
??

Albany: A Component-Based Partial Differential Equation Code Built
on Trilinos

ANDREW G. SALINGER, ROSCOE A. BARTLETT, QUISHI CHEN, XUJIAO GAO, GLEN
A. HANSEN, IRINA KALASHNIKOVA, ALEJANDRO MOTA, RICHARD P. MULLER, ERIK
NIELSEN, JAKOB T. OSTIEN, ROGER P. PAWLOWSKI, ERIC T. PHIPPS, WAICHING
SUN, Sandia National Laboratories

The code development strategy, software design, and results from two application projects are presented
for the Albany code: an implicit, unstructured grid, finite element code for the solution and analysis of
partial differential equations. The driving strategy behind the development of Albany is the notion that it
is increasingly possible, and advantageous, to build an application code from reusable software libraries
connected by well-designed abstract interfaces. The main advantages and disadvantages of this strategy
are presented. This approach is increasingly possible because of the tremendous breadth of capabilities now
available in software libraries. These notably include the libraries delivered through the Trilinos suite of
computational science tools which are the building blocks of Albany. The major features of the design of
Albany, specifically the use of abstract layers and heavy use of independent libraries, are presented. Finally,
two distinct case studies are shown that validate this approach by using the Albany code base to rapidly
develop application codes born with a large set of solution and analysis capabilities.

Categories and Subject Descriptors: G.4 [Mathematical Software]: Algorithm design and analysis; G.1.8
[Partial Differential Equations]: Finite element methods; D.1.5 [Programming Techniques]: Object-
oriented Programming

General Terms: Algorithms, Design, Documentation

Additional Key Words and Phrases: Partial differential equations, finite element analysis, template-based
generic programming.

ACM Reference Format:

Andrew G. Salinger, Roscoe A. Bartlett, Quishi Chen, Xujiao Gao, Glen A. Hansen, Irina Kalashnikova, Ale-
jandro Mota, Richard P. Muller, Erik Nielsen, Jakob T. Ostien, Roger P. Pawlowski, Eric T. Phipps, WaiChing
Sun. 2013. Albany: A Component-Based Partial Differential Equation Code Built on Trilinos. ACM Trans.

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation,
a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy’s National
Nuclear Security Administration under contract DE-AC04-94AL85000.

Corresponding author: Andrew G. Salinger, Sandia National Laboratories, Numerical Analysis and Appli-
cations Department, PO Box 5800 MS-1318, Albuquerque, New Mexico, 87185, USA. agsalin@sandia.gov.

Roscoe A. Bartlett’s current affiliation is Oak Ridge National Laboratories.

Quishi Chen’s current affiliation is Clemson University, Department of Civil Engineering.

WaiChing Sun’s current affiliation is Columbia University, Department of Civil Engineering and Engineer-
ing Mechanics.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights
for components of this work owned by others than ACM must be honored. Abstracting with credit is per-
mitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component
of this work in other works requires prior specific permission and/or a fee. Permissions may be requested
from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c� 2013 ACM 0098-3500/2013/10-ART?? $15.00
DOI:http://dx.doi.org/10.1145/0000000.0000000

ACM Transactions on Mathematical Software, Vol. ??, No. ??, Article ??, Publication date: October 2013.

SAND2013-8430J

??:2 A.G. Salinger et al.

Math. Softw. ??, ??, Article ?? (October 2013), 27 pages.
DOI:http://dx.doi.org/10.1145/0000000.0000000

1. INTRODUCTION
In this paper we present the Albany code, a parallel, unstructured-grid, implicit, finite
element code for the solution and analysis of partial differential equations (PDEs).
Albany has been developed to drive and demonstrate a component-based approach to
scientific application development. This approach, which we will discuss in detail in
this paper, is to make very broad use of computational science libraries, abstract in-
terfaces, and software engineering tools. The idea is that by making extensive use of
external libraries, the application code can remain focused on the PDE development
and have access to numerous algorithms, each written by domain experts, where the
cost of verification and maturation are amortized over many projects. The hypothesis
is that codes can be written more rapidly, be born with more sophisticated algorithms,
and have a smaller code base to support. There are drawbacks to depending so exten-
sively on external libraries, but these can in large part be mitigated by good software
design and processes.

The breadth of useful computational science libraries have grown beyond the widely-
accepted LAPACK, Blas, and MPI, and even well beyond general linear solver libraries.
The Trilinos [Heroux et al. 2005] and Dakota [Adams et al. 2009] toolkits house many
dozens of computational science libraries that, in aggregate, perform the vast major-
ity of computational tasks needed for the setup, solution, and analysis of systems of
PDEs. The initial goals of the Albany project were to push how much of an application
code, outside of the implementation of the application-specific PDE terms and response
functions, could be satisfied with general-purpose libraries and to identify capability
gaps that could be satisfied with libraries but are currently redundantly developed in
each application code. So, where possible, Albany makes use of the computational sci-
ence libraries within Trilinos and Dakota. Much of the early code development work in
Albany therefore focused on developing, maturing, and satisfying interfaces between
libraries that had been independently developed. In the beginning of the development
process, the interoperability between libraries and maturity of the abstract interfaces
in Trilinos varied significantly. In many cases existing Trilinos capabilities were ma-
ture and fully usable out of the box, in some cases there was an initial implementation
present that needed maturation, and in some cases the Albany code was the incubator
for the capability that was later migrated to Trilinos for general use.

At this point, the code has reached a high level of maturity, where there is a well-
defined modular code design and where dozens of independent libraries all contribute
to the application code. As a result, applications developed within Albany are born
with mesh I/O, load balancing, finite element discretizations, distributed-memory lin-
ear algebra objects, preconditioners, nonlinear solvers, optimization algorithms, and
uncertainty quantification (UQ) capabilities, all through library calls and satisfying
abstract interfaces. The code base to support in Albany is therefore relatively small.
As a measure of success of this approach, approximately 80% of the lines of code in
Albany involve definition and implementation of the equations and responses (i.e., var-
ious quantities of interest).

Certainly all of the elements listed in the previous paragraph are satisfied by other
finite element libraries and frameworks. A differentiation for Albany is that it was de-
signed to maximize external dependencies and to evaluate how well this process works
in practice. A number of finite element applications and toolkits have been developed
that leverage this component integration model. An exhaustive list is beyond the scope
of this paper. A natural first point of abstraction for implicit and semi-implicit methods
is to separate the finite element assembly process from the linear and nonlinear solu-

ACM Transactions on Mathematical Software, Vol. ??, No. ??, Article ??, Publication date: October 2013.

Albany: A Component-Based Partial Differential Equation Code Built on Trilinos ??:3

tion algorithms. The assembly tools (e.g., basis function library and meshing library)
are usually developed internally by the application code and solvers are leveraged
from external libraries such as PETSc [Balay et al. 2013] and Trilinos [Heroux et al.
2005]. Examples of codes that fall into this category are the Differential Equations
Analysis Library (deal.II) [Bangerth et al. 2007], libMesh [Kirk et al. 2006], Life V
[Prud’homme 2007], Sierra [Stewart and Edwards 2003], and Uintah [de St. Germain
et al. 2000]. Some projects additionally section the assembly process into separately
releasable components or rely on external components. Projects in this class include
Albany, the FEniCS project [Logg et al. 2012], the MOOSE project [Gaston et al. 2009],
and the Sundance rapid development system [Long et al. 2010].

In this paper, we discuss our experiences in developing a scientific application code
with a very aggressive component-based approach. In section 2 we provide details on
how we define a component-based approach, what the scope of the current effort is,
and what we see as the advantages and disadvantages of this approach.

In Section 3 we present the design of the Albany code. In particular, we show
schematically where we have inserted abstract interfaces between major domains of
the code to maintain modularity. We go into detail into the separate code domains and
detail what capabilities are accessible from behind those abstract layers. Some of these
layers live in Albany and some in Trilinos itself. There is certainly not a unique or opti-
mal design for how to modularize a PDE code with abstract interfaces, but this design
has held up well in the transition from a computational science research project to the
current use of Albany as a platform for developing new application codes and analysis
capabilities.

In Section 4 we present two computational science application projects that have
been developed in Albany. The first is a computational mechanics research and de-
velopment platform, that enables research in solution methods, discretizations, full
coupling of mechanics to scalar equations, material models, and failure and fracture
modeling. The second is a quantum device simulation and design capability, where
nonlinear Poisson and coupled Schrodinger-Poisson systems are solved for designing
quantum dots, the building blocks of quantum computers. The success of these projects
in rapidly developing new application code with immediate access to a host of solution
and analysis capabilities provides evidence to the strength of the component-based ap-
proach to computational science application development as embodied in the Albany
code.

2. COMPONENT-BASED APPLICATION CODE DEVELOPMENT STRATEGY
The Albany code was written to drive and demonstrate the component-based strat-
egy for application code development. This approach is to build application codes pri-
marily from modular pieces, such as independently developed software libraries. The
crux of this strategy involves the accumulation of components across four classes of
software: libraries, interfaces, software quality tools, and demonstration applications,
which form the foundation for the new code. The benefits of this approach are numer-
ous, and are discussed in detail below. However, it is evident that having a significant
collection of advanced algorithmic capabilities as a foundation for the development of
new applications provides a large advantage over starting from scratch or retrofitting
a monolithic code that was designed for a different class of problems. Just as compil-
ers, BLAS, Lapack, and MPI have long been standard external dependencies (it is also
common to depend on external linear solvers and meshing tools), we extrapolate this
trend to include dozens of other required algorithmic capabilities that can be general-
ized into reusable libraries.

ACM Transactions on Mathematical Software, Vol. ??, No. ??, Article ??, Publication date: October 2013.

??:4 A.G. Salinger et al.

