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A new rate-dependent plasticity model for dilative granular media is presented, aiming

to bridge the seemingly disparate solid- and fluid-like behavioral regimes. Up to date,

solid-like behavior is typically tackled with rate-independent plasticity models ema-

nating from Mohr–Coulomb and Critical State plasticity theory. On the other hand, the

fluid-like behavior of granular media is typically treated using constitutive theories

amenable to viscous flow, e.g., Bingham fluid. In our proposed model, the material

strength is composed of a dilation part and a rate-dependent residual strength. The

dilatancy strength plays a key role during solid-like behavior but vanishes in the fluid-

like regime. The residual strength, which in a classical plasticity model is considered

constant and rate-independent, is postulated to evolve with strain rate. The main

appeal of the model is its simplicity and its ability to reconcile the classic plasticity and

rheology camps. The applicability and capability of the model are demonstrated by

numerical simulation of granular flow problems, as well as a classical shear banding

problem, where the performance of the continuum model is compared to discrete

particle simulations and physical experiment. These results shed much-needed light

onto the mechanics and physics of granular media at various shear rates.

& 2012 Elsevier Ltd. All rights reserved.
1. Introduction

A salient feature of dry granular media is their ability to feature a wide range of complex behavior, even though these
materials are composed of relatively simple individual units or particles. Granular matter may behave like a solid in the
quasi-static regime, such as a sand dune; or like a fluid when a flow is provoked, such as granular avalanche; or even like a
gas when strongly agitated (Jaeger et al., 1996). While the mechanical behavior of granular materials is essentially
governed by interactions between particles, the imperfect knowledge of contact forces between particles and prohibitive
computational cost renders it impractical to model any field-scale problem by directly utilizing discrete models at the
grain scale (Cundall, 2001; Cundall and Strack, 1979). To this end, a continuum description of granular materials is still of
great importance for modeling and understanding natural hazards, such as landslides, rock avalanches, and for important
industrial applications, such as powder handling, granulates in pharmacy, just to name a few.

Within the scope of interest to this work, the current understandings of granular materials are mostly confined to two
extremes, i.e., solid-like behavior and fluid-like behavior. On the one hand, the solid-like state is typically tackled using soil
plasticity models emanating from Mohr–Coulomb plasticity theory, see for instance, Andrade and Borja (2006), Andrade
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and Ellison (2008), Manzari and Dafalias (1997), Pestana and Whittle (1999), Schofield and Wroth (1968) among others.
These plasticity models have been successfully implemented into numerical tools such as finite element methods and
applied to model quasi-static behavior of granular materials see e.g., Andrade and Tu (2009), Desai and Siriwardane (1984),
and Tu et al. (2009). Experiments conducted under quasi-static conditions have revealed that the strength of granular
materials can be decomposed into a dilatancy strength and a residual strength (Rowe, 1962; Stroud, 1971; Taylor, 1948;
Wood, 1990). The dilatancy strength typically vanishes towards the so-called critical state (Schofield and Wroth, 1968;
Wood, 1990), where granular materials undergo isochoric deformations. The material strength at the critical state is given
by the residual strength, which is considered to be constant and rate-independent.

On the other hand, the flow of granular materials has been a very active research area in the physics community. Much
of the work in this area focuses on steady regime of the flows, trying to identify relevant quantities such as flow threshold,
kinematic profiles, effective friction. Extensive experiments and discrete particle simulations have been carried out on
various configurations and geometries: flow on inclined planes (Berton et al., 2003; Jop et al., 2007; Silbert et al., 2001,
2003), rotating drum (du Pont et al., 2005; Rajchenbach, 1990), plane shear (Thompson and Grest, 1991; Zhang and
Campbell, 1992), etc., see also GDR MiDi (2004) for a collection of results, and Delannay et al. (2007) for a review. From a
theoretical point of view, even in very simple configurations with sphere-shaped particles, the flow can be very complex to
model (du Pont et al., 2005; Silbert et al., 2001). Constitutive models have been developed to capture some of the key
features of granular flow. One family of constitutive laws considers local rheology using dimensional analysis, where the
effective friction coefficient and volume fraction are expressed as some functions of a dimensionless inertial number I

(Jop et al., 2005, 2006; Pouliquen et al., 2006). For instance, in Jop et al. (2006), a flow criteria and the dependence on shear
rate were established, analogous to classical viscous Bingham fluids (Fung, 1977). Quantitative predictions for flow shape
and velocity profiles have been relatively successful. Still, there are limitations for this approach, such as quasi-static or
solid-like regime and hysteresis, which are not correctly captured (Forterre and Pouliquen, 2008). Other approaches have
been proposed beyond the local rheology, linking rheology to the evolution of distribution of contacts (da Cruz et al., 2005;
Lois et al., 2005), or relating stress tensor to non-local functions of velocity field and material structures (Mills et al., 1999).
The depth-averaged or Saint–Venant equations first introduced by Savage and Hutter (1989) have also been successfully
applied to capture the main flow characteristics, see, e.g., Greve et al. (1994) and Wieland et al. (1999).

