuous or may not even be defined. By way of example, we will
show that this lack of continuity in the derivatives of the evolution
laws could be detrimental in the convergence of the local integra-
tion algorithm and, as a result, that of the global computation.
The next section describes a plausible alternative to fully implicit
algorithms where the Jacobian matrix does not require evaluation
of the derivatives of the evolution laws, making it possible to handle
C0 evolution functions.

Remark 1. If the formulation is isotropic, the yield surface F and
plastic potential G can be expressed as a function of the stress
invariants and the spectral decomposition can be exploited. These
algorithms are efficient since they reduce the number of unknowns
from full stress space to principal stress space. The interested
reader is referred to [29] for an elaboration of these types of
algorithms.
Fig. 2. Flowchart for the semi-implicit return mapping algorithm within a FE code.
3. The semi-implicit return mapping algorithm

The implicit algorithm introduced in the foregoing section is a
classic approach to integrate plasticity models. Under optimal con-
ditions, this algorithm is able to achieve asymptotic quadratic con-
vergence rates, first order accuracy, while featuring unconditional
stability. However, in the presence of nonsmoothness, the implicit
approach may not be suitable. As shown in Eq. (2.2), the local Jaco-
bian, and hence the convergence of the algorithm, depend crucially
on the computability of the necessary gradients. In the case of C0

evolution laws, it is clear that convergence rates could be severely
affected and the algorithm may diverge altogether. It is well-
known that the Newton–Raphson scheme will have serious issues
converging near inflection points. Hence, it is often difficult, some-
times almost impossible, to use the conventional implicit method
to integrate plasticity models with nonsmooth evolution relations
(e.g. emanating from complex micromechanical substructures)
[25,30].

To ameliorate the shortcomings of fully implicit schemes in
the context of C0 evolution laws, we propose a simple semi-im-
plicit scheme. The main procedure is simple and it involves freez-
ing the plastic internal variables (PIVs) in the model at their
previous, converged value. If the solution at time station tnþ1 is
being pursued, the PIVs in the model are fixed at their value at
time station tn, or an. This strategy of freezing the PIVs is different
from previous semi-implicit algorithms such as those presented
in [23,24], where the plastic flow and moduli are explicitly
integrated.

A flowchart explicating the semi-implicit return mapping algo-
rithm is given in Fig. 2. Comparing the new semi-implicit scheme
in Fig. 2 with the fully implicit algorithm in Fig. 1, it is clear that
the material subroutine only updates the stresses r and the plastic
increment Dk at tnþ1, while keeping the PIVs fixed at their previous
tn value. Accordingly, the unknown vector x and the corresponding
residual r read

x ¼
r

Dk

� �
; rðxÞ ¼ ðceÞ�1 � Drþ DkG;r � D�

FðrÞ

( )
: ð3:1Þ

Note the reduction in the number of unknowns and the resulting
disappearance of the derivatives of the PIVs, cf., Eq. (2.2). In general,
it is still necessary to invoke the Newton–Raphson locally to solve
for x. Hence, the local Jacobian is defined such that

r;x ¼
a g
f 0

� �
; a :¼ ðceÞ�1 þ DkK; K :¼ G;rr; g :¼ G;r; f :¼ F ;r:

ð3:2Þ

The consistent tangent operator c ¼ ornþ1=o�nþ1 is obtained in the
standard form, similar to the fully implicit algorithms, by exploiting
the converged residual function [12,31,32], i.e.,

c ¼ a�1 � 1
�va�1 : g � f : a�1; �v ¼ g : a�1 : f ; ð3:3Þ

where one can show that c corresponds to the upper fourth-order
tensor of the inverse of the local jacobian r;x. It is interesting to note