2.1. Computational Science Libraries
Figure 1 enumerates individual computational capabilities that can be deployed as in-
dependent libraries, and made available as building blocks for new application codes.
The capabilities are grouped in a logical manner. This serves to organize the presen-
tation of this list; but as will be discussed later, also shows where opportunities exist
for the definition of abstraction layers around clusters of related libraries. Many of the
listed components shown in the figure represent a set of capabilities, in that there are
multiple independent libraries that provide competing or complimentary capabilities
in the listed capability area (e.g. preconditioners).

PDE Terms
Source Terms

Sensitivities

Field Manager
Discretization Library UQ Solver

Nonlinear Solver
Time Integration

Optimization
Local Fill

Mesh Database

Mesh Tools

I/O Management

Input File Parser
Utilities

UQ (sampling)
Parameter Studies

Mesh I/O
Optimization

Geometry Database

Discretizations

Derivative Tools

Adjoints
UQ / PCE

Propagation

Responses

Continuation

Constrained Solves

Sensitivity Analysis
Stability Analysis

Calibration

Parameter List

QOI Computation
Verification

In-situ Visualization
Post Processing

Adaptivity

Model Reduction

Memory Management

MultiPhysics Coupling

Reliability
Communicators

Partitioning
Load Balancing

Analysis Tools
 (black-box)

Physics Fill

Composite Physics

Data Structures

Direct Solvers

Linear Algebra

Architecture-
Dependent Kernels

Preconditioners

Iterative Solvers

Eigen Solver

System UQ

Analysis Tools
 (embedded)

Multi-Level Methods

Inline Meshing

Parameters

Grid Transfers
Quality Improvement

Mesh Database

Solution Database

Runtime Compiler

Derivatives

Search

Checkpoint/Restart

DOF map Mulit-Core
Accelerators

Material Models
BCs

Fig. 1. Enumeration of various computational science capabilities that can be delivered through indepen-
dent software libraries. Given that the above components exist in a mature state, the time to write new PDE
codes employing these capabilities is dramatically reduced, with development time being concentrated in
the Physics Fill box outlined in red.

The granularity of the definition of an independent library is a software design de-
cision, where the extremes (having all capabilities as one monolithic framework or

ACM Transactions on Mathematical Software, Vol. ??, No. ??, Article ??, Publication date: October 2013.

Albany: A Component-Based Partial Differential Equation Code Built on Trilinos ??:5

having every C++ class an independent library) are obviously sub-optimal. For this de-
scription, which has a direct correlation to the development of independent packages
in the Trilinos suite, a library is typically constructed by one to three domain experts.
This level of effort is small enough that the lead developers can know and understand
the entire code base of each package. In this definition, an existing library may be sep-
arated into a set of smaller independent pieces if the common usage involves only a
subset of the capabilities contained in the original library. For instance, a library that
contains both a GMRES linear solver and an ILU preconditioner would be split into
two separate libraries since we would want to enable the use of the ILU preconditioner
with any linear solver.

2.2. Software Quality Tools
Central to productivity of code teams are the use of software quality tools and pro-
cesses. The benefits of these tools increase significantly as project teams grow in num-
ber of developers and become geographically distributed. In Figure 2, we present a list
of software quality tools which enhance productivity of a code project such as Albany.
As with the libraries presented in the previous section, it is not necessary to use all the
capabilities to see benefits. Having a full set of these tools available for a new project
saves the project from needing to independently select appropriate tools and integrate
them into the development process; the new project is born with suitable tools and
processes in place.

Regression Tests

Bug Tracking

Version Control

Software Quality Tools

Porting Performance Testing

Code Coverage

Mailing Lists

Release Process Web Pages

Unit Testing

Build System

Backups

Verification Tests

Configuration Mgmt

Automated Tests

Fig. 2. In addition to computational science libraries, the rapid development of new application codes is
also strongly dependent on the availability and use of an effective set of software quality tools and processes.
These support developer productivity, software quality, and the longevity of a project.

For computational science organizations, there is great benefit in sharing the same
sets of tools and processes across many software projects. With a decrease in each
project-specific learning curve, staff have more agility to make an impact on multiple
projects. For this reason, the Albany project has largely adopted the set of tools used
by the Trilinos project.

2.3. Advantages and Disadvantages of Component-Based Code Design
With our experience in Albany and other application codes that use Trilinos libraries,
we have noted significant advantages and some disadvantages in using the component-
based approach to code design. These span both technical and social issues, and are
influenced by the organizational culture, funding, and several other factors. A more
extensive discussion of component-based design is presented in a technical report
[Salinger 2012].

Advantages of a component-based approach to application development include:

ACM Transactions on Mathematical Software, Vol. ??, No. ??, Article ??, Publication date: October 2013.

??:6 A.G. Salinger et al.

(1) The costs of writing, verifying, maturing, extending, and maintaining a library is
amortized over multiple projects.

(2) Shared support of an algorithmic capability over several projects allows the pool-
ing of a critical mass of funding for a subject matter expert to develop extensive
expertise and software capabilities in a targeted area.

(3) Using the algorithmic library developed above typically gives the application code
full access to the talents of the subject-matter expert.

(4) The use of general-purpose libraries developed externally to an application code
forces the code to take on a more modular design. This makes it more flexible and
extensible in the long run.

(5) The use of libraries decreases the code base that must be maintained by the ap-
plication team. The finer granularity of this approach creates natural divisions
between code appropriate for open source release and code that must be protected
(e.g. for intellectual property or export control reasons), decreasing the amount of
code that requires protections.

(6) The use of abstract interfaces around groups of related capabilities facilitates im-
plementation and investigation of alternative algorithms. Using an example from
Trilinos, several direct and iterative solvers share the same interface and can be
selected in Albany at run time.

(7) The effort to create abstract interfaces that support multiple concrete implemen-
tations improves the extensibility and flexibility of the code. Creating an abstract
layer between the mesh database and the mesh data structures used in the PDE
assembly enables us to flexibly use multiple mesh databases with minimal impact
on the code.

In contrast with a monolithic application code that contains all required algorithms
as part of the application, disadvantages of a component-based approach are:

(1) The use of numerous Third-Party Libraries (TPLs) can complicate the build pro-
cess. It can be particularly difficult to keep track of what versions of libraries are
compatible with each other.
We mitigate this issue by focusing on the use of libraries from Trilinos, which
synchronizes the release of its numerous (> 50) libraries. Albany also links to
a host of parallel unstructured mesh and adaptation libraries contained within
the Rensselaer Polytechnic Institute (RPI) Scientific Computation Research Cen-
ter (SCOREC) toolset [Seol et al. 2012], these libraries are likewise synchronized
to the underlying Trilinos build by sharing the TriBITS [Bartlett et al. 2012] build
system.

(2) When debugging the application, developers on the application code team may
have difficulty tracking down issues in unfamiliar components and may not get
access to or help from the component developer.

(3) The development of abstract interfaces that compartmentalize the code are dif-
ficult to write and require a different skill set than those always present on an
application development team.

(4) General purpose libraries with an improper interface design can lead to applica-
tions that do not perform optimally (e.g., performing unnecessary data copies) and
have unnecessarily high memory requirements.

(5) The dependence on external components can significantly impact the deployment
of an application to novel/disruptive technologies. For example, the porting of a
code from traditional CPU cores to general purpose graphics processing units
(GPGPUs) requires that many components be rewritten to support that architec-
ture. Even if some components support the architecture, it may not be possible to

ACM Transactions on Mathematical Software, Vol. ??, No. ??, Article ??, Publication date: October 2013.

Albany: A Component-Based Partial Differential Equation Code Built on Trilinos ??:7

run the application on the new hardware until all, or a large subset of components
provide that support.

The application development projects described in this paper in Section 4, and re-
lated observations, give us anecdotal experience that the component-based approach
has net benefits. In particular, we cite the ability to rapidly add new algorithms and ca-
pabilities by making use of pre-existing libraries. The other strength of this approach
is that it demonstrates an accelerated development process that builds on experience;
the more that libraries are developed and matured, the more rapidly the next appli-
cation using those libraries can be constructed and verified. This can yield significant
strategic return on investment across a computational science organization even when
it may be of less immediate value within an individual code project.

3. ALBANY COMPONENT-BASED CODE DESIGN
The Albany code was developed to refine, demonstrate, and evaluate the component-
based code design strategy. We seek to answer the question of whether a fully-
functional PDE application code can be written primarily from computational science
libraries, and what gaps remain. Along the way, proxy applications of heat transfer and
incompressible flows were supplanted by independently-funded application projects as
the drivers (see Section 4). In this section we present the software design of the Albany
code, detailing where we have placed abstract interfaces to gain access to general-
purpose libraries and to maintain the flexibility and extensibility of a modular design.

Albany is designed to compute approximate solutions to coupled PDE problems rep-
resented abstractly as

L(u̇(x, t), u(x, t)) = 0, x 2 ⌦, t 2 [0, T], u̇, u 2 H, (1)

where ⌦ ⇢ Rd (d = 1, 2, 3) and [0, T] are the spatial and temporal domains, L is a
(possibly nonlinear) differential operator, H is a Hilbert space of functions upon which
L is defined, u is the (unknown) PDE solution, and u̇ its corresponding time-derivative.
Equation 1 is then discretized in space via the (generally unstructured grid) finite
element method resulting in the finite-dimensional differential-algebraic system

f(u̇(t),u(t),p) = 0, (2)

where u 2 Rn is the unknown solution vector, u̇ 2 Rn is its time derivative, p 2 Rm is a
set of model parameters, and f : R2n+m ! Rn is the DAE residual function. In Albany,
we have focused on fully-implicit solution algorithms which require evaluating and
solving linear systems involving the Jacobian matrix

↵
@f

@u̇
+ �

@f

@u
, (3)

and thus accurate and efficient evaluation of these derivatives is critical.
In addition to computing the approximate solution u(t) one is also often interested

in evaluating functionals of the solution

s(t) = g(u(t),p), (4)

which we call responses. Values of response functions at discrete time points are often
targets of sensitivity and uncertainty analysis, as well as objective functions in opti-
mization, design, and calibration problems. Many of these methods entail evaluation
of derivatives of the responses s with respect to the model parameters p, and often the
performance of these methods is greatly improved when these derivatives are evalu-
ated accurately. For steady-state problems, the response gradient can computed via

ACM Transactions on Mathematical Software, Vol. ??, No. ??, Article ??, Publication date: October 2013.