The aforementioned efforts have been mostly focusing on uniform steady flows, and the transition from solid-like to
fluid-like state remains an open question in granular materials. This transition is of utmost importance as many
applications deal with transient behavior between solid and fluid states. A clear example of this is the recent interest on
shear thickening effects in dense suspensions (Brown et al., 2010; Fall et al., 2008). A few efforts in experiments or
numerical simulations have been proposed (du Pont et al., 2005; Jop et al., 2007; Orpe and Khakhar, 2004; Zhang and
Campbell, 1992), while constitutive models able to bridge these two domains are yet to be developed. One noteworthy
model is the one presented in Pailha and Pouliquen (2009), developed for simulating underwater granular avalanches, and
where rate-dependence is included via dilatancy and interstitial fluid viscosity. This model can simulate dry granular flows
by removing the effect of the fluid viscosity. Aiming at shedding some light into the solid–fluid behavioral transition in
granular materials, in this paper we postulate a simple rate-dependent plasticity model. We adopt concepts from critical
state soil mechanics (Wood, 1990), where the material strength classically decomposed into a dilatancy strength and a
residual strength at critical state. However, unlike the classical critical state models, where the residual strength is
constant, rate-dependent residual strength is postulated based on experimental and numerical evidence. Another key
ingredient of the proposed model is the role of dilatancy, which is typically neglected in the study granular flows. It is
believed that dilatancy plays a key role in the solid-like state, but vanishes in fluid-like state of granular materials. The
proposed constitutive model features dilatancy as the main variable controlling solid–fluid behavioral transitions.

The remainder of the paper is structured as follows: in Section 2, the proposed constitutive model is presented within
the framework of rate-dependent plasticity. Evolution laws for dilatancy and rate-dependent residual strength are
postulated. In Section 3, the model is calibrated and verified using data from a numerical triaxial test done by discrete
element simulation. In Section 4, the model is put into tests for simulating a typical granular flow problem and a classical
plane strain compression problem in soil mechanics, where results of both classical rate-independent model and the
proposed model are compared with experiment data. Finally, some conclusions and discussions are presented in Section 5.

As for notations and symbols used in this paper, bold-faced letters denote tensors and vectors; the symbol ‘�’ denotes an
inner product of two vectors (e.g. a � b¼ aibi), or a single contraction of adjacent indices of two tensors (e.g. c � d¼ cijdjk);
the symbol ‘:’ denotes an inner product of two second-order tensors (e.g. c : d¼ cijdij), or a double contraction of adjacent
indices of tensors of rank two and higher (e.g. C : ee ¼ CijklEe

kl); the symbol ‘�’ denotes a juxtaposition, e.g., ða� bÞij ¼ aibj.
Finally, for any symmetric second-order tensors a and b, ða� bÞijkl ¼ aijbkl, ða� bÞijkl ¼ aikbjl, and ða� bÞijkl ¼ ailbjk.

2. Rate-dependent rigid-plastic model for granular media

In this section, we present a rate-dependent phenomenological model to simulate the behavior of granular matter. In
particular, the model is founded upon the basic features of material behavior: pressure-dependence, dilatancy, non-
associative flow, and strain-rate dependence. The model departs from classic Coulomb plasticity and is able to evolve into
Bingham-type flow. Furthermore, the model is cast within the critical state framework (Schofield and Wroth, 1968; Wood,
1990), characterized by a state of isochoric deformations, i.e., zero dilatancy. For simplicity, we describe the model within



J.E. Andrade et al. / J. Mech. Phys. Solids 60 (2012) 1122–11361124
the framework of rigid-plasticity and infinitesimal deformations such that _e ¼ _e e
þ _e p applies and _e e

� 0, implying
_e � _e p. Adding elastic deformations is standard and will be done in the examples section.

2.1. Yield surface and plastic potential

Consider the two stress invariants of the stress tensor r such that

p¼ 1
3 tr r and q¼

ffiffi
3
2

q
JsJ ð2:1Þ

with s¼ dev r as the deviatoric projection of the stress tensor. Frictional materials obey Coulomb-type relationships
where, at yielding, the mean normal stress is related to the deviatoric stress via frictional resistance, i.e.,

Fðp,qÞ ¼ qþmp¼ 0 ð2:2Þ

where m is typically called the frictional resistance or friction coefficient and is related to the friction angle in granular
materials. The frictional resistance can be either assumed constant or a function of the deviatoric strains. Typically, the
latter is assumed and a phenomenological model to govern the evolution of m is postulated.