X. Tu et al. / Comput. Methods Appl. Mech. Engrg. 198 (2009) 2286–2296 2289
the similarity between the consistent tangent and the continuum
elastoplastic tangent for perfect plasticity, i.e.,

cep ¼ ce � 1
v ce : g � f : ce; v ¼ g : ce : f : ð3:4Þ

For the case of a two-invariant model, such as Drucker–Prager,
the above return mapping converges in one iteration and the state
is obtained directly such that,

r ¼ rtr � Dkg; rtr ¼ rn þ ce : D� ð3:5Þ

and

Dk ¼ Ftr

v ; Ftr ¼ FðrtrÞ: ð3:6Þ

These equations of state for the stress r and the plastic multiplier Dk
are obtained departing from a trial state, i.e., r ¼ rtr and Dk ¼ 0. The
isotropy of the linear elastic model and the yield and plastic poten-
tial functions imply coaxiality, which leads to f ¼ f tr and g ¼ gtr in
the Drucker–Prager model, where the trial gradients are simply the
gradients of the yield function and plastic potential evaluated at the
trial stress rtr. A geometrical interpretation for the algorithm in
stress space is given in Fig. 3. From this figure and from Eqs. (3.5)
and (3.6), it can be appreciated that the converged state is only a
function of the trial state and therefore can be obtained without
iterations. Finally, based on Eq. (3.5) a simplified closed-form
expression for the consistent tangent operator is obtained, i.e.,

c ¼ cep|{z}
continuum tangent

� Dkce : K : ce|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
algorithmic tangent

; ð3:7Þ

where one can observe the OðDkÞ contribution from the algorithmic
tangent.

Remark 2. The plastic internal variables (PIVs) are not updated
until the global equations of motion have been satisfied at the
global level. Fig. 2 shows the updating procedure. In essence, the
PIVs are direct functions of the converged values of stress r and the
plastic multiplier Dk. These PIVs are used for the next time step
calculation and kept frozen until the subsequent converged state is
achieved.

To bypass potential problems with nonsmooth evolution (C0)
functions, the semi-explicit algorithm presented above, freezes
the plastic internal variables at the previous time station, effec-
tively behaving as a perfectly plastic material for a given time step.
Similarly, truly explicit algorithms, e.g. [33,34] will also be able to
bypass issues related to C0 functions for the evolution laws. How-
ever, the explicit algorithms have two potential shortcomings.
First, explicit algorithms generally need to be corrected to prevent
yield surface from ‘drifting’, i.e., a violation of the consistency con-
dition [24,25]. Furthermore, explicit stress integration is better em-
ployed within an explicit FE framework, e.g. [26], as there is no
closed-form solution for the consistent tangent operator. In fact,
CORRECTOR
PLASTIC

ELASTIC
PREDICTOR

INTER-STEP
EVOLUTION

IN
E

a b

Fig. 3. Two scenarios for the semi-implicit alg
it has been shown that the derivation of such a CTO can be quite
tedious [35] and could necessitate numerical differentiation
[30,36], which is computationally expensive. In contrast, the
semi-implicit algorithm presented above combines the advantages
of implicit and explicit methods.

Remark 3. It can be seen that the main shortcoming of the semi-
implicit method will be potential lack of accuracy stemming from
the frozen plasticity. However, as Figs. 2 and 3 show, the stress is
corrected to enforce consistency, i.e., Fnþ1 ¼ Fðrnþ1; anÞ ¼ 0, where
the PIVs are frozen at their values at tn. This inaccuracy should not
be confused with drifting, which is typically defined as Fnþ1 – 0 in
explicit schemes (see [24, p. 277]).
4. Verification: application to cohesive-frictional plasticity

In this section, and without loss of generality, we apply the
semi-implicit return mapping to a Mohr–Coulomb-type model
exemplified by the classic linear elastic–plastic Drucker–Prager
model with nonlinear hardening/softening [37]. Naturally, we will
demonstrate the robustness of the method within the context of C0

evolution laws for the plastic internal variables involved. The elas-
tic region of the model is furnished by the linear tangent such that

ce ¼ Kd� dþ 2l I � 1
3

d� d

� �
; ð4:1Þ

where K and l are the constant elastic bulk and shear moduli, d is
the second-order identity tensor, and I is its fourth-order counter-
part. Within this context, we can define two invariants of the stress
tensor such that

p ¼ 1
3

trr; q ¼
ffiffiffi
3
2

r
ksk; ð4:2Þ

where tr� ¼ � : d is the trace operator, and s ¼ r� pd is the devia-
toric component of the stress tensor. Similarly, the invariants of the
strain rate tensor (total, elastic, or plastic) are defined as

