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A B S T R A C T

In-situ index tests, such as the cone penetration test (CPT), are widely used for the site-specific evaluation of
liquefaction potential and are getting increased use in the regional mapping of liquefaction hazards. In this
work, the spatial variability of CPT-based geotechnical parameters on the liquefaction potential evaluation is
assessed through an integrated framework combining an empirical liquefaction model and a multiscale random
field model that allows the effective incorporation of soil spatial variability across scales. Within this framework,
two approaches, termed the local soil property approach and the averaged index approach, are developed and
assessed for the characterization of spatial variability in CPT-based geotechnical parameters. The proposed
framework is applied to the probabilistic and spatial assessment of the liquefaction potential of an earthquake-
prone region to demonstrate its applicability and to investigate the implications of spatial variability on regional
liquefaction susceptibility evaluation.

1. Introduction

Earthquake-induced liquefaction of soils often causes significant
damage to infrastructure such as buildings, bridges, and lifelines [1].
Evaluating the likelihood of liquefaction and the associated geohazards
involve analysis of ground shaking hazard and liquefaction suscept-
ibility of the soil deposit [2]. In practice, the use of the empirical
correlations of the observed field behavior with various in-situ index
tests, such as the Cone Penetration Test (CPT), the Standard
Penetration Test (SPT) and the shear wave velocity test, remains the
dominating approach for assessing liquefaction potential; see [3] for a
summary and recommendation of various in-situ test-based liquefac-
tion models. Building on the empirical models, the direct output of a
liquefaction evaluation procedure is typically expressed in terms of
factor of safety against liquefaction triggering in a soil stratum at depth.
The damage potential of liquefaction can then be linked to the factor of
safety through a nonlinear depth integration such as the liquefaction
potential index (LPI) proposed in [4].

The empirical models evaluate the liquefaction potential at indivi-
dual locations where field tests are performed. Estimation of liquefac-
tion potential at locations away from the measurement site requires
some degrees of spatial continuity of soil properties. In other words,
soil properties, as indicated by the representative indices like the tip
resistance qc and the side friction fs from CPT measurements, are
spatially correlated [5]. Tools in geostatistics [6,7] have been used to

model such spatial variation of soil properties as a random field.
Interpolation and stochastic simulation techniques are then used to
estimate the spatial distribution of properties at a site. In the context of
liquefaction analysis, examples of work along this line include [8–17].

To account for the spatial variability of geotechnical properties in
the liquefaction evaluation procedure, two approaches will be devel-
oped and assessed in this work. The first approach, termed the local
soil property approach, treats the local field data (e.g., the CPT tip
resistance and side friction) as spatially correlated soil properties
across the region. Random fields of field data are realized in a layer-
by-layer sequence, i.e., only the horizontal correlation is explicitly
modeled. Examples of existing efforts along this line include
[18,19,12,14,16]. On a smaller scale, e.g., a specimen in the lab or
for a relatively small area around a field bore-hole location, full three-
dimensional random field models have also been proposed to char-
acterize spatially correlated soil properties and applied to liquefaction
evaluation [9–11]. However, generating full three-dimensional random
field models on a regional scale not only poses increased computational
challenge but may not guarantee a more accurate result in liquefaction
evaluation since now both vertical and horizontal correlations need to
be simultaneously accounted for using available field data. The scales of
variations in the vertical and horizontal directions can be different in
order of magnitude over a region (e.g., centimeter in the vertical
direction vs. meter or kilometer in the horizontal direction). For these
reasons, a more sophisticated three-dimensional random field model
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may not yield better estimation therefore will not be considered here.
An alternative approach, termed the averaged index approach,

computes an averaged soil property or index (e.g., the liquefaction
potential index or liquefaction probability) at individual locations
where field data are available. Then, interpolations or geostatistical
tools and random field models are utilized to generate the averaged
index properties at unmeasured or unsampled locations across the
region. This approach is much more commonly used in liquefaction
mapping over extended area, e.g., [20–24,13,17], since it only requires
characterization and/or random field realizations of an averaged
quantity of interest, i.e., the liquefaction potential index, in the
horizontal direction. This makes parameter identification more
straightforward and is much more computationally efficient when
evaluating liquefaction susceptibility over large areas. However, by
calculating an averaged index, details of soil properties are no long
available for the region and the effect of this averaging process on the
estimated liquefaction potential is unknown.

