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Abstract

The theory of the energy accommodation coefficient for exchange of energy between a rarefied gas and a clean surface
is developed in terms of the differential reflection coefficient for state-to-state scattering of an incoming atomic projectile
and a surface. This theory is applied to classical models which have been shown to accurately predict the measured
scattered distributions in numerous state-to-state experiments of monoenergetic beams of atoms scattering from clean
single crystal surfaces and from clean liquid surfaces. Full three-dimensional calculations are carried out and compared
with available experimental data for the accommodation of rare gases at a clean tungsten surface. Good agreement with
the experimental measurements is obtained for the heavier mass rare gases where classical theory is expected to be most
valid at all measured temperatures. © 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

The modern theoretical basis of gas—surface
studies began with the seminal work of Maxwell
[1,2] and with Knudsen’s 1910 analysis of the ac-
commodation coefficient (AC) [3-6]. In the 1920s
and 1930s there was considerable experimental
activity led by the AC measurements of Roberts [7]
and by the work of Stern and coworkers [8-13],
who successfully demonstrated the quantum me-
chanical wave nature of atoms by diffraction from
the highly corrugated surface of LiF. This experi-
mental work prompted significant theoretical ad-
vances largely led by Lennard-Jones [14-17] and
his coworkers such as Devonshire [18,19]. The next
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big advance in the field came in the late 1960s with
the advent of modern high vacuum technology and
the use of jet beams to produce well collimated and
nearly monoenergetic atomic beams. This field of
study has continued to advance to the point where
atom-surface scattering, and in particular helium
atom scattering, is a well developed technique of
surface science [20]. Theoretical advances have
kept pace with those in experiment and both the
scattering theory and the theory of the interactions
between atomic and molecular projectiles with
crystalline and liquid surfaces are well developed
[20-26].

During this same period, gas—surface scattering
has developed considerably to the point where
well-characterized and high-precision experiments
can be carried out and compared with theory [27-
34]. There is an area of common overlap between
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gas—surface interactions and atom-surface scatter-
ing and this is the domain of rarefied gas dynamics
in which the gas pressure is sufficiently small that
the molecular interactions with the surface occur
as isolated events, which is the same condition
under which typical atom-surface scattering ex-
periments are carried out. Thus the state-to-state
information obtained from an atom-surface scat-
tering experiment can be used, after proper syn-
thesis and averaging, to predict the characteristics
of rarefied gas surface dynamics, e.g., energy
transfer or drag and lift forces between a dilute gas
and a surface. One of the most important and
characteristic measures of gas—surface dynamics
remains Knudsen’s energy AC for which there is a
large amount of high quality experimental data
and numerous theoretical calculations [27].

The purpose of this paper is to re-examine the
theory of the energy AC in the light of the many
new advances in the classical and quantum theo-
ries of atom-surface scattering. In particular, we
wish to incorporate recent theories of classical
scattering [35-41] which have been shown to give
excellent agreement with state-to-state measure-
ments of atomic and molecular scattering off of
crystalline and liquid surfaces.

The contents of this paper are as follows: in the
next section (Section 2), the theory of the AC is
developed in terms of a fully three dimensional
reflection coefficient, the same reflection coefficient
which is measured in an atom-surface experiment.
In Section 3, several models for classical scattering
from surfaces are discussed. In Section 4, details of
the calculations are discussed and useful limiting
cases for the AC and other quantities are derived,
and Section 5 is a discussion of the behavior of the
AC on the gas atom to surface atom mass ratio. In
Section 6, full calculations of the ACs are com-
pared with high quality data for the heat transfer
of low pressure rare gases with a clean tungsten
surface. Some conclusions from this work are
considered in Section 7.

2. Theory

The energy AC is a measure of the actual energy
exchanged between a gas initially placed in contact

with a surface, and the maximum thermodynami-
cally allowed energy which could be exchanged.
Although the classic model for introducing the
concept of energy accommodation is to have a gas
initially in equilibrium with temperature 7 placed
in contact with a surface which is initially in
equilibrium at temperature 75, many experiments
are carried out for conditions in which the gas is in
a highly non-equilibrium configuration, such as an
incident molecular jet beam [42-48]. A convenient
starting point is to consider the energy AC for a
monoenergetic incident beam of atomic projectiles
with energy E; which may be defined according to