_�v ¼ tr _�; _�s ¼
ffiffiffi
2
3

r
k _ek; ð4:3Þ

where _e ¼ _�� 1=3 _�vd is the deviatoric component of the strain
tensor.

Using the aforementioned invariants of the stress tensor, we can
define the yield surface and plastic potential for the Drucker–Prag-
er (D–P) model:

F ¼ qþ ap� cf ;

G ¼ qþ bp� cq:
ð4:4Þ

Typically, the cohesion parameter cf ¼ 0 for granular materials,
while the cohesion-like parameter cq is to be adjusted so that the
potential surface G is always attached to the current stress point.
Two evolution parameters are involved in the D–P model—the fric-
CORRECTOR
PLASTIC

ELASTIC
PREDICTOR

TER-STEP
VOLUTION

orithm: (a) hardening and (b) softening.



2290 X. Tu et al. / Comput. Methods Appl. Mech. Engrg. 198 (2009) 2286–2296
tion resistance a and the dilatancy parameter b. For cf ¼ 0 (assumed
henceforth) and at yielding, the friction parameter takes the form

a ¼ � q
p
: ð4:5Þ

Note that the only allowable states of stress when cf ¼ 0 are com-
pressive, i.e., p < 0. The physical interpretation for the plastic inter-
nal variable a is that it directly represents the mobilized friction
angle of the granular material. Hence, a indicates the mobilized fric-
tion resistance at any given state. Invoking the non-associative flow
rule, one can show that the volumetric and deviatoric invariants of
the plastic strain rate tensor are defined by

_�p
v ¼ _k

oG
op

; _�p
s ¼ _k

oG
oq
: ð4:6Þ

For the D–P model presented here, it turns out that the dilatancy b
takes the form

b ¼
_�p

v

_�p
s
: ð4:7Þ

Similar to the friction coefficient a, the dilatancy b measures the
change in volumetric plastic deformations for a given change in
deviatoric plastic deformations. Reynolds in 1885 coined the term
and pointed out its crucial role in the mechanical behavior of gran-
ular media [38]. Finally, the corresponding gradients to the yield
surface and plastic potential are given such that

f ¼ 1
3
adþ

ffiffiffi
3
2

r
n̂;

g ¼ 1
3

bdþ
ffiffiffi
3
2

r
n̂;

ð4:8Þ

where n̂ ¼ s=ksk is the unit deviatoric tensor. Due to coaxiality, it
can be shown that the deviatoric unit tensor can be defined using
the trial stress tensor, i.e., n̂ ¼ str=kstrk and, consequently, f ¼ f tr

and g ¼ gtr.
In what follows, different evolution laws for the PIVs a and b

will be considered to evaluate the accuracy, stability, and efficiency
of the proposed semi-implicit algorithm against the backdrop of its
fully implicit counterpart.
4.1. Smooth evolution law

The accuracy, stability, and efficiency of the semi-implicit inte-
gration technique will be evaluated in this section. A smooth evo-
lution law will be considered to provide both the semi-implicit and
fully-implicit algorithms the same datum to make meaningful
comparisons.