??:8 A.G. Salinger et al.

the formula
ds

dp
=
@g

@u
(u⇤,p)

du⇤

dp
+
@g

@p
(u⇤,p)

= �@g
@u

(u⇤,p)

 ✓
@f

@u
(u⇤,p)

◆�1
@f

@p
(u⇤,p)

!
+
@g

@p
(u⇤,p),

(5)

where u⇤ satisfies f(u⇤,p) = 0. The necessity to quickly and accurately evaluate deriva-
tives such as @f/@u and @f/@p (as well as other quantities such as polynomial chaos
coefficients) needed by analysis algorithms, as well as to support an easily extensi-
ble interface for supplying these quantities to higher-level analysis algorithms, has
dictated many of the code design decisions described below.

3.1. Overall Albany Code Design
At a high level, the code is separated into five main algorithmic domains separated
by abstract interfaces, as shown in Figure 3. These domains will each be discussed in
detail in the following sections.

Main

FEM Assembly

Solvers

Field Manager
Derivatives

Albany
Glue Code

Nonlinear
Model

Nonlinear
Transient

Optimization
UQ

Analysis Tools

Iterative
Linear Solvers

 Multi-Level

Mesh Tools

Mesh I/O

Mesh Database

Abstract
Discretization Application

Linear Solve

Load Balancing

Input Parser

PDE Terms,
BCs,

Responses

Libraries

Interfaces

Albany Code

Mesh
Processing

Discretization

 Legend:

Evaluation
Engine

Problem
Definition

Fig. 3. The Albany code is built largely from software libraries (colored boxes with black font) and abstract
interfaces (clear boxes with blue font), and employs software quality tools (not shown). The bulk of the
capabilities come from Trilinos libraries encapsulated with abstract interfaces. The bulk of the coding effort
for a new application involves writing PDE terms, boundary conditions, and responses.

The key part of the Albany code is depicted as ‘Glue Code’ in this figure, and is the
part of the code base that is not separated as a library and is not physics specific. It
depends on a discretization abstraction, which serves as a general interface to a mesh
database and mesh services. (As described below in Section 3.2, this interface deals
with linear algebra objects and standard vectors, and is agnostic to the specific mesh
database.) It also uses a problem class abstraction to construct the set of PDEs, bound-
ary conditions, and response calculations. As described in Section 3.3, the assembly
of these physics pieces comes down to the evaluation of a directed graph of computa-
tions of field data. The Glue Code then uses these pieces to satisfy the nonlinear model
abstraction, e.g., computing a residual vector or Jacobian matrix.

ACM Transactions on Mathematical Software, Vol. ??, No. ??, Article ??, Publication date: October 2013.

Albany: A Component-Based Partial Differential Equation Code Built on Trilinos ??:9

With this nonlinear model interface satisfied, the full range of Trilinos solvers are
available. This includes the embedded nonlinear analysis solvers such as nonlinear
and transient solves described in Section 3.4. These solvers in turn call the linear
solvers (see Section 3.5), which are the most feature rich and mature set of general
purpose libraries. Albany was designed to demonstrate how to design a code born with
analysis capabilities significantly beyond repeated forward simulation, so the nonlin-
ear solver layer is not the top layer. A separate Analysis layer described in Section 3.6
wraps the solver layer, and performs parameter studies, optimization, and UQ, pri-
marily using algorithms from the Dakota toolkit [Adams et al. 2009].

As presented in Figure 2, there are many software tools and processes that can im-
prove the productivity of a project. Albany has mainly adopted the toolset from Trilinos
to minimize the learning curve that Trilinos developers need to begin contributing to
Albany. These include git for version control, CMake for configuration management,
build, and porting, the associated CTest for regression testing, and Doxygen for auto-
matic documentation based on the class design and comments. We have adopted the
mailing lists and webpage design from Trilinos as well. We currently have scripts run
under a cron job that perform continuous integration with Trilinos and Dakota that do
a fresh build and regression testing nightly on multiple machines.

3.2. Global Discretization Abstraction and Libraries
A critical component of any finite element code is the mesh framework, which defines
the geometry, element topologies, connectivities, and boundary information, as well as
the field information that lives on the mesh. As with many modern codes, in Albany we
are starting to support spatial adaptation, where the mesh may change by refining in
certain areas, and perhaps coarsening in others, driven by evolving features and error
indicators computed during the solution. A further complication involves the need to
rebalance the workload between processors as the mesh is modified. Albany accesses
the mesh database, adaptation and load balancing capabilities, together with func-
tions used to transfer the solution information between mesh representations, using
an abstract Global Discretization interface.

Mesh Tools

Given:
•  Mesh Database

Provide:
•  Coordinates
•  DOF Numbering
•  Boundary Info
•  Solution Map

•  Halo Map
•  Jacobian Graph

•  Halo Graph

Global
Discretization

Mesh
Processing

Mesh Database
Mesh Libraries

Mesh I/O

Adaptivity

Partitioning
Load Balancing

Inline Meshing

Solution Database

Restart

Fig. 4. The finite element mesh and related quantities are exposed to the Albany code through the abstract
Global Discretization interface. Depending on the internal details of the mesh library in use, a specialization
of the Global Discretization class will construct quantities in the layout needed by the rest of the code, such
as coordinates, solution vectors, sparse-matrix graphs, and degree-of-freedom (DOF) numbering/connectivity
information.

ACM Transactions on Mathematical Software, Vol. ??, No. ??, Article ??, Publication date: October 2013.

??:10 A.G. Salinger et al.

The global discretization abstraction, presented schematically in Figure 4, gives the
finite element assembly process access to the all of the bookkeeping (data distribution)
information required by the linear algebra objects. In all cases, mesh information is
contained in an in-memory mesh database that is accessed through a specialization
of the abstract Global Discretization interface class. These specializations, unique to
each mesh library Albany supports, provides a set of common services. These include
reading and writing mesh data files present on the file system through I/O routines,
providing element topology and vertex coordinate information, and optionally mesh
adaptation, load balancing, and solution transfer capabilities. Of note is that each
mesh library is different internally and provides services in a unique way. The spe-
cialization of the abstract global discretization class may interpret or “fill in” missing
or incompatible data representations when required.

We note that the placement of the abstract Global Discretization interface is above
the location where a general interface to mesh databases would lie in a domain design.
(The design of an abstract interface to mesh databases (e.g. iTaps [Diachin et al. 2007])
has proven tricky, with the competing and at times contradictory demands of codes
that use explicit or implicit algorithms, static and adaptive meshes, and C++ vs. C or
FORTRAN.) Our interface has methods for the quantities needed directly in the finite
element assembly, such as the Jacobian graph and coordinate information, in the data
structures desired by the assembly. The offset between the mesh database and the
Global Discretization interface is denoted as the Mesh Processing layer in Figure 4.
Functions in this layer satisfy the interface using calls and data structures specific to
the underlying mesh database. We found this to be a tractable solution for our needs
but would only scale to a modest number of mesh databases with distinct interfaces.

Albany currently supports two independent discretization interfaces; (1) the Sierra
ToolKit (STK) package [Edwards et al. 2010] in Trilinos, and (2) the Parallel Unstruc-
tured Mesh Interface (PUMI) [Seol et al. 2012] being developed by the Scientific Com-
putation Research Center (SCOREC) at Rensselaer Polytechnic Institute. Further-
more, the STK mesh database can be loaded in several ways: reading of a mesh file
in the Exodus format (typically generated witht he CUBIT meshing program), inline
meshing with the Pamgen package in Trilinos, and simple rectangular meshes directly
created in the code base.

In a typical simulation the interaction with the mesh library begins by Albany in-
stantiating an object of the desired specialized class (which activates constructors in
the appropriate places in the underlying mesh library), based on the type of input mesh
and geometry files specified by the user. At construction, the mesh library reads the
mesh information in serial or parallel depending on the simulation, and performs the
degree of processing required to service requests from Albany for discretization data.
As the simulation initializes, Albany Glue Code invokes virtual member functions in
the abstract discretization object to access coordinate data, connectivity, and to read
(when restarting) and write solution data to the specialized class (and underlying li-
brary).

For adaptive simulations, there are two additional capability hierarchies that man-
age both the mesh adaptation process and the criteria used to determine the degree
of adaptation needed, each Albany time, load, or displacement step. These interfaces
are likewise abstract and specialized to suit the requirements of the mesh adaptation
library specified for the simulation.

Other information that is processed on the mesh and accessed through the abstract
discretization interface includes the multidimensional array that holds the list of ele-
ments on this processor, each with the array of local nodes, and pointers to the solution
vector, coordinate vector, and any other field data stored at the nodes. By processing
the element connectivity information, as well as some local discretization information

ACM Transactions on Mathematical Software, Vol. ??, No. ??, Article ??, Publication date: October 2013.

Albany: A Component-Based Partial Differential Equation Code Built on Trilinos ??:11

(how many unknowns are on a mesh node), the sparse graph of the Jacobian matrix
can be processed. For dealing with overlap (a.k.a., halo or ghosted) information, several
objects have both “owned” and “overlap” versions.