 E—E  E—E (1)
TR —E 2kels — B

where E; is the average energy of an atomic par-
ticle after scattering from the surface. The notation
(Er) implies the average energy that an atom
would have if it had scattered away in equilibrium
with the surface at temperatures 75, which for the
Maxwell-Boltzmann distribution with the Knud-
sen flux correction is given by (E;) = 2k Ts with kg
Boltzmann’s constant. In more general experi-
mental situations, the gas will be in an initial dis-
tribution of states and E; must be replaced by the
average over that distribution. In the case in which
the gas is initially in a Maxwell-Boltzmann dis-
tribution then the AC becomes a function of two
temperatures, that of both surface and initial gas
given by

E; — (Ey) Er — 2kpTg

Ts, Tg) = - :
og(Ts, Tc) (Er) — (E)  2ksTs — 2kpTg

2)

For theoretical simplicity it is convenient to define
the equilibrium accommodation coefficient (EAC)
ag(7T) as a function of a single temperature which
is obtained as the limit in which surface and gas
temperatures are the same, Tg — Ts — T.

O(E(T) = lim T(XE(TS;TG)

Tg—Ts—

— lim _Fi—2kelo 3)

I6—Ts—T 2kpTs — 2kpTg '

The monoenergetic incident beam coefficient oy of
Eq. (1) has a distinct disadvantage in that it will
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normally become undefined for the surface tem-
perature at which its denominator vanishes. De-
spite this inconvenience, it is often useful as a
measure of energy transfer between a beam and a
surface [42,43]. On the other hand, the EAC og(7T)
remains well defined at all temperatures because
the numerator and denominator both vanish lin-
early when Ts — Tg, i.e., in this limit the average
final energy E; differs from (E;) = 2kg7G only by a
term which is linear in T — Tg.

For all of the above expressions (1)—(3) for the
AC, the problem is reduced to one of determining
the average energy of a gas projectile which has
been scattered from the surface E;. In order to
obtain this average energy it is convenient to in-
troduce the concept of the differential reflection
coefficient, which is the quantity usually mea-
sured in atom—surface scattering experiments. This
is denoted by dR(p;,p;, Ts)/dErd Qs and is the
probability per unit final energy and per unit solid
angle that a particle of well-defined incident mo-
mentum p; will be scattered into the small energy
range dE; and small solid angle dQ; centered
about the final momentum p,. The condition of
unitarity, or equality of total incident particle flux
to total scattered flux, requires normalization of
the differential reflection coeflicient, i.e., the inte-
gral of dR(p, p;, Ts)/d Erd Q; over the energy and
angles of all particles scattered from an incident
beam of momentum p, into the continuum plus the
sum of all particles scattered from an incident
beam of momentum p; into the continuum plus the
sum of all particles scattered into negative energy
bound states is unity. The differential reflection
coefficient specifies the angular and energy distri-
butions of the scattered intensity, and it can be
used to determine the average properties of the
scattered flux.

The incident gas can be described by a distri-
bution function d P(p;, 7c)/d E;d ©; which, similar
to the differential reflection coefficient, is also
normalized to unity when integrated over all initial
energies and over the 27 steradians of solid angle
above the surface. For a well defined incident
beam of momentum p, this would be written as a
product of Dirac ¢ functions in energy and solid
angle, while for a flux-corrected Maxwell-Boltz-
mann distribution

dP(p;, T) _ Eicosbh g iy, )
dEdQ a(keTs) ’

where 0; is the incident polar angle measured with
respect to the normal to the surface.

The average final energy needed for calculating
the double-temperature AC of Eq. (2) is conse-
quently given by

E:/ dEl/ dQl/ dEf dQ[‘E[‘
0 2n 0 2n

dPMB(pDTG) dR(pf7pi7TS) (5)
dE;d&; dE;dQ;

A closed form expression can also be obtained
for the EAC of Eq. (3) by exploiting the detailed
balancing condition relating energy losses to en-
ergy gains that must be obeyed by the differential
reflection coefficient. Detailed balancing between a
direct scattering event in which a projectile strikes
a surface initially at equilibrium and undergoes the
state-to-state process p, — p; and the process
pr — P; 1s expressed as

dR(p;,p;; Ts)  picos0;
dEiin o pf

% exp Er — E; \ dR(p;, p;, Ts)
kg Ts dE;dQ;

(6)

This is a general result, equally applicable to both
quantum and classical cases because the vibra-
tional statistics of each phonon exchange at the
surface are governed by the Bose—Einstein proba-
bility function which obeys this same detailed
balancing relation. When the detailed balancing
relation of Eq. (6) is used in conjunction with the
average scattered energy of Eq. (5) the limit
T — Ts of Eq. (3) can be carried out and the final

result is
1 o0 oo
[ as [ an [Cas
4(kBT) 0 2n 0

2 dPMB(pi7 T)
X anQf(Ef El) dEiin

dR(pf7 Pis T)
dEdQ; ™)
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Eq. (7), for a crystalline surface, involves a sixth
order integral. If the surface can be considered
azimuthally symmetric, such as the case for liquids
or amorphous solids, then one of the azimuthal
integrals becomes trivial and the problem reduces
to a fifth order integral.