Consider the following smooth evolution laws for the friction
and dilatancy parameters, respectively
ba

Fig. 4. Integration of the smooth evolution relation under plane-st
a ¼ a0 þ a1k expða2p� a3kÞ;
b ¼ a� b0;

ð4:9Þ

where a0; a1; a2; a3 and b0 are (positive) material constants, and k is
the cumulative plastic multiplier. It is clear that the evolution laws
above are highly nonlinear and state-dependent. Note that the fric-
tion resistance a and the dilatancy parameter b differ by a constant
b0, which is amenable to the stress-dilatancy relation widely ob-
served in granular media [18,39,40]. The evolution laws defined
above were introduced in [29] to test the robustness of fully-impli-
cit return mapping algorithms. Similar to the values used in [29],
which apply to soils, we use a0 ¼ 0:7; a1 ¼ 50; a2 ¼ 0:0005=kPa;
a3 ¼ 50 and b0 ¼ 0:7. For the elastic parameters, we use E ¼
25000 kPa and m ¼ 0:3.

Here, we will perform plane-strain compression ‘experiments’
under constant confinement. These experiments will furnish
homogeneous BVPs that can be used to assess accuracy, stability
and rate of convergence at the global level. The specimens are ini-
tially isotropically consolidated to a hydrostatic state of
p0 ¼ 50 kPa. Subsequently, the specimens are sheared under con-
stant lateral confining stress r�3 but increasing axial strain �1. The
axial strain is increased by D�1 ¼ 0:3% until the cumulative strain
reaches about 10%. This situation allows us to define the global sca-
lar residual function such that Rð�3Þ ¼ r�3 � r3ð�3Þ, where we
underscore the dependence of the residual function on the un-
known lateral strain �3. Hence, the solution of the problem is
R ¼ 0 when we have found an appropriate �3 such that the calcu-
lated lateral stress r3 equals the prescribed lateral stress r�3, for a
given axial strain �1. The convergence criterion for the BVP is given
such that

jRj=jR0j < 10�10; ð4:10Þ

where R0 is the initial residual.
Fig. 4 shows the results of the experiments for both numerical

integration techniques. It can be seen that both the stress–strain
response and the volume-strain evolution are captured very well
by the semi-implicit algorithm. The peak stress is captured cor-
rectly with a slight delay due to the PIVs lagging (freezing). Overall,
we can conclude that the results for both algorithms are compara-
ble. Similarly, it is important to compare the rate of convergence
globally to get a sense for the efficiency of the method in implicit
codes where the consistent tangent operator is needed. Fig. 5
shows the semi-log plot of the normalized residual degradation
curves in two typical load steps for each integration algorithm.
One convergence profile is reported pre-peak and the other post-
peak. Clearly, the convergence rates of both algorithms are asymp-
totically quadratic. Convergence profiles at all other time steps are
also asymptotically quadratic. As far as convergence is concerned,
these results suggest that the semi-implicit algorithm is capable
of delivering the same advantage as its implicit counterpart.
rain compression: (a) stress response and (b) strain response.
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Finally, to assess the accuracy of the scheme in a more quanti-
tative fashion, isoerror analysis was performed. This numerical tool
is typically employed to quantify the percent error of a solution
compared to an ‘exact’ solution for one time step and under homo-
geneous conditions [27–29]. Fig. 6 shows an isoerror map gener-
ated using various combinations of ðD�1;D�3Þ. The semi-implicit
algorithm was used in all computations, starting from the same
‘‘isoerror point” shown in Fig. 4a ðr1 ¼ �131:2 kPa; r2 ¼
�83:0 kPa; r3 ¼ �50:0 kPaÞ. Each computation of ðD�1;D�3Þ was
first prescribed in a single step, and the computed stress is denoted
Fig. 5. Residual degradation for plane-strain problem with smooth evolution law.

Fig. 6. Isomaps for the semi-implicit algorithm relative to the ‘exact’ solution.

a b

Fig. 7. Integration of nonsmooth evolution law (a)
by r. Then, we calculated the ‘exact’ stress r� by subdividing the
strain increment of ðD�1;D�3Þ until further refinement produces
negligible changes in the resulting stress. The relative error was
calculated from the equation

ERR :¼ jjr� r�jj
jjr�jj � 100%: ð4:11Þ

The step-size dependent error is represented by the isolines in
Fig. 6, where negative strain increment is compressive. As expected,
accuracy generally deteriorates as the strain increments increase.
Nevertheless, increases of up to 0.1% in the strain increment, which
is large, yield errors below 2%, which is generally acceptable.