Now, consider the two invariants of the strain rate tensor _e , i.e.,

_Ev ¼ tr _e and _Es ¼

ffiffi
2
3

q
J _eJ ð2:3Þ

with _e ¼ dev _e as the deviatoric projection of the strain rate tensor. In granular materials, Reynolds (1885) first realized
the important role of the so-called dilatancy, which effectively couples deviatoric and volumetric components of
deformation. This feature distinctly separates granular materials from other materials such as metals, which are non-
dilative. It is important to note that dilatancy plays a central role in the mechanical behavior of granular matter. For
instance, dilatancy contributes to strength and depending on the relative packing density of the material, it can allow for
macroscopic contraction or dilation. Consider the plastic potential

Q ðp,qÞ ¼ qþbp�c¼ 0 ð2:4Þ

where b is defined as the dilatancy and c is a free parameter to ensure that the stresses in F and Q coincide.
In classic plasticity, the plastic stain rate is obtained from the plastic potential such that

_e ¼ _l
@Q

@r
¼ _l

1

3
b1þ

ffiffiffi
3

2

r
n̂

 !
ð2:5Þ

where n̂ :¼ s=JsJ is the unit deviatoric tensor and 1 is the second-order identity tensor. From this equation, we can
conclude that _e :¼ dev _e ¼ _l

ffiffiffiffiffiffiffiffiffi
3=2

p
n̂ and that _e and s are coaxial. From these realizations it follows that dilatancy is defined

such that

_Ev ¼ b_Es ð2:6Þ

Note that dilatancy, as the frictional resistance, can be considered either a constant or a function of the deformation.
Associative plastic flow would require b¼ m. Furthermore, a direct constitutive relation is obtained between the deviatoric
stress and the deviatoric strain rate, i.e.,

s¼ Z _e with Z¼�3

2

mp
_Es

ð2:7Þ

Eq. (2.7) is reminiscent of constitutive relations for non-Newtonian fluids where the deviatoric stress depends on the
deviatoric strain rate via a viscosity term Z (Fung, 1977; Jop et al., 2006).

The constitutive picture is completed by postulating the evolution of the frictional resistance and dilatancy. We propose
a classical stress–dilatancy relation, where the frictional resistance is a function of the dilatancy and some residual
resistance such that (Wood, 1990)

m¼ bþm ð2:8Þ

In classic soil mechanics, m is the residual resistance of the material and is considered constant. However, flow
experiments in granular materials at different deformation rates and at steady-state have shown that the frictional
resistance is a function of the deviatoric strain rate (Jop et al., 2006; GDR MiDi, 2004). When at steady-state, the granular
material must have mobilized all the dilatancy and must be at critical state so that b¼ 0 and m¼ m. Fig. 1 shows typically
observed evolution of the residual resistance as a function of the deviatoric strain rate. The figure helps reconcile the
apparent rate-independence observed in quasi-static experiments in granular materials: they are conducted at very low
shear strain rates. As shear strain rates are increased, the material’s residual frictional resistance increases. This
phenomenological observation will be a key feature of the proposed model and will afford it capturing solid and fluid
features accurately.

Remark 1. As Reynolds (1885) pointed out, it is the dilatancy b that separates granular matter from other materials, say,
non-Newtonian fluids. At the same time, pressure p also plays a fundamental role in the mechanical behavior of granular



Fig. 1. Observed evolution of the residual frictional resistance in granular material flow at steady-state.

Fig. 2. Interpretation of proposed constitutive model under constant shear strain rates _Es based on axisymmetric compression simulations. (a) Frictional

strength m and (b) volumetric strain Ev vs. shear strain Es. Both strength m and dilatancy b (alternatively, Ev) are shown to increase with the increasing

shear strain rate _Es.
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matter. The consequence of dilatancy is that the deviatoric and volumetric strain rate components are coupled (see
Eq. (2.6)) and that frictional strength is enhanced by the dilatancy (see Eq. (2.8) and Fig. 2). Once dilatancy is fully spent or
critical state is achieved (b¼ 0), flow becomes incompressible. At this point, the formulation reduces to pressure-
dependent incompressible non-Newtonian flow. As shown in Fig. 2, dilative strength is what separates the solid-like state
from the fluid-like state. Consequently, in this model, the critical state marks the transition between solid-like and fluid-
like states.

Remark 2. Classical plasticity has considered m ¼ ml constant since, for most applications, quasi-static conditions (_Es � 0)
apply. However, it can be seen from the above constitutive framework that the residual strength m is rate dependent and
can be included in the formulation relatively easily. Numerical experiments under triaxial compression at different strain
rates and infinite slope show this important feature in the following sections.