While both approaches have been applied to evaluate liquefaction
potential across a region, the implications of these two approaches on
the liquefaction risk have yet to be addressed. Moreover, much existing
experience with random field models for soil properties is limited to a
single spatial scale. When evaluating liquefaction potential over an
extended region, spatial variability of geotechnical parameters often
manifests at different scales, i.e., boring data (local scale) vs. surficial
geological features (regional scale). Field data are oftentimes sparse
and the uncertainties away from local boring data can be large. A
multiscale consideration is deemed necessary. In this work, a multi-
scale random field model [25,26,17] will be integrated with empirical
liquefaction models for the evaluation of liquefaction potential over
extended areas.

We will assess how the local soil property and the averaged index
property approaches affect the evaluation of liquefaction potential in
spatially variable soils. The proposed framework is among the first
efforts to integrate multiscale local soil property and averaged index
random fields with liquefaction potential evaluation. The applicability
and assessment of these random fields will be demonstrated through
the probabilistic and spatial assessment of liquefaction potential in a
liquefaction-prone region.

2. General framework

In this work, the CPT-based empirical liquefaction model is
integrated with geostatistical tools to account for the spatial variability
of geotechnical properties for regional liquefaction evaluation. The flow
of the general framework to account for spatial variability is shown in
Fig. 1. As shown in Fig. 1, within a liquefaction-prone region, CPT
measurements (e.g., the tip resistance and the side friction) and other
geotechnical data of interest (e.g., water table, soil unit weight, etc.) are
first collected and their geostatistical properties are inferred and
characterized (e.g., probabilistic distribution, spatial structure). At a
CPT sounding, the empirical liquefaction model described in Section 3
will be used to evaluate the damage potential of liquefaction, quantified
here by the liquefaction potential index (LPI). The two approaches
described in Section 1, i.e., the averaged index approach and the local
soil property approach, are developed to incorporate soil variability
into the evaluation of liquefaction over an extended area. Details of
multiscale random field model development and implementation will
be discussed in Section 4. Finally, Monte Carlo simulations will be used
to generate realizations of the random fields and results will be used for
the probabilistic and spatial assessment of various quantities of interest
for liquefaction evaluation over the region.

3. CPT-based liquefaction evaluation

In this work, we adopt the classical procedure proposed by
Robertson and Wride [27] and subsequently updated by Robertson

[28] and Ku et al. [29] to evaluate the liquefaction resistance of sandy
soils based on CPT data. Herein, the liquefaction potential of a soil
layer is evaluated using two variables - the cyclic stress ratio (CSR) and
the cyclic resistance ratio (CRR). Details of CSR and CRR calculation
are summarized in Appendix A.

Once CSR and CRR are obtained, the factor of safety (FS) against
liquefaction triggering at a particular depth z can be calculated

FS = CRR
CSR (1)

which is then used in the subsequent liquefaction potential evaluation.
In this work, the potential of liquefaction damage will be quantified

by an averaged index property, i.e., the liquefaction potential index
(LPI), which was originally proposed by Iwasaki et al. [4,30] and has
been subsequently used and calibrated by many investigators, e.g. [31–
34,20,21,13,24,17]. As pointed out by Juang et al. [34] and more
recently by van Ballegooy et al. [35,24], cautions should be taken when
interpreting LPI results based on Iwasaki's criteria [4,30], which is
based on liquefaction evaluation procedures commonly used in Japan
in 1978. Nevertheless, in the current framework, the LPI is used as an
averaged index to quantify potential liquefaction damage, the implica-
tions of using different liquefaction criteria and calibration of LPI
models are discussed in more details in [34,35,24]. The detailed steps
to calculate LPI are listed in Appendix B.

LPI can be used to classify the severity of liquefaction according to
categories proposed by Sonmez [31] as shown in Table 1.

4. Multiscale random field characterization

The CPT-based empirical liquefaction model described in Section 3
evaluates the liquefaction potential at individual locations at the small
scale, e.g., the borehole scale. To estimate the extent of liquefaction risk
over the entire region of interest, multiscale random field models are
introduced and implemented in this section.

4.1. Spatial correlation

In this study, the spatial correlation of geotechnical parameters is
described using the semivariogram, hγ( ), which is equal to half the
variance of the difference of two random variables separated by a
vector distance h

h u u hγ Z Z( ) = 1
2

Var[ ( ) − ( + )]
(2)

where uZ( ) is a Gaussian random variable at location u. The vector h
accounts for both separation distance and orientation and therefore
can be used to simulate anisotropic random fields. Here, we define a
simplified scalar measure h
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where hx, hy and hz are the scalar component of the vector h along the
field's principal axes; scalar quantities ax, ay and az specify how
quickly spatial dependence decreases along those axes.