These results suggest an equivalence between the semi-implicit
and implicit return mappings under smooth conditions. Generally,
implicit methods claim greater stability, good accuracy and qua-
dratic convergence profiles. This example has shown that the
semi-implicit return mapping proposed can claim similar proper-
ties. In what follows, we will show a case where the semi-implicit
algorithm performs much better than its implicit counterpart.

4.2. Nonsmooth ðC0Þ evolution law

In this section, the robustness of the semi-implicit method in
handling C0 evolution laws will be demonstrated by way of a
numerical example. As mentioned earlier, the complexity of gran-
ular materials often requires the use of highly nonlinear and often
empirical evolution laws for the plastic internal variables. It is not
uncommon for evolution laws to contain ranges over which the
evolutions are continuous but introduce kinks at the intersections.
One such evolution law was proposed by Lade to simulate the
behavior of granular materials [5,6]. Consider the following evolu-
tion for the frictional resistance and dilatancy, respectively [5,6],

a ¼
b0 þ h1k if k 6 l;

b0 þ h1lþ h2ðk� lÞ if k > l;

�
ð4:12Þ

b ¼ a� b0: ð4:13Þ

Fig. 7 shows the plot of the evolution law proposed for a, labeled as
‘imposed’ since this function effectively imposes the allowable val-
ues for the stress ratio �q=p. From Fig. 7 and Eq. (4.12), it can be ob-
served that the evolution law for the friction parameter is bilinear,
with a potential change in slope from h1 to h2 at k ¼ l. Hence, if
h1 – h2, as it is usually the case, the derivative function is discontin-
uous at k ¼ l. This discontinuity will make it difficult for fully impli-
cit return mapping to converge.

For this example, we have chosen the following material
parameters: b0 ¼ 0:7;h1 ¼ 20;h2 ¼ �20 and l ¼ 0:09. We perform
axisymmetric compression simulations using the implicit return
mapping and the semi-implicit algorithm within the context of
the Drucker–Prager model presented above. The numerical
friction evolution and (b) stress–strain curve.



Fig. 8. Convergence profile for nonsmooth evolution law at various time steps.

Fig. 9. Flowchart for the hierarchical multiscale scheme.
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example is started from a state of hydrostatic compression of
p0 ¼ 50 kPa and then the confining stress is held constant with
an increasing axial strain at a rate of D�1 ¼ 0:5% in compression.
Similar to the previous example, the axisymmetric compression
simulation furnishes a BVP with mixed boundary conditions and
a global residual where the confining stress is prescribed and must
be matched by the computed lateral stress. Of course, the global
convergence of the problem depends crucially on the local perfor-
mance of the integration algorithm.

The results of the simulations are shown in Fig. 7. Clearly, one
measure of success, is for the computed stress ratio �q=p to follow
the ‘imposed’ evolution of a. Fig. 7 shows that the semi-implicit
algorithm is capable of reproducing the imposed evolution of the
friction parameter a before and after the peak. On the other hand,
the fully implicit algorithm runs into trouble near the peak, losing
convergence and producing spurious results. Part of the problem is
explained by the global convergence profiles reported in Fig. 8. It
can be seen that both algorithms converge quadratically in the
hardening regime. Near the peak, however, the implicit algorithm
loses its convergence and finally diverges. In contrast, the conver-
gence profile for the semi-implicit algorithm is undeterred even
during the softening regime.

These results clearly show the ability of the semi-implicit meth-
od to efficiently handle C0 functions describing the evolution laws
necessitated to perform computations using elastoplastic models.
Nevertheless, in the next section, a new class of nonsmooth evolu-
tions for the PIVs will be introduced.