Remark 3. Fig. 2 shows interpretations of the proposed strain-dependent simple model. The figure implies that at Es ¼ 0
we have b¼ 0. This is assumed for simplicity and clarity but it is an approximation as it neglects the initial compression in
the material. Adding elastic compressibility would eliminate this approximation. The explicit form of the model should be
considered as an approximation; our objective is not to postulate a specific model form or evolution, but rather a
combined framework that allows the co-existence of classic frameworks such as critical state and Bingham flow, affording
enhanced accuracy.
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2.2. Evolution equations

In the present model, the governing material plastic internal variables are the frictional resistance m and the dilatancy b.
As mentioned before, in traditional rate-independent plasticity models (which have dominated in granular materials
literature), the residual strength m is considered constant and, therefore, in order to complete the constitutive picture, it
suffices to postulate an evolution law for the dilatancy. Experiments suggest that, at quasi-static rates, the dilatancy might
be dependent on pressure and deviatoric shear strain. Therefore, a general form of dilatancy could be written as b¼ bðp,EsÞ,
as has been used to model the dilatancy evolution of granular soils under quasi-static conditions using constant
parameters (Borja et al., 2003; Tu et al., 2009). However, for simplicity of presentation—and lack of thorough experiments,
we will only consider the deviatoric shear strain dependence, and postulate a simple function for the dilatancy evolution
as

bðEsÞ ¼ bn Es

Ens
exp 1�

Es

Ens

� �
ð2:9Þ

where bn is the maximum dilatancy and Ens is the corresponding shear strain. It should be noted that the evolution equation
for b in Fig. 2 allows for shear rate-dependence, if necessary. In Eq. (2.9) this feature has been turned off. The rate-
dependence of dilatancy has not been observed in the numerical experiments conducted herein, but cannot be discarded at
this point.

By the same token, numerical and experimental results on steady-state flow of granular materials have shown a clear
rate dependence of m, similar to that shown in Fig. 1. The rate dependence for the residual strength can be proposed to take
the simple form (Jop et al., 2006)

m ¼ mlþ
mu�m l

1þ _Ens=_Es
ð2:10Þ

where ml is the lower bound for the residual resistance when _Es-0. This is often called the quasi-static range. On the other
hand, mu is the upper bound achieved as _Es-1. The upper bound would mark the end of the flow regime and transition
into the gaseous regime (Jaeger et al., 1996) (where this model no longer applies). Furthermore, _Ens signifies the shear strain
rate at which the residual friction m ¼ 1=2ðm lþmuÞ.

Remark 4. The residual strength form shown above is slightly simpler than that proposed in Jop et al. (2006). The
complete expression should depend on the dimensionless quantity I, which is proportional to the shear strain rate _Es, but
also depends on pressure. However, the effect of pressure has been ignored and the resulting expression above is simpler.
Nevertheless, the complete expression depending on I can be implemented if desired. The results presented in this paper
show that the simpler evolution of m is reasonable in this context.

The resulting evolution for the friction resistance can be written as a function of the dilatancy and residual resistance
and is given as a function of the cumulative shear strain and the shear strain rate so that

mðEs, _EsÞ ¼ bðEsÞþmð_EsÞ ð2:11Þ

This expression is an enhancement of the classic rate-independent plasticity models to account for the rate effects
observed in the residual resistance. Also, this framework incorporates basic plasticity axioms for granular materials such as
the critical state (Schofield and Wroth, 1968; Wood, 1990). In fact, achievement of the critical state (i.e., b¼ 0) signifies the
transition into incompressible rate-dependent flow, as we will see in the examples below.

Remark 5. The evolution laws introduced above are by no means complete or universal. They are simply introduced to
account for the most salient features of granular matter in the simplest way. As more experiments become available, better
calibration of the above evolution laws can be achieved or new evolution laws can be proposed all together. Nevertheless,
the next sections will show that this simple framework can capture several important features in the material behavior
and the transition between the solid-like and fluid-like states, even though very simple evolution laws have been used.

Remark 6. It is interesting to compare the model presented herein with the model advocated in Pailha and Pouliquen
(2009). In the model presented in Pailha and Pouliquen (2009), rate-dependence is introduced by allowing the dilatancy
(via the packing fraction) to depend on shear rate. Additionally, rate dependence is built into the model from the viscosity
of the interstitial fluid, present in underwater granular avalanches, see Eq. (3.21) in Pailha and Pouliquen (2009). On the
other hand, the model presented here, stems from the classic equations of plasticity theory and allows for rate dependence
to enter via the residual strength m and, possibly, dilatancy b. While both models are phenomenological, their efficacy
needs to be further verified by extensive validation programs with experiments that can probe the transition between
solid-like and fluid-like states in granular deformation.