3. Scattering models

In the above section mathematical expressions
for the energy ACs are presented in forms which
are developed assuming that the differential re-
flection coefficient for state-to-state scattering of a
single gas projectile is known. Numerous theoret-
ical prescriptions have been presented for obtain-
ing the differential reflection coefficient, both for
the case of quantum mechanical scattering and
classical scattering. In the case of classical atom-—
surface scattering, models have been developed for
several different representations of surfaces which
can be expressed as closed form mathematical
equations. For the discussion of the AC in this
paper, two of these classical models will be con-
sidered in detail.

The first of these models is the discrete model, in
which the surface is regarded as a collection of
discrete scattering centers at temperature 7s. For
collision times short compared to typical vibration
periods the single collision scattering of an atomic
projectile is given by the following differential re-
flection coefficient [38,49,50]:

dr  m?p o n 2
dQrdE  8m3h*p.Np B kgTs AE,

(Er — E; + AE,)’
* &Xp { SaTsAE, [ (8)

where p, is the momentum of a particle in state g,
AE, = (p; — p;)°/2M, is the binary collision recoil
energy, M. is the surface atom mass, m is the
projectile mass, Np is the normalization factor,
and || is the form factor of the scattering center.
Eq. (8) has been applied to high energy inelastic
neutron scattering [49], to low energy ion scatter-
ing [51,52], and to rare gas scattering from liquid
metals [40].

If the surface is regarded as a flat continuous
barrier, a somewhat different classical expression
for single collision scattering is obtained [35-39]:

dr" m’vg |py| | |z< m )3/2
= ‘["l
dQdE 4 ipuSecNe ' ' \ ks TsAE,

{ (E; — E; + AEo)> + 202 P? }
X eXp{q — )

4 Ts AE,
©)

where P is the component of momentum exchange
parallel to the surface P = P — P; S, is the area
of a surface unit cell, Nc is the normalization
factor. vg, as specified by Brako and Newns [35], is
the weighted average of sound velocities parallel to
the surface and is expected to be of the order or
less than the Rayleigh velocity of the solid. The
Gaussian-like term involving vg and P arises from
scattering from vibrational correlations at the
smooth surface. Eq. (9) has been used to describe
the inelastic scattering of hyperthermal energy He
atoms at energies above 0.1 eV from metal surfaces
at temperatures above room temperature [53]. In
this case the smooth continuous surface is due to
the locus of classical turning points caused by the
Pauli exchange repulsion with the low density of
surface electrons extending outward from the
bulk.

Up to this point the scattering data have been
treated with a theory based on a purely repulsive
interaction potential. However, the Van der Waals
forces between the surface and the incident atomic
projectile create an attractive well in front of the
surface. In classical scattering, the primary effects
of this adsorption well are to accelerate the in-
coming projectile and to refract the projectile into
a trajectory that is directed more normal to the
surface, and it provides channels for inelastic
sticking. Since sticking is not considered in this
work, the main effects of acceleration and refrac-
tion are correctly modeled by a simple attractive
square well potential placed in front of the repul-
sive barrier. If the well is made wider than the
selvage region of the surface then its width is un-
important, and the effect on the collision process is
to replace the perpendicular components of the



86 A. Muis, J.R. Manson | Surface Science 486 (2001) 8294

momentum p,. near the surface by an enhanced
value p,. which includes the well depth D:

ﬁ;z = pjz +2mD. (10)

This model of the attractive potential refracts all
projectiles at the leading edge of the well and
causes them to collide with the barrier with a
higher normal energy. Although the simple square-
well model adopted here does not have the correct
1/2* behavior of the leading term of the attractive
Van der Waals potential, it does correctly produce
the refraction effects and the higher energy of
collision into the barrier caused by the well.