5. Application to multiscale plasticity

In an effort to capture the micromechanical effects governing
the behavior of granular media, macroscopic phenomenological
models have been introduced. These models have had relative suc-
cess modeling the behavior of granular materials using plasticity
theory and phenomenological evolution laws (e.g. the nonsmooth
evolution shown in the previous example [5,6]). However, it is
now well accepted that these phenomenological laws break down
outside of the realm of the boundary conditions used to develop
them. For example, it is not uncommon for an evolution law to
break down under plane strain if it was developed under axisym-
metric conditions. For this reason, micromechanical models such
as the discrete element method (DEM) [41] have been proposed.
Unfortunately, micromechanical models such as DEM are very
computationally intensive and will not be able to tackle engineer-
ing scale problems for the next 20 years [42]. Therefore, similar to
Molecular Dynamics computations, these discrete methods have
introduced a bottleneck in engineering computations, ameliorated
by the advent of multiscale methods.

The key idea of multiscale methods is to retain high fidelity
where necessary and use continuum (phenomenological) approxi-
mations elsewhere. In general, multiscale methods can be classi-
fied as either hierarchical or concurrent [16]. Hierarchical
methods use information from the smaller scale as input to the
relation for the larger scale. On the other hand, concurrent meth-
ods apply models at different scales to different domains and run
them simultaneously. In an effort to capture the behavior of gran-
ular materials accurately while bypassing phenomenological evo-
lution laws, Andrade and Tu have proposed a semi-concurrent
multiscale method for updating Drucker–Prager-type models [18].

The basic idea behind the semi-concurrent multiscale method is
to link the granular scale and the continuum scale by extracting the
evolution of the basic plastic variables a and b directly from
the grain scale computations. Fig. 9 shows the basic recipe for the
method. Comparing Figs. 9 and 2, one realizes that the algorithms
are form-identical, with the only difference being that the update
in the multiscale model is performed directly at the grainscale
and then passed back to the continuum plasticity model. Hence,
the semi-implicit algorithm presented herein is at the heart of the
multiscale computational procedure proposed in [18].

5.1. Unit cell computations and PIV evolution

In the semi-concurrent multiscale scheme, and as shown in
Fig. 9, the update of the PIVs is performed at the so-called unit cell



Fig. 11. Initial configuration of the DEM-based unit cell.
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and then this continuum information is passed to the plasticity
model, e.g. [17]. The unit cell contains a certain physical volume
of microstructure, from which continuum quantities (the critical
parameters) are computed. A closely related concept is the so-
called representative volume element (RVE), defined as the small-
est possible region representative of the whole heterogeneous
media, on average [43]. Unlike the RVE, the unit cell may not nec-
essarily represent the behavior of the entire domain. However,
similar to the RVE, the unit cell is a finite physical domain where
a continuum description is applicable (high frequency oscillations
are not present in a given continuum quantity, e.g. dilatancy). In a
multiscale framework using FE, the unit cell can be selected to cov-
er a representative area around a Gauss point, resembling the local
Quasi-Continuum strategy [14]. In Fig. 10a, for instance, the unit
cell corresponds to the hatched area outlined by the so-called
ghost nodes. Alternatively, the whole finite element can be taken
as a unit cell, or the unit cell can be allowed to cover multiple ele-
ments, resembling the non-local Quasi-Continuum [14].

The unit cell contains a configuration of the microstructure,
associated with a specific Gauss point. The usefulness of the unit
cell—furnishing the critical parameters necessitated by the macro-
scopic plasticity model—is realized through probing the micro-
structure in the current configuration. This probing imposes
selected components from r and D� onto the boundary of the unit
cell domain. As shown in Fig. 9, the unit cell is invoked at the end of
the current load step nþ 1. After the probing is completed, the
resulting configuration of the microstructure is recorded, which
will be used as the starting configuration, or the current configura-
tion, for the next unit cell computation. More details about the
multiscale procedure and the unit cell computation are given in
[18] and are outside the scope of this paper.