3. Model calibration and verification

In this section, the model is calibrated using data from numerical experiments performed by discrete element method
(DEM) and verified through a series of triaxial compression tests under different loading rates. Of particular interest is that
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the model is able to capture desired features of granular materials, which cannot be obtained by using conventional rate-
independent plasticity models or granular flow models alone. Also, computational efficiency is demonstrated by
implementing the plasticity model within the return mapping framework (Simo and Hughes, 1998).
3.1. Model calibration with discrete element simulation

The numerical experiments used to calibrate the model are performed using DEM. Initial configuration and loading
conditions for the DEM simulation are shown in Fig. 3. The sample size is ð48� D50Þ

3, where D50 is the mean particle
diameter. Lateral confining stresses of 25 kPa are applied and the top of the sample is compressed under strain controlled
boundary conditions. Two strain rates are applied: a low rate of 0.002/s and a high rate of 0.04/s. Parameters used in the
DEM simulation are summarized in Table 1.

The stress ratio versus shear strain for both low and high strain rate tests are shown in Fig. 4(a). As typically seen in
dense granular materials, for both cases, the stress ratio increases to a peak value and then gradually decreases (softening
behavior) to a constant value, i.e., the residual resistance m. For high loading rate, m ¼ 1:5 and for low loading rate,
m ¼ 1:05.
Fig. 3. Initial configuration and loading conditions for polydispersed granular assembly in DEM computation. Different colors correspond to different

particle diameters. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Table 1
Parameters used in DEM triaxial simulations for calibrating model.

Symbol Parameter Value

N Number of particles 9092

D50 Mean particle diameter 0.125 m

kn Normal contact stiffness 1e8 N/m

kt Tangential contact stiffness 1e7 N/m

mp Interparticle friction coefficient 0.31

cn Local damping coefficient 0.7
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The lower and upper bound of the residual strength and the corresponding shear strain rate are determined such that
the calibrated evolution as proposed in Eq. (2.10) passes the two known points given by DEM simulations. Fig. 4(b) shows
the calibrated evolution of residual strength m, as well as the two DEM data points. Parameters corresponding to this
evolution are m l ¼ 0:9, mu ¼ 1:6, and _Ens ¼ 0:0085.

To calibrate the dilatancy parameter b, the evolution of the volumetric strain vs. deviatoric strain curves for the two
different strain rates in the DEM simulations are computed and shown in Fig. 5(a). Using Eq. (2.6), dilatancy can be
computed using a simple finite difference scheme. The results are shown in Fig. 5(b), from which we obtain the maximum
dilatancy bn

� 0:2 and the corresponding shear strain Ens ¼ 0:05. The calibrated evolution of dilatancy (cf., Eq. (2.9)) is
shown as the solid line in Fig. 5(b).

Remark 7. It can be seen from the above DEM triaxial compression numerical experiments that the volumetric strains and
hence dilatancy do not seem to strongly depend on deviatoric strain rates. This is the reason why this dependence has been
ignored in this work. However, in general, and as shown in Fig. 2(b), dilatancy can be a function of strain rates.

3.2. Model verification: triaxial compression test at various loading rates

To verify the proposed constitutive model, we implemented it in a finite element (FE) code to simulate boundary value
problems. For comparison, we impose in the FE analysis the same boundary conditions as those in the DEM numerical
experiments, but with a wider range of loading rates. The loading rates range from a quasi-static loading, where the
residual strength of the material is given by the lower bound m l, up to ‘very’ fast loading rate, where the upper bound of the
residual strength is approached at critical state.

Fig. 6(a) shows the resulting stress ratio �q/p versus shear strain at different loading rates. The two dashed lines
represent the lower and upper stress bounds, corresponding to quasi-static and infinitely fast loading, respectively. Solid
lines are from FE simulations using the plasticity model with the parameters calibrated from before. The data from two
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DEM experiments are also plotted in the same figure. The model is able to capture some key features, including the
softening behavior and rate-effects. In Fig. 6(b), triangles represent the residual strengths from the FE simulation at
different rates. Solid line is the model input, i.e., the calibrated evolution. It is clear that the model has correctly taken into
account the rate effects on residual strength as expected.

If classical granular flow models or rate-independent plasticity models were to be used independently, the
aforementioned features, such as softening and rate-effects, could not be captured. This is because the classical granular
flow models usually ignores dilatancy and the material strength is given by residual resistance only, which is constant for a
given strain rate. While in the rate-independent plasticity models, the rate effects on residual strength are neglected, so
material strength does not evolve with loading rate. To illustrate this, we perform FE simulations neglecting either
dilatancy or rate effects, respectively. Fig. 7 shows comparisons between the proposed model with (a) if dilatancy is
neglected; and (b) if rate effect on residual strength is neglected. Clearly, neither simplification would yield the desired
features as observed in the numerical experiments. Nevertheless, these are the current paradigms used to model granular
materials.