3.3. Problem Abstraction and Finite Element Assembly
Given a finite element mesh as supplied by the abstract discretization components,
the purpose of the problem abstraction and finite element assembly components is to
evaluate the discrete finite element residual, Eq. (2), for the PDE problem at hand,
as well as derived quantities such as Jacobian matrices and parameter derivatives
needed for simulation and analysis. Our approach for facilitating these calculations
that is scalable in not only problem size but also in problem complexity and the num-
ber of supported analysis approaches is fully described elsewhere [Pawlowski et al.
2012a; Pawlowski et al. 2012b]. Here we briefly summarize the salient features of this
approach and its use within the Albany context.

Multiphysics simulation introduces a number of difficulties that must be addressed
by the software framework including managing a multitude of physics models, adapt-
ing the simulation to different problem regimes, and ensuring consistency of the cou-
pled PDE residual evaluation with respect to the full system degrees-of-freedom. To
manage this complexity, Albany employs the graph-based evaluation approach [Notz
et al. 2011; Pawlowski et al. 2012a; Pawlowski et al. 2012b] as provided by the Trili-
nos Phalanx package [Pawlowski 2011]. Here, the residual evaluation for a given PDE
problem is decomposed into a set of terms (at a level of granularity chosen by the
developer), each of which is encoded into a Phalanx evaluator. Each evaluator en-
codes the variables it depends upon (e.g., temperature evaluated quadrature points for
a given set of basis functions), the variables it evaluates (e.g., a material property at
those same quadrature points), and the code to actually compute the term. Phalanx
then assembles all of the evaluators for a given problem into a directed acyclic graph
representing the full PDE residual evaluation for a given set of mesh cells stored in a
data structure called the field manager. The roots of the graph are evaluator(s) that
extract degree-of-freedom values from the global solution vector and the leaves are
evaluator(s) that assemble residual values into the global residual vector. The full fi-
nite element assembly then consists of a loop over mesh cells with the body of the loop
handled by the Phalanx evaluation (typically multiple cells are processed by each eval-
uator, called a work set, to improve performance by amortizing function call overhead
over many mesh cells). This approach improves code reuse by allowing common evalu-
ators to be used by many problems, improves efficiency by ensuring each term is only
evaluated as necessary, ensures correctness by requiring all evaluator dependencies
are met, and allows a wide variety of multi physics problems to be easily constructed.
While not required, most terms within Albany employ the Intrepid package [Bochev
et al. 2012] for local cell discretization services such as finite element basis functions
and quadrature formulas. This graph-based evaluation approach is used by several
frameworks for handling multiphysics complexity including the Aria application code
in SIERRA [Stewart and Edwards 2003], the Drekar code [Smith et al. 2011], the
MOOSE framework [Gaston et al. 2009], and the Unitah framework [de St. Germain
et al. 2000].

One of the design goals of Albany was to provide native support for a wide variety
of embedded nonlinear analysis approaches such as derivative-based optimization and
polynomial chaos-based uncertainty quantification. A significant challenge with these
approaches is they require calculation of a wide variety mathematical objects such
as Jacobians, Hessian-vector products, parameter derivatives, and polynomial chaos
expansions, all of which require augmentation of the assembly process. This is a sig-
nificant burden on the simulation code developers, which means these approaches are

ACM Transactions on Mathematical Software, Vol. ??, No. ??, Article ??, Publication date: October 2013.

??:12 A.G. Salinger et al.

often not incorporated. This not only limits the impact of these methods but also limits
potential research on analysis algorithms for complex multiphysics applications. To ad-
dress these issues, Albany leverages the template-based generic programming (TBGP)
approach [Pawlowski et al. 2012a; Pawlowski et al. 2012b] to provide a framework for
easily incorporating existing and new embedded analysis approaches. This technique
employs C++ templates and operator overloading to automatically transform code for
evaluating the PDE residual into code for computing the quantities described above,
and is an extension of operator overloading-based automatic differentiation (AD) ideas
to the general case of computing other non-differential objects.

In the Albany setting, each evaluator is written as C++ template code, with a gen-
eral EvalT template parameter. This parameter encodes the evaluation type, such as
a residual, Jacobian, parameter derivative or polynomial chaos expansion. Each eval-
uation type defines a scalar type, which is the data type used within the evaluation
itself (e.g., double for the residual evaluation or an AD type for the Jacobian and pa-
rameter derivative). Each evaluator is then instantiated on all of the supported eval-
uation types relying on the Sacado [Phipps and Pawlowski 2012; Phipps 2013a] and
Stokhos [Phipps 2013b] libraries to provide overloaded operator implementations for
all of the arithmetic operations required for each scalar type. This allows the vast ma-
jority of evaluators to be implemented in a manner agnostic to the scalar type and the
corresponding mathematical object being computed. Furthermore, any evaluator can
provide one or more template specializations for any evaluation type where custom
evaluation is needed.

Albany leverages template specialization to implement the gather and scatter
phases of the finite element assembly for each evaluation type (see Fig. 5). For ex-
ample the residual specialization of the gather operation extracts solution values out
of the global solution vector, and the scatter operation adds residual values into the
global residual vector. Likewise, the Jacobian specialization of the gather phase both
extracts the solution values and seeds the derivative components of the AD objects,
while the scatter operation both extracts the dense element Jacobian matrix from the
AD objects and sums their contributions into the global sparse Jacobian matrix. These
gather/scatter evaluators are written once for each evaluation type, are the only place
in the code where a significant amount of new code must be written each time a derived
quantity is desired by the analysis algorithms. These are written independently of the
equations being solved and are used for all problems. Thus, this approach effectively
orthogonalizes the tasks of developing new multiphysics simulations from the tasks
of incorporating new nonlinear analysis methodologies. A full description of the Tem-
plate Based Generic Programming approach can be found in this pair of publications
[Pawlowski et al. 2012a; Pawlowski et al. 2012b].

3.3.1. Boundary Conditions. Correctly and efficiently applying boundary conditions in
multiphysics simulations over complex geometries/domains is also a significant source
of software complexity. Currently, Albany supports simple Dirichlet conditions as well
as a growing list of Neumann-type boundary condition types such as scalar flux con-
ditions normal to boundaries, Robin conditions, and various traction and pressure
boundary conditions. Dirichlet conditions are applied in the strong form directly to
global linear algebra objects produced for each evaluation type after the volumetric
finite element assembly by replacing the finite element residual equation for the cor-
responding nodes with a Dirichlet residual equation. For example, the Dirichlet con-
dition u(x) = a for x 2 @⌦D is implemented by replacing the finite element residual
values corresponding to degrees-of-freedom associated with @⌦D with u � a. Thus en-
forcement of the boundary condition is left to the nonlinear solver. We have found
this approach is effective for nonlinear analysis problems such as sensitivity analysis,

ACM Transactions on Mathematical Software, Vol. ??, No. ??, Article ??, Publication date: October 2013.

Albany: A Component-Based Partial Differential Equation Code Built on Trilinos ??:13

Shape Opt
PCE

Adjoint
Hessian

Field&Manager&

Gather (Seed)

FE Interpolation
Compute Derivs

Get Coordinates

Scatter (Extract)

Source Terms

Tangent
Jacobian

Residual

Generic&Template&Type&used&
for&Compute&Phase&

<EvalT>

PDE Terms

Template&Specializa<ons&for&
Seed&and&Extract&phases:&

Legend:&

Properties

Global&Data&Structures&

Local&Data&Structures&

Fig. 5. The PDE assembly in Albany relies on the template-based generic programming (TBGP) approach
and a graph-based assembly of individual evaluators. With the TBGP approach, the developer must just
program the residual equations and identify design parameters. The TBGP infrastructure and automatic
differentiation libraries in Trilinos will automatically compute the Jacobian matrix and direct sensitivities.
The graph-based approach simplifies implementation of new models and allows for broad reuse between
applications.

continuation/bifurcation analysis, optimization, and uncertainty quantification when
the boundary condition must be a parameter in the problem as it allows for straight-
forward computation of derivatives with respect to the boundary condition, but with
little additional cost in solver complexity.

The Neumann BC implementation depends on a separate finite element assembly
that performs the FEM surface integrals over the designated boundaries @⌦N . The
form of these conditions can vary significantly, some examples supported by Albany
include:

(1) Flux conditions for scalar equations, such as the heat equation. For this case, one
typically wishes to specify a heat flux through a surface @⌦N ,

@T

@n
(x) = q(x), (6)

for x 2 @⌦N , where n is the unit normal to the boundary @⌦N and q(x) is the
specified flux.

(2) Prescribed tractions on the boundary of mechanics problems,

t = �n = t̄, (7)

ACM Transactions on Mathematical Software, Vol. ??, No. ??, Article ??, Publication date: October 2013.

??:14 A.G. Salinger et al.

on @⌦N ; � is the Cauchy stress tensor, t is the traction vector on the boundary, and
t̄ are the specified traction components. Pressure boundary conditions are a special
case of traction t̄ = �pn, where p is the fluid pressure.

(3) A Robin condition is a mixed condition taking the form of a weighted combination
of both Dirichlet and Neumann conditions,

au(x) + b
@u(x)

@n
= h(x), (8)

on @⌦R, where h(x) is the boundary function or constraint being applied, and a
and b are weights. These types of conditions are often called impedance bound-
ary conditions in electromagnetic problems and insulating boundary conditions in
convection-diffusion problems where one specifies that the convective and diffusive
fluxes sum to zero h(x) = 0, 8x 2 @⌦R.

In the case of Neumann conditions, the field manager accesses surface and boundary
element information from the abstract discretization interface, and Albany performs
a finite element integration and assembly process over each boundary @⌦N defined.
Similar to the element integration process employed elsewhere in Albany, the Intrepid
package is used to integrate the weak form of one of the above expressions over the
portion of each element (the element side) that lies on the boundary. The contribu-
tion of the Neumann integral term for all evaluation type (residual, Jacobian, etc.) is
computed using the same TBGP infrastructure as the volumetric terms.