In previous studies of liquefaction evaluation, e.g., [12,13,16], the
correlation ρ h( ) is used to describe the spatial dependence of two
parameters separated by h and can be related to the semivariogram as

ρ h γ h( ) = 1 − ( ) (4)

In practice, various analytical semivariogram models and their
linear combinations are typically fitted to empirical semivariogram that
is calculated from field data. Examples of commonly used analytical
semivariogram models include the nugget effect model, the linear
model, the spherical model, the exponential model and the Gaussian
model [6]. Specific model form can be inferred from available field data
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or assumed based on expert knowledge of properties of interest. As an
example, an exponential model is adopted in this work

⎛
⎝⎜

⎞
⎠⎟γ h h

a
( ) = 1 − exp −

(5)

Fig. 1. General framework of the CPT-based liquefaction potential evaluation over extended area: the local soil property approach vs. the averaged index approach.
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where a is the range parameter and a3 is the practical range, i.e., the
distance at which the exponential semivariogram levels off [6].

Usually there is a nugget effect in the empirical semivariogram
model due to measurement errors or sparse data. For example, an
exponential model combined with a nugget effect is expressed as

⎡
⎣⎢

⎛
⎝⎜

⎞
⎠⎟
⎤
⎦⎥γ h ω h

a
τ( ) = 1 − exp − +

(6)

where τ is the nugget, i.e., the variance at zero distance; ω τ+ is the sill,
i.e., the constant semivariance beyond the range a3 .

It should be noted that the spatial dependence introduced above is
for variables having Gaussian distributions. For non-Gaussian distri-
butions, inference of spatial structure is recommended to be performed
on transformed data using a normal score mapping [6]. Such normal
score mapping is a common practice in many applications of geosta-
tistics and has previously been shown to preserve the prescribed spatial
structure for lognormally distributed variables [25,26].

4.2. Sequential simulation process

Given a specified probability density function and spatial correla-
tion model, a sequential simulation process [6,36] is adopted in this
work to generate realizations of the random field across the region.
Each value is simulated individually conditional upon known informa-
tion as well as any previously simulated data points.

Denote Zp as a vector of all known and previously simulated points
in the random field and Zn as the next point to be simulated, the
sequential simulation process can be illustrated by
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where μN Σ∼ ( , ) denotes the vector of random variables following a
joint normal distribution with mean vector μ and covariance matrix Σ;
σn

2 is the prior variance of the next simulated point; Σnp, Σpn and Σpp
are the covariance matrices, where the subscripts ‘n’ and ‘p’ represent
‘next’ (as in next point to be simulated) and ‘previous’ (as in all
previously simulated points), respectively. The covariance matrices are
obtained by

Z Z ρ σ σCOV[ , ] = · ·i j ij i j (8)

where ρij is the correlation between random variables Zi and Zj with
standard deviations of σi and σj, respectively.

Using the above model for joint distribution, the distribution of Zn
conditional upon all previously simulated data is given by a univariate
normal distribution with updated mean and variance

Z z zZ N σΣ Σ Σ Σ Σ( = ) ∼ ( · · , − · · )n p np pp n np pp pn
−1 2 −1

(9)

It is noted that Σ Σ·np pp
−1 are essentially the weights assigned in the

simple Kriging process [6]. For the realization, one value of Zn is drawn
at random from the posterior univariate normal distribution.

Once simulated, Zn becomes a data point in the vector Zp to be
conditioned upon by all subsequent data locations. This process is
repeated by following a random path to each unknown location until all
the values in the field have been simulated. This sequential simulation

process is beneficial for the proposed work because: (1) it preserves
known information (e.g., field data) precisely at their locations in the
simulated random field; and (2) it allows one to first simulate the field
at only the coarse scale, then add simulation points at the fine scale
probabilistically consistent with the previous coarse-scale realizations,
a process we will detail in Sections 4.3 and 4.4.

4.3. Multiscale spatial correlation

The multiscale spatial correlation is based on the notion that
material properties at the coarser scales are the arithmetically averaged
values of the properties over corresponding areas at the finer scales.
This relation allows for the explicit derivation of variances and spatial
correlation of quantities of interest between different scales and is
visually represented in Fig. 2.

For two scales of interest, we denote the coarser scale as scale ‘c’
and the finer scale as scale ‘f’. The cross-scale spatial correlations can
then be calculated as [17]
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where ρZ Z,I
c

II
c = correlation between two coarse-scale elements I and II;

ρZ Z,f
I
c = correlation between a fine-scale element and a coarse-scale

element I.
The geotechnical properties will be simulated using random field

models at the coarse scale (e.g., the regional scale), and then adaptively
refined into smaller scales (e.g., the borehole or structure scales),
conditional upon the coarse-scale random field simulations. It is worth
noting that the cross-scale correlations (10) and (11) are applicable to
general non-uniform arbitrary shaped grids and actual field CPT-based
geotechnical measurements will be incorporated into the sequential
simulation process.