As far as verification is concerned, the final aspect we look at is the computational efficiency. Fig. 8 shows the reported
global and local residual profiles at different strain levels. It is clear to see that all iterations converge below a tolerance (in
this example, 10�13) within five steps. Asymptotic quadratic convergence rates are obtained for both global and local
cases. This efficiency will prove crucial as the model can be implemented using explicit or implicit FE or finite difference
codes and obtain solutions of boundary value problems (BVP) in seconds. This is to be contrasted with simulations using
DEM, which can take up to days to run, for the same BVP.

So far, the model has been calibrated using results from numerical experiments done by discrete element simulations,
and verified through some boundary value problems. In the next section, we will show two applications of the proposed
model towards a classical granular flow problem and a strain localization problem in soil mechanics. These examples will
further highlight the efficiency of the method and its accuracy.
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4. Numerical examples: application to granular flow and classical shear banding problem

In this section, the proposed constitutive model is utilized to simulate a granular flow problem and a plane strain shear
banding problem. These two examples represent classical problems studied in the physics community for understanding
fluid-like behavior in granular flow, and in the soil mechanics community for understanding solid-like behavior of granular
materials under quasi-static macroscopic loading. In the first example, DEM simulations are used as benchmarks to which
the continuum model will be compared. The intention is to show that the simple proposed constitutive model is able to
seamlessly capture the transition from solid-like to fluid-like behavior, as well as steady-state flow. In the second example,
a physical plane strain compression experiment will be analyzed, showing the improved residual strength given by the
proposed model. The plane strain compression example demonstrates the importance of rate effects once shear bands
form within otherwise homogeneously deforming samples.

4.1. Granular flow along an inclined infinite slope

In this section, numerical experiments of granular flow along an inclined infinite slope are compared against
simulations performed using the proposed model. The numerical experiments are carried out using discrete element
simulations, with dimensions of the simulation box shown in Fig. 9. Periodic boundary conditions are enforced in the flow
direction, as well as in the y direction so that the sidewall effects on the flow are neglected. The surface of the inclined
slope is glued with one layer of particles. The granular assembly consists of monodispersed spheres with radius r¼1.2 mm.
In the numerical experiments, the simulation box is initially horizontal and the granular assembly is in a solid-like state.
Then, the simulation box is instantaneously tilted to an angle y from the horizontal direction to induce granular flow. Some
(intermittent) particle movements are observed when the inclination angle y¼ 191, but it is not until y¼ 221 that steady-
state granular flow can be achieved. If y4251, flow will keep accelerating without bound, i.e., no steady-state flow can be
reached. These DEM results allow us to obtain bounds for our continuum model, as y¼ 191 seems to correspond to the
angle of repose and y¼ 251 introduces an upper bound for the residual strength. Further, since the problem is essentially
one-dimensional, only velocity profiles along the depth z direction and surface velocities are reported.

To simulate the granular flow problem using the continuum model, we have to solve the momentum balance equation
written as

r � rþrg ¼ rdv

dt
ð4:1Þ

where r is the Cauchy stress tensor, r is the particle density, g is gravitational acceleration vector and v is the velocity.
Also, the boundary conditions are: traction free on the top surface, zero displacement/velocity at the bottom of the
assembly. It should be noted that once sidewall effects and surface roughness are taken into account (Delannay et al.,
2007; Goujon et al., 2003; Mills et al., 2000), different boundary conditions have to be chosen.

Finite difference method is implemented to solve Eq. (4.1). Time and spatial discretizations are carefully chosen such
that the Courant–Friedrichs–Lewy stability criterion is satisfied (Courant et al., 1967). The proposed rate-dependent
constitutive model is used to describe material behavior and the resulting finite difference governing equation reads,

Dv¼
1

1þmb
Dtg cos yðtan y�mÞ ð4:2Þ

where v is the velocity in the flow direction at a given space finite difference node and Dv¼ vnþ1�vn and Dt¼ tnþ1�tn,
representing time discretization. Eq. (4.2) is the discrete version of Eq. (4.1) plus constitutive assumptions. Also, we have
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Fig. 9. Assembly of monodispersed granular particles with radius of 1.2 mm on a slope inclined at angle y from the horizontal plane.
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exploited the infinite character of the problem and hence quantities only vary in the z-direction. Also implied in Eq. (4.2) is
the relationship between internal strength furnished by m and external forces furnished by tan y (gravity). As long as the
material can produce enough internal strength to balance external forces, equilibrium or steady state conditions will be
achieved. Otherwise, the external loads will drive the system into continuous acceleration.