3.3.2. Responses (Quantities of Interest). An implication of supporting embedded nonlin-
ear analysis such as embedded optimization is post-processing of simulation solution
values must now be handled by the simulation code, and furthermore, not only must
the quantities of interest themselves be computed but also derived quantities such as
response gradients. Thus Albany supports a growing list of response functions that em-
ploy the TBGP framework to simplify the evaluation of these quantities. All response
functions implement a simple interface that abstracts evaluation of the response func-
tion and corresponding derivatives, and simple response functions such as the solution
at a point implement this interface directly. Many response functions however can be
written as an integral of a functional of the solution over some or all of the compu-
tational domain. These response functions employ the field manager described above
and implement the functional as evaluators applied to the corresponding sequence of
mesh cells. Generally this works just as the finite element assembly process described
above, however with the additional wrinkle that response values/derivatives must be
reduced across processors when run in parallel. To handle this, the response values for
each evaluation type are reduced across processors before being extracted into their
corresponding global linear algebra data structures using the template interface to
MPI provided by the Teuchos [Thornquist et al. 2013] package in Trilinos.

3.4. Nonlinear Model Abstraction and Libraries
The ‘Nonlinear Model’ abstraction in Figure 3 is a Trilinos class called the
EpetraExt::ModelEvaluator, which we will hereafter refer to as the ModelEvaluator.
More complete documentation of this class and associated functionality is given in a
technical report [Belcourt et al. 2011]. Albany satisfies this interface, making available
all the embedded nonlinear analysis solution methods in Trilinos.

The purpose of the ModelEvaluator is to facilitate the development and usability of
sophisticated, general purpose solution and analysis algorithms such as those listed
as ‘Solvers’ in Figure 6. For instance, a general purpose nonlinear solver needs an
interface to ask the application code to compute a residual vector f as a function of a

ACM Transactions on Mathematical Software, Vol. ??, No. ??, Article ??, Publication date: October 2013.

Albany: A Component-Based Partial Differential Equation Code Built on Trilinos ??:15

solution vector u in order to solve the nonlinear algebraic system,

f(u) = 0. (9)

To fully perform a Newton solution process, the solver needs to query the application
for other quantities, such as a Jacobian matrix or an approximation to the Jacobian
for use in generating a preconditioner. By using a standard interface, sophisticated
solution algorithms can be written that are agnostic to the physics, model, and data
structures needed to support the above matrix and vector abstractions. This satisfies
the component-based application code design philosophy of making different parts of
the development effort (in this example, PDE description and implementation of non-
linear solution algorithms) essentially orthogonal to each other.

Solvers

 UQ Solver

Nonlinear Solver
Time Integration

Optimization

Continuation
Sensitivity Analysis
Stability Analysis

Analysis Tools
 (embedded)

Nonlinear Model

Given:
•  Solution
•  Time Derivative
•  Parameters
•  Time
•  Random Variables

Compute:
•  Residual
•  Jacobian Matrix
•  Preconditioner
•  Tangent
•  Responses
•  Response Gradient
•  Stochastic Residual

Fig. 6. Access to the embedded solvers in Trilinos requires that Albany satisfy the Nonlinear Model abstrac-
tion. In its simplest usage, this abstraction is used to compute the nonlinear residual f(u). The interface is
general to accommodate the computation of Jacobian operators, user-defined preconditioners, and up to and
including stochastic Galerkin expansions.

Beyond this nonlinear solver example, the ModelEvaluator provides a flexible ex-
tensible interface to the application code for the analysis algorithms. As time depen-
dent, continuation, sensitivity analysis, stability analysis, optimization, and uncer-
tainty quantification capabilities are desired, the interface requirements grow to in-
volve dependence on not just the solution vector u but also the time derivative u̇, a set
of parameters p, and the time t. Outputs of the interface includes sensitivities df

dp as
well as responses (a.k.a., quantities of interest) and response gradients with respect to
u and p.

This interface definition needs to keep pace with the leading edge of algorithmic
research and development. The design has been extended to support the ability to take
polynomial expansions of stochastic random variables as inputs to return polynomial
representations of the output quantities including the residual vector, Jacobian matrix,
and responses.

In Albany we have implemented a comprehensive set of these quantities to make
use of the capabilities of the ‘Solvers’ in Figure 6. This single interface is all that is
needed by the Trilinos Piro package. At run time, Piro will then select the desired

ACM Transactions on Mathematical Software, Vol. ??, No. ??, Article ??, Publication date: October 2013.

??:16 A.G. Salinger et al.

solver method in the NOX, LOCA, Rythmos, or Stokhos package, and subsequent per-
forms any requested sensitivity analysis.

3.5. Linear Solver Abstraction and Libraries
The next algorithmic area isolated by an abstract interface is the linear solver. The
use of libraries and common interfaces for linear solves is more common and mature
than the other areas of a finite element code. In Albany, there is no need to interface
directly to the linear solvers, as such solves occur as inner iterations of the nonlin-
ear, transient, continuation, optimization, and UQ solvers that were presented in the
previous section.

For linear solves, there are a wide assortment of direct and iterative algorithms, and
the iterative methods can make use of a variety of algebraic, multi-level, and block
preconditioners. Furthermore, these algorithms can be called in a diversity of ways
with different algorithms being used on various blocks of the matrix, on various levels
of the multi-level method, and isolated to sub-domains of various sizes.

Much of this flexibility is configurable at run time through the use of the Trilinos
Stratimikos package, the linear solver strategies interface. The Stratimikos package
“wraps” the numerous linear algebra objects, solvers, and preconditioners found in
Trilinos using a common abstraction (Thyra), and the approach supports the use of a
factory pattern to create the desired linear solver object. The object is fully configurable
at run time using parameters given in the Albany input file. In Trilinos, this involves
the Ifpack, ML, Amesos, and Teko preconditioning packages and the AztecOO, Belos,
and Amesos solver packages.

In Albany, the majority of the regression test problems employ a GMRES iterative
solver that in turn uses either ILU or multi-level preconditioning. There are examples
of how to use block methods and matrix-free solution approaches may be selected, also
at run time from the input file.

Linear Solvers

Linear Algebra

Linear Solver

Given:
•  Matrix Operator (“A”)
•  RHS Vector (“b”)
•  Matrix Entries (optional)
•  Parameter/Options List

•  tolerance
Compute:

•  Solution (x; with Ax=b)
•  Eigenvalues/vectors

Data Structures

Direct Solvers

Preconditioners

Iterative Solvers

Eigen Solver

Multi-Level Methods

Fig. 7. The linear solver abstraction provides full access to all the linear solvers and preconditioners in
Trilinos. A factory class supports run-time solution configuration through input file options.

3.6. Analysis Tools Abstraction and Libraries
Present at the top level of the software stack are the analysis tools. These tools may be
used to perform a single forward solve, sensitivity analysis, parameter studies, opti-
mization, and uncertainty quantification (UQ) runs. The analysis tools have a common

ACM Transactions on Mathematical Software, Vol. ??, No. ??, Article ??, Publication date: October 2013.

Albany: A Component-Based Partial Differential Equation Code Built on Trilinos ??:17

abstract behavior in that they involve repeated calls to the solvers in Section 3.4 to de-
termine how the solution changes as a function of the parameter.

The common abstraction layer that the analysis tools conform to (and that is imple-
mented by the ‘Solvers’), takes parameter values as input and returns responses and
(optionally) response gradients with respect to the parameters as output. The analysis
abstraction interface does not contain references to solution vectors or PDE residuals,
as analysis at this level operates along the manifold of the equations being solved.

The analysis abstraction layer is contained within the Trilinos Piro (Parameters In
Responses Out) package. However, the majority of the specific analysis functionality
actually resides within the Dakota framework. This is a mature, widely-used, and ac-
tively developed software framework that provides a common interface to a number of
analysis, optimization, and UQ algorithms. Dakota optimization capabilities include
gradient-based local algorithms, pattern searches, and genetic algorithms. Available
UQ algorithms range from Latin hypercube stochastic sampling to stochastic collo-
cation methods for polynomial chaos approaches. Dakota can be run as a separate
executable that repeatedly launches a given application code, using scripts to modify
parameters in input files. In Albany, Dakota is used in library mode through an ab-
stract interface. A small Trilinos package called TriKota provides adapters between
the Dakota and Trilinos analysis abstraction classes.

In Albany, a software stack is available to provide analytic gradients to the analysis
tools. The parameters in the PDEs are exposed so that automatic differentiation can be
employed to compute sensitivities of the residual with respect to the parameters. Like-
wise, the response functions use automatic differentiation to compute gradients with
respect to the solution vector and parameters. The ‘Solvers’ then use this information,
along with the system Jacobian to compute the gradient of responses with respect to
responses along the manifold of the PDEs being solved, analytically. Currently, Hes-
sian information is not computed, although much of the infrastructure exists to do
so.

Analysis Tools

Application

Given:
•  Parameters

Compute:
•  Responses

 (Quantities of Interest)
•  Response Gradient

UQ (sampling)
Parameter Studies

Optimization

Calibration
Reliability

Analysis Tools
 (black-box)

Fig. 8. At the top of the Albany computational hierarchy is the Analysis layer, where unconstrained op-
timization and UQ may be performed around the embedded nonlinear analysis solver layer. The interface
accepts design parameters and returns responses (a.k.a., quantities of interest or objective functions) and
response gradients. The embedded solvers are wrapped to satisfy this interface and may be driven by the
‘Analysis Tools.’

4. ALBANY APPLICATIONS
Albany’s general discretization interface together with the use of a templated physics
residual abstraction makes it quite suitable to host a wide variety of applications. Fur-

ACM Transactions on Mathematical Software, Vol. ??, No. ??, Article ??, Publication date: October 2013.