Not surprisingly, it is found that the adsorption
potential well in front of the surface barrier plays a
large role in shaping the scattered angular distri-
bution when the incident energy is small [41]. The
main effect of the inclusion of an attractive well, as
compared to a potential with no well, is to broaden
the scattered angular distribution lobes produced
by a well defined incident beam when the incident
energy is comparable to or not too much larger
than the well depth.

The final quantity needed in order to specify the
differential reflection coefficient is the form factor
|za)>. A constant form factor is correct for classical
hard-sphere scattering, and this is what we use for
several of the calculations carried out below. The
actual value of the constant is unimportant be-
cause that is fixed by the unitarity normalization of
the differential reflection coefficient. Also, other
choices of the form factor have been used. For
example, a widely utilized form factor for elastic
and inelastic He atom scattering is the Jackson—
Mott form which is the quantum mechanical
matrix element of an exponentially replusive
potential, e.g., V(z) = Vyexp(—pz), taken with re-
spect to its own eigenfunctions [54]. In the semi-
classical limit of a hard, repulsive barrier f — oo
this (and all other similar matrix elements) go to
the limit [55]

T = 4pepi/m. (11)
Eq. (11) will be referred to as the hard wall matrix

element, and it is utilized in some of the calcula-
tions below.

4. Calculations and limiting cases
4.1. Discussion of numerical calculations

The numerical calculations which we report
below in Section 6 use primarily the smooth-sur-
face differential reflection coefficient of Eq. (9) and
to some extent the discrete model of Eq. (8). The
data which is used for comparison with the theo-
retical predictions comes from the high precision
experiments of Thomas [56,57] and of Kouptsidis
and Menzel [58,59] for rare gases in contact with a
clean multicrystalline tungsten surface. Because
the surface is multicrystalline it can be considered
azimuthally symmetric with respect to the direc-
tions of the incident gas particles and this reduces
the apparent sixth-order integral of the AC of Eq.
(7) to a fifth-order integral. Since the classical
differential reflection coefficients of Egs. (8) and (9)
are positive definite functions and, regarded as a
function of final energy E; for fixed incident mo-
mentum p;, consist of a peak with a single maxi-
mum, the integrals are ideally suited to integration
algorithms using Gaussian quadratures. For all
the five multiple integrals, a Guass-Laguerre
quadrature was utilized together with an auto-
matic check which increases the number of inte-
gration points until the desired precision was
achieved. For small temperature differences |75 —
7| the double temperature AC of Eq. (2) gave
essentially identical results as the EAC of Eq. (7).

4.2. Limiting case

Evaluating analytically the theoretical expres-
sion for the EAC is a clearly non-trivial task except
for the simplest models for the differential reflec-
tion coefficient, due to the large number of inte-
grals. However, there is one case in which some
interesting progress can be made, and this is the
case of the discrete model of Eq. (8) at low tem-
peratures and small mass ratio u. In this limit the
discrete model differential reflection coefficient,
when regarded as a function of E; for fixed E;
appears very similar to a Gaussian function, and in
the limit the Gaussian function becomes very
narrow and can approximate a Dirac ¢ function.
This can be seen by regarding the Gaussian-like
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exponential appearing in the discrete differential
reflection coefficient of Eq. (8) as follows:

exp | — (E: — Ei + AE,)’
P Ay TsAE,

N (Er — f(0)E:)
- exp <_ 4kBTSg(0)Ei )

~ \/Amky Tsg (0)E:d (Er — f(0)E:), (12)

where 0 is the total scattering angle between final
and initial momenta and f(0) and g(6)s are given
by [60]

7(0) = (\/l—uzsin 0+,ucos@) ’ (13

I+pu

_ 1(1+ £(0) — 24/£(0) cos ) '
(1+ 1~ peos0/\/7(0))°

When the limiting expression of Eq. (12) is used
in the discrete model differential reflection coeffi-
cient of Eq. (8) and inserted into the EAC of Eq.
(7), the integral over Ef is trivially carried out using
the 6 function. Then the integral over E; also be-
comes straightforward, and leads to

3 1
T — [ dQ—
e )—>(l+u)2 /27'[ Np

x| Al = £(O)]*h(0), (15)

2n

g(0)

(14)

where

2
[\/1 —,uzsinze—i-,ucosﬁ}

h(0) = . (16)
\/1—p2sin® @
In this same limit the normalization for the dis-
crete model becomes
2n 1
— — Q . 1
Mo cos O0; (1 + p)* /27rd rh(0) {17

This then leads to the somewhat simplified form

3 3 1
e Q—
() = =y /z,rd "No

<) dQcf(0)[2 - 1 (0)]h(0). (18)
For the continuum model differential reflection
coefficient of Eq. (9) this limiting case cannot be so
readily carried out, however, for small values of
the parameter vg such a limiting procedure can be
effected.