4.4. Numerical implementation

The previously described CPT-based empirical liquefaction model
in Section 3 as well as the random field models in the current section
are implemented in a computer code written in Matlab. Details of the

Table 1
Liquefaction potential index classification.

LPI Liquefaction severity class

LPI = 0 I: Non-liquefiable
0 < LPI ≤ 2 II: Low
2 < LPI ≤ 5 III: Moderate
5 < LPI ≤ 15 IV: High
LPI > 15 V: Very high

Fig. 2. Graphic representation of material properties at two scales. The superscripts ‘c’
and ‘f’ refer to ‘coarse’ and ‘fine’ scales, respectively. The subscripts refer to the element
number. Roman letters I II, … are used for coarse scale element and Arabic numbers
1, 2, 3… are used for fine scale element.
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numerical implementation and some common measures to improve the
computational efficiency of random field generation are discussed in
this section.

The flowchart of the multiscale random field implementation is
shown in Fig. 3. The program requires as inputs: the random field
parameters (e.g., the probability model, the semivariogram model), the
geometry of the region and an initial grid, and any available field data
for the conditional simulation of unknown data. Defining an initial grid
allows convenient refinement of an initial coarse random field into
higher resolution fine scale fields following the procedure described in
Section 4.3. The random variable is simulated at the centroid of each
cell and its value is assigned to the corresponding cell. The end product
or output of the program is a multiscale random field realization for
quantities of interest within the region of interest.

The conditional sequential simulation process adopted in this work
preserves the known field data at their locations and allows all
subsequent generated data points to be conditioned upon such known
information and any previously generated points. One drawback with
this process, however, is that it can be quite computationally demand-
ing. Several common measures are implemented in this work to
improve the computational efficiency of the simulation.

First, the fine scale random fields are only selectively generated at
locations that are deemed necessary for higher resolution information.
Examples of such locations include areas around CPT soundings or
near important buildings. The sequential simulation process described
above has the benefit of selective and adaptive refinement. If deemed
necessary at any point in simulation process, any coarse scale element
at any location can be refined into its fine-scale components without

consideration of the refinement sequence.
Second, the size of the matrix containing previously simulated data

Zp in Eqs. (7) and (9) will be limited by taking advantage of the
screening effect. The screening refers to the phenomenon of dramati-
cally reducing the Kriging weight assigned to a datum that is screened
by another nearby data near the location being simulated [37]. After
the nearest data, other more distant data will receive little weight even
if they are correlated with the location under consideration.

Fig. 4(a) plots the weights assigned to the neighbours of the data
point Zn to be simulated with and without limiting the size of the
matrix Zp containing previously simulated points. “Screened to 30”
means the nearest 30 data points are included in the covariance matrix
calculation. In this work, including the nearest 30 data points is
sufficient since more distanced points have been assigned negligible
weights. This is consistent with previous experience and recommenda-
tion in [37]. Also, it is important to note that limiting the size of the
matrix Zp does not adversely affect the spatial correlation, as shown in
Fig. 4(b). The slight difference between the specified and empirical
semivariogram is partially due to the relatively small field size.

As a third method to further improve computational efficiency, it
is noted that the covariance matrices in Eq. (9) only depend on the
relative locations between pairs of data points in the random
field. Therefore, if the locations of coarse and fine scale data points
are known and fixed between different simulations, those covariance
matrices need to be computed only once and can be reused by all
subsequent simulations. This will significantly reduce computation
time when the random field simulation is used within a Monte
Carlo framework, where thousands of simulations are typically per-

Fig. 3. Flowchart of the multiscale random field model implementation.
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formed.
Fig. 5 shows the comparison of computation time in log scale before

and after measures are taken to improve computational efficiency. The
computation is performed on one computing node of Clemson
University's Palmetto Cluster, with 1 CPU (Intel(R) Xeon(R) L5420@

2.50 GHz) and 24 Gb RAM. Orders of magnitude improvement in
computational efficiency are achieved. Further improvement can be
realized by taking advantage of recent parallel computing capabilities
added to Matlab, which will be left for future studies.