The frictional resistance m is given by Eq. (2.11). Material parameters corresponding to the infinite slope problem are
calibrated as follows. As noted before, the angle of repose is defined as the angle at which intermittent flow begins, which
is observed form DEM simulations to be 191, hence, m l ¼ tan 191. By the same token, continuous flow is achieved in DEM
simulations at 221. In our model, we interpret this 31 difference as a result of the peak dilation, hence, we assume
bn
¼ tan 31 with a corresponding (assumed) _Ens ¼ 3:5. Finally, since the DEM simulations grow unbounded when y4251 we

assume m l ¼ tan 251.
Fig. 10 shows velocity profiles for various angle inclinations as a function of depth at selected time stations. Dots

correspond to DEM simulations while solid lines are results from our continuum model. Colors represent specific time
stations in the simulation. It can be seen that the velocity increases gradually, eventually reaching a steady-state profile.
The continuum model is able to reproduce the velocity profiles observed in DEM well and is able to capture the transition
from solid-like behavior (close to zero velocity) to fluid-like behavior, eventually resulting in steady state conditions. It
should be noted that the flow layer height chosen for the DEM simulations is approximately ten particles. As described in
Pouliquen and Forterre (2009), Rajchenbach (2003), Silbert et al. (2003), linear velocity profiles at steady state are typically
obtained for relatively shallow flows. This is observed in this paper as well. For taller flow layers, say above 20 particles in
height, steady state velocities could be nonlinear.

Surface velocity is also of particular interest. Fig. 11 shows the evolution of surface velocity for different inclination
angles where steady state flows can be reached. The steady state surface flow velocity increases with inclination angles.
Again, the simple proposed model is able to reproduce this key feature, and matches well with numerical DEM
experiments. Also, this figure displays the clear rate dependent behavior of the material. At steady-state, and as shown
in Eq. (4.2), accelerations are zero and the material strength m¼ tan y. Hence, by looking at the steady-state velocities, one
can obtain steady-state strain rates that correspond to residual strengths as shown in Fig. 11. This means that the material
is increasing in strength since it is able to equilibrate at higher inclination angles, at the expense of higher steady-state
velocities (higher strain rates). This feature can only be fully captured by the proposed rate-dependent continuum model.

To show the limitations of using classic modeling paradigms we perform simulations with either rate-independent
plastic model and Bingham fluid model. To capture the first classical model, we simply turn off the rate dependence in the
Fig. 10. Velocity (along the flow direction) profiles for different inclination angles (a) y¼ 221; (b) y¼ 231; (c) y¼ 23:51; (d) y¼ 241 (dots: numerical

experiments; solid lines: model calculation).
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residual strength and make m ¼ tan 191 constant. For the Bingham flow model, we turn off the dilatancy contribution and
make b¼ 0. Fig. 12 shows results for inclination angle y¼ 221. If dilatancy is neglected, as shown in Fig. 12(a), the granular
flow reaches steady-state almost right at the beginning. No transition from solid to fluid state is observed. If the residual
strength remains constant, i.e., no rate effect, the flow will keep accelerating and never reaches steady state, as shown in
Fig. 12(b). This highlights the importance of the combined model as being the only one to capture all the salient features:
dilatancy dominated plasticity at early stages of deformation (solid-like regime), transition marked by full use of dilatancy,
and residual strength rate dependent response (fluid-like regime) where deformations are purely isochoric.

4.2. Plane strain shear banding problem

In this section, the proposed continuum model is applied to analyze the behavior of a physical experiment on dense
sand under plane strain condition. This is a revisit of the analysis done by Andrade and Tu (2009), where the rate effect on
the residual strength m was neglected. While the previous analysis in Andrade and Tu (2009) captured the behavior of the
materials well for most part of the loading, disparity between simulation and experiment at the critical state was clearly
observed. It is believed that the rate-independent model may have missed some important feature of the material
behavior, i.e., different strain rates inside and outside the shear band after localization. The objective of the current
analysis is to show that, by adopting the proposed rate-dependent constitutive model, the effects of strain rate on material
behavior is taken into account, and material residual strength could be more realistically captured.