??:18 A.G. Salinger et al.

thermore, it is straightforward to rapidly implement new applications, which is best
demonstrated by the number of different examples contained within the regression
test suite and the number of analysis applications using Albany on a regular basis.
The regression test suite contains simple to moderately complex problems represent-
ing a broad spectrum of phenomena, including:
— Computational mechanics: elasticity, J2 plasticity, thermomechanics, unsaturated

poroelasticity, thermo-poro-mechanics, diffusion-deformation, reactor fuel cladding
hydride reorientation, gradient damage, rate independent hardening minus recov-
ery (RIHMR)

— Fluid mechanics: compressible Navier-Stokes, ice sheet flows, prototype nuclear re-
actor model, vortex shedding, Rayleigh-Bernard

— Diffusion, miscellaneous: Heat equation, Poisson, Schrodinger, Cahn Hilliard / Elas-
ticity, Poisson-Nernst-Planck
In addition, the type of solution and analysis performed on these applications covers

a broad spectrum:
— steady, transient, continuation / load stepping, embedded Stochastic-Galerkin, sen-

sitivity analysis, stability analysis, uncertainty propagation
There are several analysis projects and simulation activities that have adopted Al-

bany. Albany is the code base for an new Ice Sheet project based on a nonlinear Stokes
equation. It is being used to extend and mature mesh quality enhancement techniques
based on the Laplace Beltrami equations [Hansen et al. 2005] for ultimate use in ar-
bitrary Lagrangian Eulerian (ALE) analysis codes and to model the behavior of hy-
drides of Zircaloy in used nuclear reactor fuel during transport and handling opera-
tions [Chen et al. 2013].

Each physics set can be turned on or off during the configuration step of the build
process. All applications run from the same executable, where the physics set is se-
lected at the top of the input file. There is however a separate executable for invoking
Stochastic-Galerkin solves then for deterministic solves.

In the remainder of this section, we highlight the two most mature applications
hosted in Albany. The purpose of these anecdotes is to provide evidence towards the
themes of this paper. Specifically, that new applications can be rapidly written using
established libraries, software tools, and interfaces, and be born with embedded anal-
ysis algorithms, robust solvers, and scalable linear solves.

4.1. Laboratory for Computational Mechanics
The Laboratory for Computational Mechanics (LCM) project adopted the Albany code
base as a research platform to study issues in fracture and failure of solid materials
and multi-physics coupling. These mechanics issues were effectively and efficiently
introduced due in large part to object-oriented design and abstract interfaces. At
present, these capabilities include quasi-static solution of the balance of linear mo-
mentum with various constitutive models in the small strain regime, as well as a
total-Lagrange, finite deformation formulation. Since many problems of interest in-
volve multiple physical phenomena, various coupled physics systems have been im-
plemented in a monolithic fashion. Taking advantage of the template-based generic
programming paradigm, and relying on graph based assembly, as well as automatic
differentiation, analytic sensitivities are assembled for optimally convergent Newton
iterations, regardless of how many physical governing equations are involved in the
system residual.

Abstractions in the code base permit virtual isolation for the application specific
physics developer. Implementation of a physical quantity, such as the strain tensor, re-

ACM Transactions on Mathematical Software, Vol. ??, No. ??, Article ??, Publication date: October 2013.

Albany: A Component-Based Partial Differential Equation Code Built on Trilinos ??:19

Fig. 9. Contours of stress triaxiality for a notched tube in a state of combined tension and torsional loading
computed with a Gurson type model.

quires virtually no knowledge of the underlying infrastructure or data structures. As a
result, domain specific expertise in writing constitutive models can be leveraged in an
efficient way. To that end a number of constitutive models are available in Albany that
span simple elastic behavior at small strain, through three-invariant models for geo-
materials, and including finite deformation, temperature dependent metal plasticity
models.

Specific implementation of constitutive models is greatly aided by the use of au-
tomatic differentiation, available from the Trilinos Sacado package. Constitutive re-
sponse oftens requires the solution of a set of nonlinear equations that govern the
evolution of the internal state variables local to the integration point. The system of
equations typically becomes more difficult to solve as the physical fidelity of the model
increases. Efficient solution of the local set of equations is often achieved employing an
implicit, backward Euler integration scheme, solved using a Newton-Raphson iterative
scheme, and requiring formulation and construction of the local system Jacobian for
optimal convergence. Implementation of the local system of equations using automatic
differentiation types has two significant advantages. The first is that the computed
local Jacobian provides analytic sensitivities for the Newton iteration, resulting in op-
timal local convergence. The second advantage is that model changes do not require
the re-derivation and re-implemenation of the local Jacobian, saving substantial de-
velopment time that can instead be spent on model verification and evaluation. An
example calculation using a constitutive model that employs this strategy can be seen
in Figure 9, where a Gurson type constitutive model with a set of 4 local independent
variables is solved at each integration point.

The existence of the load stepping capability, available through the continuation al-
gorithms contained in the Trilinos Library of Continuation Algorithms (LOCA) pack-
age, allows for the solution of boundary value problems with nonlinearities in both the
material and geometric sense. In addition, the stepping parameter can be adaptively
selected based on characteristics of the current solution. For example, this adaptive

ACM Transactions on Mathematical Software, Vol. ??, No. ??, Article ??, Publication date: October 2013.

??:20 A.G. Salinger et al.

Fig. 10. Cubic domain fully clamped on x faces to eliminate contraction and given a prescribed displacement
on top and insulated boundaries. Resultant temperature field stems solely from mechanical source terms.

step refinement is essential for the robust solution of problems experiencing a plastic
localization, where convergence is difficult to achieve and smaller continuation steps
are required. Mechanics development can leverage this adaptive stepping capability
without the need for domain expertise in its formulation and implementation, provid-
ing great value for the mechanics researcher.

From the persepective of the LCM application team, a strength of Albany is the ease
in which coupled systems of PDEs can be implemented. This team has formulated,
implemented, and demonstrated several coupled physics problems including thermo-
mechanics, hydrogen diffusion-mechanics, and poro-mechanics. Each of these physics
sets was implemented in a fully coupled sense and solved in a monolithic fashion with
analytic Jacobian sensitivities provided by the automatic differentiation of the system
residual. In particular, the graph based assembly can explicitly show dependencies and
can be a tremendous aid during model development and debugging. Example results
from the thermo-mechanics problem can be seen in Figure 10. A demonstration of the
poro-mechanics capabilities, outlined in [Sun et al. 2013], and applied to a geomechan-
ical footing problem can be seen in Figure 11.

Another strength of the Albany system design becomes apparent when considering
the scalability of solving the resulting linear systems. The ability to explore the use
of massively parallel solvers and scalable multi-grid preconditioners, such as that pro-
vided by the Trilinos ML package, makes Albany a desirable open source research en-
vironment. The general interface to the ML preconditioner involves obtaining mesh
coodinate information from the abstract discretization interface which supplies in-
formation about the rigid body modes (the null space characteristics) of the system.
Currently, Albany supports computing the number of rigid body modes both with and
without the presence of other coupled solution fields, and the scalability of the precon-
ditioner has been established up to many millions of degrees of freedom.

In summary, the design of Albany has allowed for the rapid implementation of the
fundamental computational mechanics infrastructure, paving the way for research ef-

ACM Transactions on Mathematical Software, Vol. ??, No. ??, Article ??, Publication date: October 2013.

Albany: A Component-Based Partial Differential Equation Code Built on Trilinos ??:21

Fig. 11. Contours of pore pressure and equivalent plastic strain for a cylindrical footing.

forts into new methods and models. The open source nature of the code base serves
as a foundation for academic collaboration. Successful research ideas are targeted for
transition into Sandia’s internal production analysis codes.

4.2. Quantum Computer Aided Design
The quantum computer aided design (QCAD) project uses Albany to develop a simula-
tion and design capability for the electronic structure of laterally-gated quantum dots,
to determine their utility as qubits in quantum computing devices. Such a task is a
subset of semiconductor device simulation. In this case, we are targeting a regime not
well covered by previous tools, specifically low-temperature operation close to absolute
zero Kelvin, and few- or one-electron devices. Albany was chosen because it provided
access to the many finite element, solver, and analysis libraries, and a programming
model that enabled us to efficiently implement several physics sets that our applica-
tion presents.

Quantum dots are regions in a semiconductor where the local electrostatics allows
“puddles” of electrons to form, typically near a semiconductor-insulator interface. We
often use a silicon metal-oxide-semiconductor (MOS) system, with an additional level
of gates in the insulator to deplete the sheet into puddles that form quantum dots, as
shown in Figure 12. The depletion gates themselves in experimental quantum dots can
have many different and complex three-dimensional (3D) geometries. Figure 13 shows
three examples of typical depletion gate patterns in a top view. The quantum effects
we wish to use to form qubits are most pronounced with few numbers of electrons, and
a major challenge is to design robust enough structures that allow to form few-electron
dots. This often involves modifying the shapes of the gates and the spacings between
different layers.

The gate voltages dictate Dirichlet boundary conditions along the surfaces of the re-
gions that form the gates. We have developed and validated three major solvers of in-
creasing computational complexity. The Nonlinear Poisson solver determines the elec-
trostatic potential profile that results from the gate voltages and other device param-
eters in a given device by treating electrons semi-classically, that is, as classical par-
ticles that obey quantum (Fermi-Dirac) statistics. The simplest formulation facilitates
rapid simulations of many designs, which enables fast semi-classical understanding of
device behavior and hence rapid feedback on device designs. The Schrodinger-Poisson
(S-P) solver is a multi-physics model which couples the nonlinear Poisson solver and a
Schrodinger solver in a self-consistent manner to capture quantum effects in our de-

ACM Transactions on Mathematical Software, Vol. ??, No. ??, Article ??, Publication date: October 2013.

??:22 A.G. Salinger et al.