5. Numerical examples

In this section, the developed multiscale random field model is
applied to evaluate liquefaction potential in the city of Christchurch,
New Zealand. The purpose of the numerical examples is twofold: (1) to
demonstrate the applicability of multiscale random field models in
liquefaction evaluation over extended areas; (2) to assess the averaged
index approach and the local soil property approach in accounting for
the spatial variability of CPT-based geotechnical parameters and their
implications on the liquefaction evaluation. We assume the stationary
of the random field model and focus mainly on the spatial variability of
tip resistance, side friction and the liquefaction potential index. Spatial
variability of other geotechnical parameters, e.g., water table and unit
weight of soil, are not included in the current study.

5.1. Analysis region and field data

Christchurch, New Zealand, is a city founded on the boundary of the
alluvial Springston formation and the marine Christchurch formation
[38]. During the period between September 2010 and December 2011,
the city of Christchurch was strongly shaken by a sequence of four

Fig. 4. Screening effect on the data point Zn to be simulated: (a) Kriging weights assigned to neighbours of Zn with and without limiting the size of the matrix containing previously
simulated points; (b) specified and empirical semivariogram calculated from one realization of random field. The distance is normalized by the correlation length parameter ‘a’.

Fig. 5. Computational efficiency comparison. Case 1: all coarse elements are included for
refinement, without any optimization; case 2: selective refinement, without any
optimization; case 3: selective refinement, with screening to the nearest 30 elements;
case 4: selective refinement, pre-calculated covariance matrices and with screening.

Fig. 6. Map of the area of study in Cristchurch, New Zealand. Red dots represent locations of the 155 CPT soundings.
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strong earthquake events known as the Canterbury earthquakes. For
the following liquefaction analysis and liquefaction potential mapping,
we pick one of the great events, the February 17, 2011 earthquake
event. The moment magnitude of the earthquake Mw=6.2. Typical
peak ground surface acceleration amax in the the area of study ranging
from 0.34g to 0.50g [39]. A median value of a = 0.42 gmax is used in the
following liquefaction potential calculations. A total of 155 CPT profiles
with measured water table are collected from the New Zealand
Geotechnical Database (NZGD). The locations of the CPT soundings
are shown in Fig. 6. An averaged moist unit weight of γ = 18.5 kN/mm

3 is
used for soils above water table and an saturated unit weight of
γ = 19.5 kN/msat

3 is used for soils below water table following informa-
tion presented in [40].

5.2. Random field realizations – the averaged index approach

The first set of random field realizations is generated following the
the averaged index approach. Herein, the liquefaction potential index
(LPI) will be calculated at every CPT sounding location using the CPT-
based empirical liquefaction model described in Section 3.

Fig. 7 shows the histogram and semivariogram of the calculated
LPIs at 155 CPT sounding locations. As can be seen from Fig. 7(a),
most of the LPI at the 155 CPT soundings are greater than 5, indicating
that majority of those CPT sounding sites have a high liquefaction
severity class (refer to Table 1). The spatial structure of the LPIs is
fitted using the exponential model defined in Eq. (6) with the following
fitted parameters: a=498.70 m, ω = 0.74, τ = 0.22. A weighted least
square method by Cressie [41] is used to fit the exponential model
parameters.

In the subsequent random field realizations, the LPI will be treated

as the random variable of interest and its values throughout the
Christchurch site will be generated using the sequential simulation
process described in Section 4.2. The fitted exponential semivariogram
model as shown in Fig. 7(b) will be used to describe the spatial
correlation. Given the site specific model and model parameters,
random field simulations are performed. Typical realizations of LPIs
across the Christchurch site are shown in Fig. 8 for both single and
multiscale random fields. The calculated LPI values at CPT soundings
are preserved at those locations. It is shown, as expected, that the
multiscale random field captures more local fluctuations of LPIs than
the single scale in areas where higher levels of resolutions are taken
into account. Such a fine scale resolution is important especially for
site-specific liquefaction susceptibility and hazard evaluation as will be
illustrated later.

The histogram and empirical semivariogram corresponding to the
LPI random field realizations in Fig. 8(b) are shown in Fig. 9. The
histogram has a lognormal distribution shape. The empirical semivar-
iogram is calculated from the generated LPI random field, which
preserves the specified exponential spatial structure.

5.3. Random field realizations – the local soil property approach

In the second set of random field realizations, CPT-based geotech-
nical parameters, i.e., the CPT tip resistance qc and the side friction fs,
are treated as spatially correlated random variables. Their values
will be realized using the sequential simulation process described in
Section 4.2. Fig. 10 shows the empirical semivariograms of qc and fs.
The spatial structures of those CPT parameters are fitted using the
exponential model defined in Eq. (6) with the following model

Fig. 7. Histogram and semivariogram of calculated LPIs at 155 CPT sounding locations.