5. Dependence of the equilibrium accommodation
coefficient on mass ratio

There is a considerable body of work on estab-
lishing simple expressions for predicting the de-
pendence of the EAC on the mass ratio = m/M.
[61,62]. Many of these arrive at equations based on
the Baule expression for the energy transfer in a
head-on collision between two hard spheres
Er = i“z . (19)

(I+u)

A very interesting derivation by Goodman, based
on averaging the Baule expression (19) over clas-
sical trajectories, arrives at the following depen-
dence of ag(T) on u [62]:

2.4u
(1+p)?*

It is of interest to compare the u-dependence of
the present calculational models with the simple
expression of Goodman (20) and this is shown in
Fig. 1. The short-dashed curve is the EAC calcu-
lated with the smooth-surface differential reflection
coefficient of Eq. (9) with a constant form factor.
The value of the velocity parameter was taken to
be vg = 100 m/s for this calculation, but the result
is actually nearly independent of the value of v
for vg less than several thousand m/s. The long-
dashed curve and the dotted curve are for the
smooth-surface model with the hard wall form
factor of Eq. (11) with vg =1 and 500 m/s, re-
spectively. In contrast to the case with a constant
form factor, when the parameter vg > 300 m/s the
value of the EAC begins to become smaller, and

ae(T) — (20)
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EEAC vs 1
Gas = TSurface =500 K
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—— Empirical
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EEAC

-
.. == -
T -~

15 2
Mass Ratio

Fig. 1. The equilibrium energy accommodation coefficient
og(T) as a function of mass ratio = m/M, at a temperaure
T =500 K. The short-dashed curve is the calculation for the
continuum model of Eq. (9) with a constant form factor, the
long-dashed curve is for the continuum model with a hard wall
form factor and vg = 1 m/s, the dotted curve is the same with
vg = 500 m/s, the dash—dotted curve is for the discrete model of
Eq. (8) with a constant form factor, and the solid curve is the
empirical formula (20) of Goodman [62].

for vg = 500 m/s there is a significant reduction at
all expect the smallest mass ratios. The dash—dot-
ted curve is the EAC calculated with the discrete
differential reflection coefficient of Eq. (8) with a
constant form factor. This is the zero-parameter
model. The solid curve is Goodman expression of
Eq. (20).

The discrete model calculation agrees well with
the Goodman equation (20) for u < 0.6, which is
perhaps not surprising since both are based on
hard core scattering. It is interesting to note,
however, that the Baule-based theories are valid
only up to g =1 because for p > 1 there is no
backscattering when an incident hard sphere col-
lides with a hard sphere of smaller mass. However,
the discrete and smooth-surface scattering models
of Egs. (8) and (9) are valid for a larger range of pu.
This is because these models correctly include the
thermal motion of the target atoms, and back-
scattering events can occur even for g > 1 if the
target is moving. As an example in fact, these
models have been demonstrated to apply to the

case of scattering of Xe atoms from a surface of
the less massive metals Ga and In [40].

6. Comparison of calculations with measurements

In choosing a set of experimental measurements
for initial comparisons with the present theory,
one is impressed by the immense amount of data
amassed on this subject since the seminal experi-
ments by Roberts [7] in the 1930s. The over-
whelming majority of this work has been reviewed
in the important work of Saxena and Joshi [27].
Although the number of systems measured is
large, clearly the most appropriate gases from the
point of view of theoretical simplicity are the rare
gases, and the most amenable surface to the con-
straints of the experimental conditions is the re-
fractory metal tungsten. Since the experiments of
Roberts, these rare-gas/tungsten system have been
measured at several intervening periods with in-
creasingly good surface cleanliness, to the point
where now the accommodation of all the rare
gases, with the exception of radon, have been
measured [56,57] and verified over extended tem-
perature ranges [58,59]. Clearly the rare-gas/tung-
sten system is the data of choice for which this
theoretical work should be compared [55,63].