Semiconductor

Insulator

Accumulation Gate
++++++++++++++++++++++++++++++

e-

Semiconductor

Insulator

Accumulation Gate
++++++++++++++++++++++++++++++

- - - - - -

e- e- e- e- e- e- e- e- e- e- e- e-

Fig. 12. Cross-section view of a simplified quantum dot device to illustrate the concept. We can form sheets
(“e-”) of electrons at a MOS interface using an accumulation gate with a positive (“+”) voltage (left figure). By
introducing additional depletion gates with negative (“-”) voltage, we can deplete most of this sheet, leaving
puddles that form quantum dots (right figure).

Fig. 13. Examples of typical depletion gate patterns in experimental quantum dot devices in a top view.
Each color in the left, middle, and right figures indicates a metal or polysilicon gate that can be set to a
different voltage to form a quantum dot.

vices. Finally, the Configuration Interaction solver takes single-particle solutions from
the S-P solver and determines multi-electron solutions that include quantum interac-
tions between electrons.

The Albany framework has made it straightforward and fast to implement these
QCAD solvers. The general Poisson equation is written as

r(✏sr�) = ⇢(�), (10)

where � is the electrostatic potential to be solved for and ⇢(�) can be a nonlinear
function. The corresponding finite element weak form (leaving out the surface term
for this presentation)

Z
✏sr� ·rwd⌦+

Z
⇢(�)wd⌦ = 0, (11)

with w being the nodal basis function and the LHS being defined as residual. To solve
the equation in the Albany framework, we created a concrete QCAD::PoissonProblem

class derived from Albany::AbstractProblem, in which we constructed the residual by
evaluating and putting together each term. The static permittivity ✏s and the source
⇢(�) are evaluated in separate QCAD-specific evaluators, while the integrations are
done by general-purpose Albany evaluators. The automatic differentiation (AD) ca-
pability, parallelization, and nonlinear and linear solvers were available without any
development effort for the QCAD projects physics sets. Through parallelism, robust-
ness, and automation enabled by analysis algorithms, the throughput of quantum dot

ACM Transactions on Mathematical Software, Vol. ??, No. ??, Article ??, Publication date: October 2013.

Albany: A Component-Based Partial Differential Equation Code Built on Trilinos ??:23

Start

Create Poisson and
Schrodinger sub-solvers

Solve the initial Poisson
sub-problem

Solve the Schrodinger sub-
problem

Solve the coupled Poisson
sub-problem

Check
convergence

Save potential to
Albany::StateArrays

Save eigen-vectors & -values
to Albany::StateArrays

Save potential to
Albany::StateArrays

No
Yes

QCAD ModelEvaluator
(QCAD::Solver)

Fig. 14. Schematic diagram showing the Schrodinger-Poisson implementation in QCAD

simulations increased several orders of magnitude over the previous simulation pro-
cess that was being employed.

The Schrodinger-Poisson (S-P) solver self-consistently couples the nonlinear Pois-
son solver, above, with a Schrodinger eigensolver. The latter solves a single-particle
effective mass Schrodinger equation

�~2
2
r(

1

m⇤r) + V (�) = E . (12)

The weak form of this equation was implemented similar to the implementation of the
nonlinear Poisson solver. The Trilinos eigensolver Anasazi is used to approximate the
leading modes of the discretized eigenproblem after undergoing a spectral transfor-
mation, using infrastructure originally developed for stability analysis [Lehoucq and
Salinger 2001]. The self-consistent loop is done in an aggregate ModelEvaluator, which
splits the S-P problem into Schrodinger and Poisson sub-problems and calls the cor-
responding solve to solve each, as illustrated in Figure 14. The iteration is continued
until a pre-defined convergence criterion is satisfied.

A large part of the code development for the QCAD project is to compute application-
specific response functions. We have coded several responses for our quantum devices,
including average value and integral of a field in a given region. One particular re-
sponse that has been crucial for our devices is finding the saddle path between two
minima. The saddle path searching algorithm is fairly complicated and it was rela-
tively easy to fit into the Albany response framework. The AD capability is critical for
computation of gradients of responses.

ACM Transactions on Mathematical Software, Vol. ??, No. ??, Article ??, Publication date: October 2013.

??:24 A.G. Salinger et al.

Fig. 15. Optimization of the Ottawa Flat 270 structure. The left figure shows a top view of the depletion gate
configuration for the structure, and the right figure shows the resulting electron density after optimization
was achieved, with a variety of constraints detailed in the text.

Another key element to the process of developing the QCAD code was the additional
packages integrated in the Albany workflow. In particular, the Cubit mesh generator
[Hanks et al. 2013] and the Dakota optimization & UQ package [Adams et al. 2009].
Albany supports a variety of finite element topologies such as quad and tri in 2D,
hex and tet in 3D. The code is written for arbitrary nodal discretization order, though
only linear and quadratic basis functions have been accessed. The code can import the
meshed from the ExodusII [Sjaardema et al. 2013] format, which is generated by Cu-
bit. This capability allows us to use Cubit to create highly non-uniform 3D tet meshes,
since our structures often have complex 3D shapes as shown in Figure 13. The Dakota
package available to Albany via the TriKota interface provides various optimization
options that have been extremely useful in optimizing complicated targets for our de-
vices.

An example of the type of optimization we performed is given in Figure 15. We
wished to optimize a quantum dot to contain exactly two electrons, with tunable tun-
nel barriers in and out of the dot region, between the left and right electrons of the dot,
and with the channels on the sides also having tunable tunnel barriers. The voltages
on all gates (shown from a top view on the lefts side of Figure 15) are allowed to vary as
design parameters, with the left/right symmetry in the gate voltages imposed as a con-
straint. The right side of Figure 15 shows the resulting electron density after Dakota
found the optimal voltages that satisfied all the targets. This was performed by repeat-
edly calling the nonlinear Poisson solver for the response and analytically-computed
gradients. The red region is the “sheet” of electrons, and the blue regions have few elec-
trons and somewhat follow the shapes of the depletion gates. The quantum dot itself
is the narrow curved region underneath the gate labeled TP in the left.

In summary, the numerous capabilities that Albany provides enable us to rapidly
develop application-focused QCAD solvers. The resulting design tool has many more
functionalities than we had proposed at the beginning of the project. As a result, QCAD
simulations have become an integral part of the experimental effort in silicon qubit
design.

5. CONCLUSIONS
In this paper, we have articulated a strategy for the construction of computational sci-
ence applications that promotes the use of reusable software libraries, abstract inter-
faces, and modern software engineering tools. We believe the success of the component-
based approach should be expected, for many of the reasons articulated, and by extrap-
olating on the broadly successful use of linear algebra libraries. It remains common,

ACM Transactions on Mathematical Software, Vol. ??, No. ??, Article ??, Publication date: October 2013.

Albany: A Component-Based Partial Differential Equation Code Built on Trilinos ??:25

however, for application codes to make limited use of external libraries. Some of the
reasons include the learning curve of using (and debugging) someone else’s code, dif-
ficulties in maintaining compatible versions and in porting, and the challenges with
interfacing a collection of different libraries.

Many of these issues have been overcome in the Trilinos suite. The libraries built
in Trilinos share a common build system and release schedule. Where possible, inde-
pendent capabilities that should work together, like a nonlinear solver inside of an
implicit time integrator, provide a general interface. Also, many capabilities that are
typically used in a similar way, such as linear solvers and embedded nonlinear anal-
ysis tools, can be called with the same interface and selected at run time through a
factory pattern.

We have built the Albany finite element code attempting to follow, and test the ef-
ficacy of, the component-based strategy, and making use of the broad set of computa-
tional capabilities in Trilinos. In Section 3 we provided an overview of the software
design and abstractions important in the development of Albany, an extensible generic
unstructured-grid, implicit, finite element application code. The design is modular-
ized with abstract interfaces, where we have shown that we can independently swap
out physics sets, mesh databases, linear solvers, nonlinear solvers, and analysis tools.
Dozens of independently-developed Trilinos libraries contribute to the code capabili-
ties. The bulk of the code base involves the application-specific description of the PDE
equations and response functions.

The evidence presented on the success of this approach and our implementation
comes from two applications that have been built in the Albany code base, and were
presented in Section 4. The feedback from these development efforts is that it is
straightforward to rapidly develop sophisticated PDE codes with excellent parallelism,
advanced discretizations, high performance linear solvers and preconditioners, a wide
range of nonlinear and transient solvers, and sophisticated analysis algorithms, us-
ing the proposed methodology. The LCM code has been able to very naturally explore
fully-coupled solution algorithms for mechanics coupled with additional scalar equa-
tions. By writing tensor operations in an independent library that is templated to allow
for automatic differentiation data types, one may quickly investigate new models. In
less than 2 years of effort, the QCAD project was able to improve their throughput by
several orders of magnitude, leading to a new workflow where tentative design is thor-
oughly investigated by a running a suite of optimization runs on a high-fidelity model,
instead of manually launching a handful of forward simulations. Using this capabil-
ity, the project has been successful in injecting computational analysis into the design
cycle used by experimentalists.

ACKNOWLEDGMENTS

The Albany code builds upon numerous computational science capabilities, and we would like to acknowl-
edge the contributions of all the authors of these libraries and tools. There are several who directly impacted
the component-based code design strategy and the Albany code base, including Mike Heroux, Jim Willen-
bring, Brent Perschbacher, Pavel Bochev, Denis Ridzal, Carter Edwards, Greg Sjaardema, Eric Cyr, Julien
Cortial, Brian Adams, and Mike Eldred. In addition, this effort has had significant management support,
including that of David Womble, Scott Collis, Rob Hoekstra, Ken Alvin, John Aidun, and Eliot Fang.

This work was funded by the US Department of Energy through the NNSA Advanced Scientific Comput-
ing (ASC) and Office of Science Advanced Scientific Computing Research (ASCR) programs, and the Sandia
Laboratory Directed Research and Development (LDRD) program.