The basic PIVs in the D–P model are realized by invoking their
physical significance, i.e.,

amic ¼ � qmic

pmic ;

bmic ¼ D�mic
v

D�mic
s

;

ð5:1Þ

where the superscript ‘mic’ signifies that the quantity is computed
from the micromechanical model as a means to distinguish it from
its continuum counterpart. The micromechanical variables are then
passed as approximations to the continuum plastic internal vari-
ables, i.e., a � amic and b � bmic. In the next section, explanation is
given in terms of how to compute the stress and strain in a
micromechanical model.

5.2. A representative example

To demonstrate the effectiveness of the semi-implicit algorithm
in incorporating nonsmooth micromechanical response into the
multiscale scheme, we present the results of an axisymmetric com-
Fig. 10. Unit cell computation: (a) domai
pression computation on a granular assembly. We use DEM as the
micromechanical model. To extract the stress tensor, equilibrium
conditions for a particulate system can be invoked, yielding
[21,44],

�r ¼ 1
V

XNc

c¼1

lc � dc
; ð5:2Þ

where lc represents the contact force at contact point c;dc denotes
the distance vector connecting the two neighboring particles, Nc is
the total number of contacts in the particle assembly and V denotes
the volume of the assembly, i.e., the volume of the unit cell domain
associated with a specific Gauss point. To compute a homogenized
strain tensor, the domain of the DEM-based unit cell can be parti-
tioned into a series of polygonal subdomains, with the corners of
each polygon being the centers of participating particles [45]. These
polygons are deformed as the particle centers move, and the meth-
ods for computing these deformations are given in [46,47]. Conse-
quently, a homogenized strain tensor can be obtained by
averaging these polygon-based deformations over the entire do-
main of the unit cell.

At the continuum level, the sample domain is discretized using
one 8-node isoparametric ‘brick’ element. A single unit cell is used
to contain the cubic assembly of 1800 polydisperse spherical par-
ticles, shown in Fig. 11. Initially, the assembly was isotropically
compressed to p0 ¼ 5500 kPa, with the initial configuration de-
picted in Fig. 11. The mixed boundary conditions of the unit cell in-
clude vertical strain control and horizontal stress control,
consistent with the boundary conditions imposed on the finite ele-
ment. A vertical strain increment D�1 ¼ 0:4% was prescribed on
the finite element. Putting the DEM model aside, the multiscale
scheme involves only two parameters: E ¼ 5� 105 kPa and
m ¼ 0:25. For comparison purposes, a direct numerical simulation
n and (b) mixed boundary condition.
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(DNS) was performed on the same DEM assembly, with identical
initial state and identical loading mode. The DNS results are re-
garded as the ‘exact’ solution against which the accuracy and per-
formance of the multiscale scheme is evaluated.

Fig. 12 shows the critical parameters (amic and bmic) obtained
from unit cell computation and the resulting friction resistance cal-
culated using the multiscale method, i.e., �q=p. Fig. 12b reports the
evolution of the micromechanically-based dilatancy bmic, which is
later passed onto the macroscopic plasticity model. It is clear that
the micromechanical relations for both parameters are nonsmooth,
especially in the post-peak, finite deformation regime. These non-
smooth evolutions of amic and bmic are recast into the semi-implicit
return mapping algorithm presented herein as nonsmooth evolu-
tion laws for the plastic internal variables a and b. However, these
evolutions of the PIVs are not empirical and are rather extracted
on-the-fly from the actual microstructure. As shown in Fig. 12a,
the semi-implicit return mapping is able to reproduce the non-
smooth evolution of the frictional resistance parameter effectively
and accurately.

Remark 4. In this paper, we use infinitesimal elastoplasticity as an
example to demonstrate the effectiveness of the proposed algo-
rithm. Extension to finite deformation plasticity is straightforward
and will not incur any substantial change in the algorithm. This has
been done before in the context of implicit return mapping
algorithms (see [32,48]). We recognize the inaccuracy of the small
deformation theory in representing the large deformations shown
in the previous examples. However, these examples are not shown
to capture the physics of deformation per se but to demonstrate
the effectiveness of the semi-implicit return mapping algorithm.