Our first calculation carried out for the EAC as
a function temperature 7" used the discrete model
of Eq. (8) with a constant form factor. This cal-
culation is quite interesting because the model has
no free parameters, thus it contains only kine-
matical and thermodynamical information with
the interaction potential represented as a hard core
interaction. Interestingly, the calculated EAC is
very nearly a constant, independent of tempera-
ture, for each of the rare gases. The values of the
EAC are very close to those given by the semi-
empirical relation of Goodman in Eq. (20), as is
evident from the mass ratio dependence shown in
Fig. 1. The exception is the EAC for Xe which is
calculated to be o = 0.553 and the semi-empirical
value is 0.583.

Fig. 2 shows a calculation for the smooth-sur-
face differential reflection coefficient of Eq. (9) with
a constant form factor. The a-coefficients for He,
Ne, Ar, Kr and Xe are compared with the experi-
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Fig. 2. The equilibrium energy accommodation coefficient
ap(T) as a function of surface temperature T for the five rare
gases He, Ne, Ar, Kr and Xe on a W surface using the smooth-
surface model of Eq. (9) with a constant form factor. The ex-
perimental data are those of Thomas [56,57] (open symbols)
and of Kouptsidis and Menzel [58,59] (filled symbols). The data
for He is shown as circles; Ne as triangles, Ar as squares, Kr as
diamonds, and Xe as inverted triangles.

mental data of Thomas [56,57] (open symbols)
and of Kouptsidis and Menzel [58,59] (filled sym-
bols). The data for He is shown as circles, Ne as
triangles, Ar as squares, Kr as diamonds, and Xe
as inverted triangles. The value chosen for
vg = 100 m/s, although as in Fig. 1 the results are
independent of values of v in the range of up to
several thousand m/s. Just as for the discrete
model the calculated EACs are nearly independent
of temperature. For both models this cannot be
considered good agreement, although the AC
values are correctly predicted to be increasing with
the mass of the rare gas. However, these two cal-
culations give a baseline for evaluating the EAC
with relatively little, information on the potential.
As we will show below in connection with Fig. 3,
the discrepancy between the calculated values of
the EAC and the experimental measurements ap-
pears to be mainly due to the absence of an at-
tractive adsorption well in front of the repulsive
part of the surface potential.

However, before examining the effects of the
attractive well on the dynamics of the scattering

1 T T
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L
0.8 -\\\\ < ’ V; ----- T
\\\\ 0 v v
06 b W * %o |
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< \\ o * *\\“ .
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ol a * e+
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3 0y "7
02 p e -
0 —at
5 150 250 390
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Fig. 3. The EAC for the rare gases in contact with a clean
tungsten surface including the effects of the attractive adsorp-
tion potential well in front of the repulsive surface potential,
plotted as a function of temperature for the smooth-surface
model as in Fig. 2. The well depths are chosen as follows: He, 5
meV; Ne, 5 meV; Ar, 15 meV; Kr, 35 meV; and Xe, 300 meV
and the average surface phonon velocity is taken as vg = 2500
m/s.

process it is important to consider whether there
could be measurable effects due to the absorption
of the rare gas on the W surface at lower tem-
peratures. The steady increase of the measured
EAC values with decreasing temperature, espe-
cially for the heavier rare gases which have deep
adsorption wells, might be attributed to an in-
creasing residual adsorbed layer with decreasing
temperature. Such a partial adsorbed layer would
give rise to an increasing number of binary events
with the incident gas particles scattering from
other adsorbed rare gas atoms, events that have
mass ratio u=1 which maximizes the purely
kinematical energy transfer at back scattering an-
gles. The magnitude of such an effect can be esti-
mated by calculating the rare gas adsorbate
coverage @ of the tungsten surface with the
Langmuir isotherm [27]. Then the effects of ad-
sorbates can be most readily estimated with the
simple assumption that a fractional portion @ of
the surface is covered with rare gas adsorbates and
the remaining fraction 1 — @ is clean W metal
according to the following relation:
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o (T) = Oog(T) .y + (1 = O)ox(T),pypser  (21)

where ag(7T),_, is the AC for a surface of pure rare
gas, and og(7),_,, . is the AC for scattering of a
gas of mass m from the clean metal surface of mass
Mc. The value of @ calculated from the Langmuir
isotherm depends on the adsorption energy (the
depth of the adsorption well) and on the gas par-
tial pressure. For reasonable values of these pa-
rameters corresponding to known experimental
conditions, ©(T) changes very rapidly from values
near zero to values near unity over a range of
temperature of just a few Kelvin. This sudden
onset of adsorption, when used in Eq. (21), gives a
nearly step-function increase in the value of og(7)
at the adsorption transition temperature which is
not at all similar to the gradual increase of the
measured data at lower temperatures as seen in
Fig. 2. This analysis indicates that adsorption of
the gas is not the cause of the discrepancy between
experiment and calculations in Fig. 2, and also
indicates that it is not the cause of the gradual
increase in og(7) at lower temperatures observed
for the heavier rare gases.