Fig. 8. Typical random field realizations of LPIs following the averaged index approach.
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parameters: for the tip resistance qc, a = 339.6 m, ω = 0.60, τ = 0.44;
for the side friction fs, a = 316.23 m, ω = 0.47, τ = 0.55. The probability
distribution are inferred directly from the CPT data.

Random field simulations are performed for each soil layer with a
thickness of 0.2 m. Fig. 11 shows typical multiscale random field
realizations of qc and fs for one soil layer at 10 m below the ground
surface. Typical multiscale realizations of qc and fs values across the
Christchurch site for all soil layers within the first 20 m below the
ground surface are shown in Fig. 12.

With the calculated qc and fs values at each location within the
Christchurch site along with assumed constant unit weights, the LPIs
can be calculated following the method stated in Section 3. One set of
LPI field across the area of study is shown in Fig. 13. It can be seen that
the multiscale random field captures the similar spatial distribution of
LPIs across the region to that of the single scale random field.
Moreover, there are higher resolutions of LPIs in selected area of
interest. Such higher level resolution is important for local liquefaction
analysis.

The histogram and semivariogram of the multiscale random field
realization in Fig. 13(b) are shown in Fig. 14(a) and (b), respectively. It
should be noted that, in the local soil property approach, the simulated
LPIs are not expected to preserve the specified spatial correlation
structure of qc and fs due to the nonlinear transformation in the
empirical liquefaction model described in Section 3. In the averaged
index approach, the simulated LPIs are expected to preserve the spatial
structure inferred from calculated LPI values at 155 CPT sounding
locations. This is verified by Fig. 14(b), which shows the empirical

semivariogram calculated from simulated LPIs across the site and the
specified exponential model.

5.4. Probabilistic and spatial assessment of liquefaction potentials

In the previous two sections, we have demonstrated typical random
field realizations of LPIs by the averaged index approach and the local
soil property approach. In this section, we will perform Monte Carlo
simulations and assess the implications of two approaches on the
probabilistic and spatial characteristics of liquefaction potentials in the
Christchurch site. In addition, utilizing multiscale random field realiza-
tions, liquefaction evaluation will be performed for selected local sites
to demonstrate the advantage and applicability of proposed methodol-
ogy.

A total of 1000 Monte Carlo simulations are performed to generate
realizations of LPIs across the Christchurch site. Fig. 15(a) shows the
histogram of the averaged LPIs from 1000 Monte Carlo simulations
and Fig. 16 shows the corresponding maps of the averaged LPIs. To
attenuate the effect of ergodic fluctuations, empirical semivarograms
are calculated 1000 times, averaged, and plotted in Fig. 15(b). The solid
curve is the specified exponential model with parameters fitted using
LPIs at CPT soundings. The red dots and blue squares are the empirical
semivariograms calculated using Eq. (2) with LPI values generated by
the averaged index approach and the local soil property approach,
respectively. The error bars ( ± one standard deviation) show the
variations of 1000 Monte Carlo simulations. Fluctuating semivario-
gram is resulted from weak and unsteady correlation of properties

Fig. 9. Typical histogram and semivariogram of LPIs following the averaged index approach.

Fig. 10. Semivariograms of the tip resistance qc and the side friction fs calculated from 155 CPT soundings.
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Fig. 11. Typical multiscale random field realizations of qc and fs in one soil layer (at the depth of 10 m).

Fig. 12. Typical multiscale random fields of qc and fs in three dimensions.

Fig. 13. Typical random field realizations of LPIs following the local soil property approach.

Fig. 14. Typical histogram and semivariogram of LPIs following the local soil property approach.
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between separated places. This is verified in Fig. 15(b), i.e., great
fluctuations (in both the average and standard deviation) of the
empirical semivaiograms are observed at distance greater than
1000 m. The local soil property approach results in slightly greater
fluctuation of semivariogram possibly due to the nonlinear transforma-
tion from qc and fs to LPI.

The generated LPI maps by two different approaches are compared
with the map of observed liquefaction phenomenons after the February
17, 2011 earthquake event [42], as shown in Fig. 16. Comparing the
maps of predicted LPIs against the observations, it can be seen that
both the averaged index approach and the local soil property approach
are able to capture the varying severity levels of liquefaction at most
locations across the area of study. For instance, the high LPI value area
corresponds well with areas with observed moderate to several
liquefaction. The results by the local soil property approach shows
more small scale fluctuations or “noises”. This is due to the high nugget
effects in the specified semivariograms of qc and fs.

Results from Monte Carlo simulations can also be used for the
probabilistic assessment of liquefaction potentials. Various quantities
of interest can be defined. As an example, we evaluate the cumulative
frequency distributions of LPIs following the methodology proposed in
[20].