Fig. 13 shows results obtained from the multiscale computation
compared with those from the DNS. The accuracy of the multiscale
a

Fig. 12. Nonsmooth evolution of the critical parameters: (a) friction resistance obtained
obtained from unit cell.

a

Fig. 13. Comparison of multiscale and DNS result
method is measured here solely based on how closely it can repro-
duce the DNS results (verification). It can be seen that both the
stress–strain response and the volumetric deformations are cap-
tured accurately by the multiscale model. This is remarkable in
many levels, but most importantly due to the few parameters
necessitated for the multiscale computation. The two elastic
parameters are calibrated based on the initial response from the
DNS and held constant for the duration of the simulation. Subse-
quently, the only parameters necessitated by the model are the
frictional resistance and the dilatancy, which are allowed to evolve
and are directly extracted from the micromechanics. It is remark-
able that such a simple model can capture the material response
so closely. Finally, Fig. 14 shows the global convergence rates for
several different strain levels, highlighting the optimal conver-
gence rate displayed by the algorithm. These results are very prom-
ising as they may open the door to more physics-based
constitutive models to capture the mechanical behavior of granular
media, without resorting to phenomenological evolution laws.

Remark 5. There is a noticeable shift in the responses obtained
from the multiscale computation relative to the DNS. This finite
gap occurs at the transition from pure elasticity to elastoplasticity
and can be reduced by decreasing the time step. The shift is due to
the semi-implicit return mapping freezing of the plastic internal
variables involved in the multiscale computation.

Remark 6. The unit cell, representing the granular assembly,
requires a number of parameters to describe the micromechanical
response accurately. For the DEM model, these parameters include
particle geometry, grain stiffness, intergranular friction, etc. These
parameters substantially determine how accurately the microme-
chanical model captures the true material behavior, which, how-
ever, is not the main focus of this paper. The goal of the
b

from unit cell vs. �q=p computed by multiscale model and (b) dilatancy parameter

b

s: (a) stress response and (b) strain response.



Fig. 14. Convergence profiles at the finite element level for the multiscale
simulation.
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multiscale scheme is to faithfully reproduce the response of the
underlying micromechanical model at the continuum scheme
(whatever that micromechanical model is). Hence, the multiscale
method provides a bridge from the microscale to the macroscale
but it does not provide a micromechanical model. However, it is
our belief that this multiscale technique will allow further devel-
opment of accurate and physics-based micromechanical models
in the near future.

Remark 7. There are two key items related to the success of the
multiscale technique. The first one is the appropriate selection of
the so-called critical parameters—those parameters that are passed
back to the macroscopic model. How to select these parameters is
key. In the case of granular materials under slow flow (quasi-static
deformation) it appears as though the frictional resistance and the
dilatancy are sufficient to describe the bulk of the material
response. Hence, many models that encapsulate these mechanisms
can be used in the multiscale framework. This has been demon-
strated elsewhere [18]. The second crucial item is the appropriate
selection of the size of the unit cell. In this work, we have not
invoked any theoretical basis for the selection of the size, but rather
have based our determination on the concept of the unit cell (and
RVE for that matter), that it is the minimum size element where
high oscillations in continuum properties can be filtered out.
6. Closure

We have presented a semi-implicit return mapping algorithm
for integration of the stress response in elastoplastic models with
nonsmooth ðC0Þ evolution laws. The algorithm owes its versatility
to the notion of freezing the plastic internal variables and a posteri-
ori update of the PIVs. We have demonstrated that the semi-implicit
algorithm displays some crucial qualities including good accuracy,
stability, and the ability to calculate consistent tangent operators
in closed-form, which result in global quadratic convergence. The
simple algorithm was verified by way of numerical examples using
empirically-based C0 evolution laws as well as micromechanically-
based evolutions of the critical variables. In both instances, it was
demonstrated that the semi-implicit algorithm can handle non-
smooth evolutions accurately and efficiently. These features make
the method promising and computationally appealing.
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