Fig. 3 shows calculations of the EAC which take
into account the attractive physical adsorption
well of the surface potential. The theoretical curves
are for the smooth-surface model of Eq. (9) with a
parallel vibrational wave velocity vg = 2500 m/s
and a constant form factor. The well depths are
chosen as He, 5 meV; Ne, 5 meV; Ar, 15 meV; Kr,
35 meV; and Xe, 300 meV. The reasonable
agreement with experiment indicates that this is
the effect that explains the gradual increase of the
data with decreasing temperature for all except the
lightest rare gases He and Ne. This behavior of
the AC as a function of well depth has been dis-
cussed in detail previously by Goodman in the
context of the theoretical models limiting the gas
motion to one dimension [64-67]. There, it was
shown that increasing the well depth both in-
creases the AC values overall at all temperatures,
and this increase becomes larger as the tempera-
ture decreases. The present fully three-dimensional
model exhibits this same behavior as a function
of well depth.

For comparison a list of calculated and mea-
sured values of the depths for the five rare gases on

various amorphous or single crystal tungsten sur-
faces is given in Table 1 [68]. An examination of
this table shows that there is little agreement on
the values of these well depths, and for some gases
the discrepancy is significantly greater than a fac-
tor of 2 between largest and smallest measured
values. However, the values that we have used to
fit calculations to the data in Fig. 3 tend to be
smaller than the range of measured values.

Clearly, by using the well depth as a fitting pa-
rameter, the resulting calculations agree well with
the experimental measurements for the heavier
rare gases Xe, Kr and Ar for which the present
classical model is expected to be valid. For the
smaller mass elements Ne and He, the calculations
with a non-zero well depth predict a value for
ag(7) which is significantly larger than the mea-
sured values. For a potential without a well, the
AC values for He and Ne are in relatively good
agreement with the data, as seen in Fig. 2, but as
soon as even a small well depth is included the AC
becomes too large.

These results for He and Ne stand in contrast to
earlier calculations of Goodman using classical
models limiting the gas motion to one dimension
and taking the surface temperature to be always at
absolute zero [66,67]. Goodman’s results were in
agreement with the data for reasonable values of
the depths (D = 6.0 meV for He and D = 27.3 meV
for Ne).

However, the large AC values found here for He
and Ne with a non-zero well depth are expected,
because the theoretical models are completely
classical which means that they should apply only
to heavier atomic gases. Helium at room tem-
perature and below, interacting with metal sur-
faces, has been demonstrated to be a quantum
mechanical system in which the energy exchange is
dominated by single phonon transfers [20]. This
quantum nature is even more pronounced with
heavy metals such as platinum [69,70] and tung-
sten. For example, detailed He atom measure-
ments of the dispersion relations for single crystal
tungsten clearly show that the dominant inelastic
processes for the scattering of thermal energy
beams are single phonon transfers [84-86]. In fact,
several single quantum theories of the EAC appear
to explain the small values of «g(7) measured for



A. Muis, J.R. Manson | Surface Science 486 (2001) 8294 91

Table 1

List of measured and calculated values for the well depths of the
rare gases on multicrystalline tungsten and single crystal tung-
sten surfaces [68]

Gas-surface D (meV) Reference Theoretical/
experimental
He-W 3.5 [71] T
43 [72] E
5 [P] T
He-W(110) 3.5 [73] E
5.6 [74] E
He-W(112) 6.07 [75] E
Ne-W(110) 17.4 [76] E
104 [77] E
5 [P] T
Ar-W(111) 78.0 [78,79] E
82.5 [76] E
119 [80] E
46.6 [71] T
32.6 [81] T
127 [77] E
15 [P] T
Kr-W 195 [82] E
239 [80] E
247 [77] E
35 [P] T
Xe-W 180 £ 6 [83] E
300 [P] T

Experimentally measured values are marked (E) and theoretical
calculations are marked (T). The case of He-W(1 1 0) marked
with the superscript a is the deepest quantum bound state. The
entries referenced as [P] are the values used in this paper.