Fig. 17 plots the cumulative frequencies of LPIs in the area of study
obtained with the averaged LPI map from 1000 Monte Carlo simula-
tions. The error bars ( ± one standard deviation) are also included in
the cumulative frequency plots. It can be seen that the cumulative
frequency curve by the averaged index approach is very close to that of
the known LPI obtained from 155 CPT soundings, while a sharp change
in the slope of the cumulative frequency curve for the local soil property
approach is observed, which can be explained by its histogram in
Fig. 15(a). Most of the LPIs simulated by this approach fall between 10
and 20, resulting in a sharp change in cumulative frequency curve in
this range. For the averaged index approach, the percentages of
different LPI values are more “spread-out”, which results in smoother
cumulative frequency curves.

Comparisons between Fig. 17(a) and (b) indicate that multiscale
random fields yield consistent results as the single scale counterparts
for cumulative frequencies of LPIs. This is to be expected given the
notion that properties of a coarse element are the averaged values of
the properties over the corresponding areas at the fine scale.

It should be noted that all previous analysis and comparisons are
based on relatively sufficient field data to infer random field model
parameters. It is expected that the amount of the field will impact the
results of the random field-based liquefaction mapping. While this
subject itself deserves a future study, for this Christchurch site, we
investigated the effect to data availability on the distribution of

Fig. 15. Histograms and semivariograms of the averaged LPIs from 1000 Monte Carlo simulations. Error bars in semivariogram plot indicate ± one standard deviation.

Fig. 16. Mapping of LPI by two approaches compared with the observed liquefaction
phenomenons.
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predicted LPIs in the area of study. The number of available CPT
soundings are varied from 9 to 243. It is found that when the number
of CPT soundings is small, the local soil property approach yields
higher mean LPI values. As the number of CPT soundings increase, the
distributions obtained from the averaged index approach and the local
soil approach converge. Fig. 18 plots the histogram of LPIs obtained
with 9 CPT and 69 CPT soundings.

5.5. Fine-scale site-specific liquefaction assessment

The final analysis involves the fine-scale site-specific liquefaction
assessment. Compared to single scale random field, multiscale random
field provides higher resolution at local or site-specific scale, e.g., near a
critical infrastructure or a particular building of interest. To illustrate
this point, we evaluate the liquefaction potential at two local sites in
Christchurch. The site locations are shown in Fig. 19. Site A is a small
region consists of two schools, i.e., the Chisnallwood Intermediate
School and the Avondale Primary School. Site B is the location of the
Aranui High School. The inset of random fields in Fig. 19 shows that
the multiscale random field could provide much more detailed
information than the single scale counterpart, which makes it possible
to perform site-specific liquefaction evaluation while consistently
maintaining predictions of liquefaction for the entire region over much
larger scales.

Based on the cumulative frequency distribution, Holzer et al. [20]
proposed that for a given geologic unit, the percent area predicted to
have liquefaction during a given earthquake-shaking scenario could be
estimated from the cumulative frequency distributions at LPI ≥ 5. This
criteria can be further categorized to indicate percentage of area to have
minor liquefaction (5 ≤ LPI < 15) and major liquefaction (LPI ≥ 15) as
shown in Table 1. Herein, the percentage of areas in the selected sites
with LPI ≥ 15 under a given earthquake-shaking scenario (Mw=6.2,
a = 0.42 gmax ) is calculated and plotted against the corresponding
cumulative frequency in Fig. 20.

Fig. 20 shows cumulative frequencies of LPIs with respect to the
fraction of liquefied area. The cumulative frequency curve for site B is
consistently ‘higher’ than site A for both the averaged index approach
and the local soil property approach, indicating that site B is more
likely to liquefy than site A in a given earthquake. Comparisons
between two approaches show that the cumulative frequency for the
average index approach is more “spread-out” than the local soil
property approach. This is consistent with the the predictions within
the whole site of Christchurch, as shown in Fig. 17.

The above analysis on the percentage of the liquefiable area
underneath a particular site gives an indication of the implied
reliability of the site with respect to liquefaction resistance during a
given earthquake. These site-specific curves can only be obtained if a
higher resolution multiscale random field is generated. Moreover,

Fig. 17. Cumulative frequency plot of LPIs for the area of study in Christchurch.

Fig. 18. Histograms of predicted LPIs in the Christchurch site when different number of CPT soundings (N) is used to infer model parameters.
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multiscale random fields is able to obtain high-resolution information
at local site while consistently maintaining low-resolution information
at much larger scales, leading to a computationally efficient process.