The physical experiment was performed by Mooney et al. (1998) on a masonry sand sample of 140�80�40 mm in
dimensions. Plane strain was enforced by two rigid (smooth) walls, in the 80 mm direction. The sample was initially
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consolidated anisotropically with axial stress sa ¼�210 kPa, and lateral stress sr ¼�105 kPa. After consolidation, the
lateral stress was kept constant while the top plate was moved down with a loading rate of _Ea � 1:4%=h. A dominant shear
band inclined 631 from the horizontal axis was observed when the global axial strain reached about 3%. Evolution of
dilation angle c was extracted using stereophotogrammetry, and was related to dilatancy parameter b through

b¼ tan c ð4:3Þ

Fig. 13 shows the evolution of dilatancy angle obtained in the experiment (red circles). This phenomenological evolution of
dilation will be used in this example instead of the equation proposed in (2.9). This concept of using dilation evolution
from local strains has been used before in the context of multiscale simulations which details can be found in Andrade and
Tu (2009), Tu et al. (2009). In Fig. 13 the solid line corresponds to the idealized evolution of dilation angle for materials
inside the band, while the dotted line is for materials outside the band. The assumption of a constant dilation angle after
localization outside the band is immaterial, since all plastic deformations are concentrated within the shear band and the
material outside undergoes elastic unloading.

In the numerical simulations, the proposed rate-dependent constitutive model is used to describe material behavior,
with the Drucker–Prager type yield surface and non-associative flow rule as presented before. The frictional resistance m is
related to dilatancy parameter b and residual resistance m through Eq. (2.11), and therefore depends on shear strain rate.
Instead of using Eq. (2.9) for b, the measurements from the experiment shown in Fig. 13 are directly incorporated into the
model. Calibrated parameters used in the model are two elastic constants E¼40 MPa, n¼ 0:2; and m l ¼ 1:15, mu ¼ 1:5,
_Ens ¼ 1:0.

It has been shown that the characteristic length of shear bands in granular materials is in the order of 10–20 mean
particle diameters. Since most samples have characteristic macroscopic dimensions in the order of thousands of grains,
strain rates inside the shear band are bound to jump by orders of magnitude once a band forms. If the material is rate-
dependent, this could measurably change the behavior of the material post bifurcation. This is the idea pursued on this
example. The proposed rate-dependent model is able to take into account this effect. Shown in Fig. 14 is the evolution of
the residual strength inside and outside the shear band throughout the simulation. There is a significant increase of the
residual strength for materials inside the shear band right at the point of localization due to the increase of strain-rate. For
materials outside, the residual strength remains close to the constant value m l ¼ 1:15. If a rate-independent model is used,
there would be no difference in the residual strength for materials inside and outside the band.

The evolution of the global stress ratio with global axial strain is shown in Fig. 15. There is some disparity between the
rate-independent model and experiment results, especially post bifurcation and at critical state. As mentioned before, it is
hypothesized that the significantly higher strain rate, could trigger rate effects inside the shear band. In this particular
case, there is a slight increase in strength, which seems to improve the results significantly, as shown by the solid line in
Fig. 15. Similarly, if a simulation is conducted using only a rate-dependent fluid model (by turning off the dilatancy effect),
the model completely misses the transient effect and produces a constant stress ratio corresponding to the final residual
strength in the continuum model. This is clearly undesirable. The continuum model proposed here is able to obtain better
results than the classic counterparts. Also, in Fig. 15 we have reported the results of the rate-dependent model using a finer
mesh. It can be seen that the results are relatively mesh-independent, with the stress ratio values for both fine and coarse
meshes following almost identical trends.

Finally, the deviatoric stress and strain contours of the sample at the end of the simulation are shown in Figs. 16 and 17.
There are clear concentrations of shear stress and strain inside the band as expected. Also, it can be seen that the shear
strain contours are virtually the same for the rate-independent and rate-dependent models, as expected. On the other
hand, because rate-dependence of material strength is taken into account, the proposed rate-dependent model displays
higher shear stresses inside the band. This of course, results in an apparent increase in global sample strength.
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5. Conclusions

We have presented a rate-dependent plasticity model for dilative granular media aiming to bridge the solid- and fluid-
like state of such materials. The model emanates from classical plasticity in soil mechanics where material strength is
composed of a dilatancy strength and a residual resistance. The model accommodates the material behavior transition by
proposing the evolution of dilatancy, which plays a key role in the solid-like state but vanishes towards the fluid-like state.
The residual strength is proposed to be rate-dependent, affording it key features of fluid-like state in granular materials.
The model is calibrated using numerical experiments by discrete element method simulations and verified by boundary
value problems. Though simple in form, the capability of the model to reconcile classical plasticity and rheology camps has
been shown through the successful application to a classical granular flow problem, where key features such as solid–fluid
transition, velocity profiles and free-surface velocity evolutions are captured. Neither classical rate-independent plasticity
theory nor steady-state granular flow model alone would be able to capture these features at the same time. Finally, the
model is applied to a shear banding problem, where the rate-effect on material strength inside and outside shear band has
been considered and results from the model match well with experiment observations. It is anticipated that the proposed
model will spur the development of more accurate models able to transit classic plasticity and non-Newtonian fluid
models, and as a result capture the observed physics with higher accuracy.
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