the He/W system [87-91]. Thus the classical theory
developed here is not expected to give good
quantitative results in the case of He. Similarly, for
Ne there are ample numbers of experiments which
have demonstrated that for interactions with metal
surfaces both quantum mechanical diffraction [92—
96] and single phonon inelastic events [97] are
important. A theoretical study of the thermal at-
tenuation of diffraction beams in Ne scattering
from closed-packed Cu surfaces has shown that
inelastic scattering over the range of temperatures
and incident energies considered here can be ex-
plained with a combination of single and double
phonon processes [98]. Thus, since both He/W and
Ne/W are expected to be systems for which
quantum effects are important it is expected that
the present purely classical calculations, valid only

when large numbers of phonon are transferred,
overestimate the energy transfer and produce AC
values that are too large.

7. Conclusions

We have developed a full three-dimensional
theory of the AC under rarefied gas dynamics
conditions in terms of the differential reflection
coefficient for state-to-state scattering of gas par-
ticles from a clean surface. This theory is applied
to two models of classical scattering of atomic
projectiles at surfaces in the single-collision limit,
the discrete model and the smooth-surface model.
These two models have been previously demon-
strated to give good quantitative predictions for
the measured state-to-state scattered intensities in
atom-surface experiments involving scattering of
rare gases from metal, insulator and liquid sur-
faces. Thus they should be good predictors of the
behavior of the AC.

Full three-dimensional calculations were carried
out for comparison with the high-quality experi-
mental data for the EAC for five different rare
gases in contact with a clean, multi-crystalline
tungsten surface. The parameter-free discrete model
gave results which, although in the correct order of
magnitude, are not in good agreement with ex-
perimental measurements. In fact, the EAC for
this model was found to be nearly independent of
temperature. However, this model is quite useful
because it is totally free of adjustable parameters,
it gives a baseline value of the EAC which contains
only kinematics, and no specifics on the nature of
the interaction potential between the projectile and
the surface beyond a hard core interaction. The
three-dimensional calculations using the somewhat
more realistic smooth-surface model were in little
better agreement with the data, and were also
nearly independent of temperature.

However, good agreement with the data for the
EAC of the heavy rare gases is obtained with the
smooth-surface scattering model which includes
the attractive adsorption well in the scattering
potential and using the well depth as a fitting pa-
rameter. The importance of the attractive well and
its influence on the shape of the AC has been
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discussed earlier by Goodman [64-67] and these
results confirm that the presence of a well increases
the AC especially at low temperatures. The need to
include the potential well has also been demon-
strated for explaining the data for beams of the
heavy rare gas atoms scattering from molten
metals at low incident energies [41], in the same
range of thermal energies encountered in mea-
surements of the EAC. Similarly, the potential well
is known to have important contributions to
atom-surface scattering under quantum condi-
tions [20]. This indicates the importance that the
potential well plays in the process of energy ex-
change at a gas—surface interface.

The good agreement applied only to the heavy
rare gases Ar, Kr and Xe. The smaller mass rare
gases He and Ne have been shown in many pre-
vious experiments to behave as quantum scatterers
in which energy exchange occurs only in single
quanta or in small numbers of quanta. Since the
calculations carried out here are entirely classical it
is not surprising that the EAC for these small mass
projectiles is overestimated. On the other hand, the
heavy mass projectiles are expected to behave as
fully classical projectiles, and this is supported by
the agreement obtained with the present classical
theoretical predictions.

Future work will involve including more details
of the interaction potential between the gas parti-
cle and the surface, as well as investigating the
effects of multiple collisions of the projectile with
the surface. Also, comparisons will be made be-
tween these fully three-dimensional calculations
and earlier calculations utilizing more restricted
one-dimensional and two-dimensional models of
the interaction potential in order to estimate the
validity of such simpler and calculationally quicker
approaches. Additionally, the importance of the
attractive well indicates that sticking and tempo-
rary trapping in the adsorption states of the po-
tential may play a role in the accommodation and
energy exchange. The effects of transitions into the
negative-energy bound (or adsorption) states of
the potential will be investigated, including reso-
nant transitions into the bound states. The sticking
coeflicient, which is very closely related to the AC
[99,100], will also be investigated. In conclusion, it
has been established that fully three dimensional

calculations of the energy AC with suitably chosen
parameters can explain the measured data over a
large range of temperatures for the heavy rare
gases Ar, Kr and Xe colliding with a W surface.
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