Finally, it should be noted that the methodologies discussed in this
study is sufficiently general to be applied to other earthquake-prone
areas and to evaluate quantities of interest such as liquefaction-induced
settlement, lateral spreads or site conditions [44]. This is being
explored in further studies.

6. Conclusions

In this paper, a classical CPT-based empirical liquefaction model
and multiscale random field models are integrated for the assessment
of regional liquefaction susceptibility. The study focuses on the spatial
variability of CPT-based geotechnical parameters. Two approaches,
termed the averaged index approach and the local soil property
approach, are developed and analyzed to account for spatial variability
of geotechnical parameters. Their implications on liquefaction suscept-
ibility evaluation are discussed through one case study at the
Christchurch site in New Zealand. In summary, it is found that

1. Both the averaged index and the local soil property approaches are
able to capture the spatial variations of liquefaction potential at
different scales over the area of study and predict qualitatively
consistent results compared to previously reported liquefaction

manifestations.
2. The two approaches yield similar and comparable LPI values for the

area of study when sufficient CPT data is available. However, when
the CPT data is sparse, the averaged index approach, in general,
predicts lower LPI values when compared with the local soil
property approach.

3. The averaged index approach is recommended for regional liquefac-
tion evaluation given that it yields consistent results with field
observations and is much more computationally efficient.

4. The local soil property approach, though providing more details on
soil properties, requires much more field data to characterize
random field models, which could introduce additional uncertainties
into the solution.

5. Both approaches have been cast within a multiscale random field
model, which allows efficient and effective assessment of site-specific
liquefaction susceptibility.
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Fig. 20. Cumulative frequency vs. fraction of liquefied area with LPI ≥ 15 for two local sites A & B selected in the area of study.

Fig. 19. Locations of two selected sites for fine-scale liquefaction assessment.
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Appendix A. The updated Robertson and Wride 1998 liquefaction model

For CSR, the following adjusted form is recommended in [3]
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where amax is the peak horizontal acceleration at the ground surface generated by a given earthquake; g is the gravitational acceleration; σvo and σ′vo
are the total and effective vertical overburden stresses, respectively; and rd is the depth-dependent shear stress reduction coefficient; MSF is the
magnitude scaling factor; Kσ is the overburden correction factor for the cyclic stress ratio (K = 1σ for σ′ < 1vo atm (1 atm=100 kPa)). CSR defined
above is also often denoted as CSR7.5 for earthquakes with magnitudes of approximately 7.5. The stress reduction factor rd and the magnitude
scaling factor MSF are both estimated based on the recommendations in [3] as
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where z is the depth; Mw is the moment magnitude of the earthquake.
The cyclic resistance ratio, CRR, is estimated from CPT data following the procedure in [27–29] as
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The equivalent clean sand normalized penetration resistance, q( )c N1 cs is given as

q K q( ) = ( )c N c c N1 cs 1 (A.5)

where the conversion factor Kc is calculated from the soil behavior type index Ic as
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and qc1N is the normalized cone penetration resistance
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where P = 1at atm of pressure (100 kPa); qc is the measured cone penetration resistance; σvo and σ′vo are the total and effective vertical overburden
stresses, respectively. The stress exponent n is estimated as [28]
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The soil behavior type index Ic is defined by Wride [27] as

I Q F= (3.47 − log ) + (1.22 + log )c
2 2

(A.9)

where Q and F are the normalized tip resistance and friction ratio, respectively.
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Once CSR and CRR are obtained, the factor of safety against liquefaction triggering at a particular depth z can be calculated

FS = CRR
CSR (A.12)

which is used to calculate the liquefaction potential index detailed in the following section.

Appendix B. Liquefaction potential index

Following the definition given in [4,30], LPI is usually evaluated for the top 20 m of soil profile as

∫ F w z dzLPI = ( )L
0

20

(B.13)

where z denotes the depth in meters and w z z( ) = 10 − 0.5 ; FL is defined as [31]
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⎧
⎨⎪
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F
e

=
0 FS ≥ 1.2
1 − FS FS ≤ 0.95
2 × 10 0.95 < FS < 1.2

L
6 −18.427FS (B.14)

where FS is the factor of safety defined in (A.12) for CPT-based liquefaction evaluation. Herein, we adopt a discrete form of the integral to calculate
LPI along the depth of a given soil profile [43,13]

∑ wF HLPI =
i

N

i Li i
=1 (B.15)

where Hi is the thickness of the discrete layer and is determined by the CPT sampling frequency (Hi=0.1 m for this study); N is the number of soil
layers.
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