REFERENCES
B.M. Adams, W.J. Bohnhoff, K.R. Dalbey, J.P. Eddy, M.S. Eldred, D.M. Gay, K. Haskell, P.D. Hough, and

L.P. Swiler. 2009. DAKOTA, A Multilevel Parallel Object-Oriented Framework for Design Optimization,

ACM Transactions on Mathematical Software, Vol. ??, No. ??, Article ??, Publication date: October 2013.

??:26 A.G. Salinger et al.

Parameter Estimation, Uncertainty Quantification, and Sensitivity Analysis: Version 5.0 User’s Manual.
Technical Report SAND2010-2183. Sandia National Laboratories. Updated December 2010 (Version
5.1) Updated November 2011 (Version 5.2) Updated February 2013 (Version 5.3).

S. Balay, J. Brown, K. Buschelman, V. Eijkhout, W. D. Gropp, D. Kaushik, M. G. Knepley, L. Curfman
McInnes, B. F. Smith, and H. Zhang. 2013. PETSc Users Manual. Technical Report ANL-95/11 - Revi-
sion 3.4. Argonne National Laboratory.

W. Bangerth, R. Hartmann, and G. Kanschat. 2007. deal.II – A general-purpose object-
oriented finite element library. ACM Trans. Math. Softw. 33, 4, Article 24 (Aug. 2007).
DOI:http://dx.doi.org/10.1145/1268776.1268779

R. A. Bartlett, M. A. Heroux, and J. M. Willenbring. 2012. TriBITS Lifecycle Model. SAND Report
SAND2012-0561. Sandia National Laboratories.

N. Belcourt, R. P. Pawlowski, R. A. Bartlett, R. W. Hooper, and R. C. Schmidt. 2011. A Theory Manual for
Multi-physics Code Coupling in LIME. Technical Report SAND2011-2195. Sandia National Laborato-
ries.

P. Bochev, H.C. Edwards, R. Kirby, K. Peterson, and D. Ridzal. 2012. Solving PDEs with Intrepid. Scientific
Programming 20, 2 (2012), 151–180.

Q. Chen, J. T. Ostien, and G. Hansen. 2013. Development of a Used Fuel Cladding Damage Model Incorpo-
rating Circumferential and Radial Hydride Responses. J. Nucl. Mater. (2013). Submitted.

J. D. de St. Germain, J. McCorquodale, S.G. Parker, and C.R. Johnson. 2000. Uintah: A Massively Paral-
lel Problem Solving Environment. In Ninth IEEE International Symposium on High Performance and
Distributed Computing. IEEE, 33–41. http://software.sci.utah.edu/uintah.html

L Diachin, A Bauer, B Fix, J Kraftcheck, K Jansen, X Luo, M Miller, C Ollivier-Gooch, M S Shephard, T
Tautges, and H Trease. 2007. Interoperable mesh and geometry tools for advanced petascale simula-
tions. Journal of Physics: Conference Series 78, 1 (2007), 012015. http://stacks.iop.org/1742-6596/78/i=1/
a=012015

H. C. Edwards, A. B. Williams, G. D. Sjaardema, D. G. Baur, and W. K. Cochran. 2010. SIERRA Toolkit Com-
putational Mesh Conceptual Model. Technical Report SAND2010-1192. Sandia National Laboratories.

D. Gaston, C. Newman, G. Hansen, and D. Lebrun-Grandie. 2009. MOOSE: A parallel computational frame-
work for coupled systems of nonlinear equations. Nuclear Engineering and Design 239, 10 (2009), 1768–
1778.

B. Hanks and others. 2013. http://cubit.sandia.gov/. (2013).
G. Hansen, A. Zardecki, D. Greening, and R. Bos. 2005. A Finite Element Method for Three-Dimensional

Unstructured Grid Smoothing. J. Comput. Phys. 202, 1 (2005), 281–297.
M. A. Heroux, R. A. Bartlett, V. E. Howle, R. J. Hoekstra, J. J. Hu, T. G. Kolda, R. B. Lehoucq, K. R. Long,

R. P. Pawlowski, E. T. Phipps, A. G. Salinger, H. K. Thornquist, R. S. Tuminaro, J. M. Willenbring, A. B.
Williams, and K. S. Stanley. 2005. An Overview of the Trilinos Project. ACM Trans. Math. Softw. 31, 3
(2005). http://trilinos.sandia.gov/.

B. S. Kirk, J. W. Peterson, R. H. Stogner, and G. F. Carey. 2006. libMesh: A C++ Library for Parallel Adaptive
Mesh Refinement/Coarsening Simulations. Engineering with Computers 22, 3–4 (2006), 237–254. http:
//dx.doi.org/10.1007/s00366-006-0049-3.

R.B. Lehoucq and A.G. Salinger. 2001. Large-Scale Eigenvalue Calculations for Stability Analysis of Steady
Flows on Massively Parallel Computers. International Journal of Numerical Methods in Fluids 36
(2001), 309–327.

A. Logg, K-A Mardal, G. N. Wells, and others. 2012. Automated Solution of Differential Equations by the
Finite Element Method. Springer. DOI:http://dx.doi.org/10.1007/978-3-642-23099-8

K. R. Long, R. C. Kirby, and B. G. van Bloemen Waanders. 2010. Unified Embedded Parallel Finite Element
Computations via Software-Based Fréchet Differentiation. SIAM J. Scientific Computing (2010), 3323–
3351.

P. K. Notz, R. P. Pawlowski, and J. C. Sutherland. 2011. Graph-based software design for managing com-
plexity and enabling concurrency in multiphysics PDE software. ACM Trans. Math. Softw. (2011). Sub-
mitted.

R.P. Pawlowski. 2011. http://trilinos.sandia.gov/packages/phalanx/. (2011).
R P Pawlowski, E.T. Phipps, and A G Salinger. 2012a. Automating embedded analysis capabilities and man-

aging software complexity in multiphysics simulation, Part I: Template-based generic programming.
Scientific Programming 20 (2012), 197–219.

R P Pawlowski, E T Phipps, A G Salinger, S J Owen, C M Siefert, and M L Staten. 2012b. Automating
embedded analysis capabilities and managing software complexity in multiphysics simulation part II:
application to partial differential equations. Scientific Programming 20 (May 2012), 327–345.

ACM Transactions on Mathematical Software, Vol. ??, No. ??, Article ??, Publication date: October 2013.

Albany: A Component-Based Partial Differential Equation Code Built on Trilinos ??:27

E.T. Phipps and R.P. Pawlowski. 2012. Efficient Expression Templates for Operator Overloading-based Auto-
matic Differentiation. In Recent Advances in Algorithmic Differentiation, S. Forth, P. Hovland, E.Phipps,
J. Utke, and A. Walther (Eds.). Springer.

E. T. Phipps. 2013a. http://trilinos.sandia.gov/packages/sacado/. (2013).
E. T. Phipps. 2013b. http://trilinos.sandia.gov/packages/stokhos/. (2013).
C. Prud’homme. 2007. Life: Overview of a Unified C++ Implementation of the Finite and Spectral Element

Methods in 1D, 2D and 3D. In Applied Parallel Computing. State of the Art in Scientific Computing
(Lecture Notes in Computer Science), Vol. 4699. Springer, 712–721.

A. G. Salinger. 2012. Component-based Scientific Application Development. Technical Report SAND2012-
9339. Sandia National Laboratories.

S. Seol, C.W. Smith, D.A. Ibanez, and M.S. Shephard. 2012. A Parallel Unstructured Mesh Infrastructure.
In High Performance Computing, Networking, Storage and Analysis (SCC), 2012 SC Companion:. 1124–
1132. DOI:http://dx.doi.org/10.1109/SC.Companion.2012.135

G. Sjaardema and others. 2013. http://sourceforge.net/projects/exodusii/. (2013).
T.M. Smith, J. N. Shadid, R.P. Pawlowski, E.C. Cyr, and P. D. Weber. 2011. Reactor Core Subassembly

Simulations Using a Stabilized Finite Element Method. In The 14th International Topical Meeting on
Nuclear Reactor Thermalhydraulics, NURETH-14. Toronto, Ontario, Canada.

J. R. Stewart and H. C. Edwards. 2003. The SIERRA Framework for Developing Advanced Par-
allel Mechanics Applications. In Large-Scale PDE-Constrained Optimization, Lorenz T. Biegler,
Matthias Heinkenschloss, Omar Ghattas, and Bart van Bloemen Waanders (Eds.). Lecture
Notes in Computational Science and Engineering, Vol. 30. Springer Berlin Heidelberg, 301–315.
DOI:http://dx.doi.org/10.1007/978-3-642-55508-4 18

W. Sun, J T Ostien, and A G Salinger. 2013. A stabilized assumed deformation gradient finite element
formulation for strongly coupled poromechanical simulations at finite strain. International Journal for
Numerical and Analytical Methods in Geomechanics (2013).

H. Thornquist and others. 2013. http://trilinos.sandia.gov/packages/teuchos/. (2013).

Received October 2013; revised ??; accepted June ??

ACM Transactions on Mathematical Software, Vol. ??, No. ??, Article ??, Publication date: October 2013.

Online Appendix to:
Albany: A Component-Based Partial Differential Equation Code Built
on Trilinos

ANDREW G. SALINGER, ROSCOE A. BARTLETT, QUISHI CHEN, XUJIAO GAO, GLEN
A. HANSEN, IRINA KALASHNIKOVA, ALEJANDRO MOTA, RICHARD P. MULLER, ERIK
NIELSEN, JAKOB T. OSTIEN, ROGER P. PAWLOWSKI, ERIC T. PHIPPS, WAICHING
SUN, Sandia National Laboratories

c� 2013 ACM 0098-3500/2013/10-ART?? $15.00
DOI:http://dx.doi.org/10.1145/0000000.0000000

ACM Transactions on Mathematical Software, Vol. ??, No. ??, Article ??, Publication date: October 2013.

