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Abstract

The accommodation coefficient (AC) for the transfer of energy at a gas–surface interface is treated with a one-

dimensional (1D) theoretical model for classical scattering that retains full temperature dependence of both the gas and

surface. Calculations are carried out for a purely repulsive gas–surface interaction and for the case in which there is an

attractive adsorption well. Comparison with 3D calculations and with data for the accommodation of the rare gases at

a tungsten surface indicates that full 3D dynamics are important for calculating the AC. � 2002 Elsevier Science B.V.

All rights reserved.
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Since its initial introduction by Maxwell [1] one
of the major parameters for describing energy ex-
change at a gas–surface interface is the energy
accommodation coefficient (AC). The foundations
for both theory and experimental measurements of
the AC were established early in this century by
Knudsen [2]. Several excellent reviews have cov-
ered continuing work on measuring and calculat-
ing the AC [3,4], and new treatments continue
right up to the present [5].

Many previous theoretical treatments of the AC
have been carried out using reduced dimensional-
ity scattering models, in many cases one-dimen-
sional (1D) models, or have needed to make other
severe approximations such as setting the surface
temperature equal to zero [4,6]. Recently, a fully
3D model with complete temperature dependence

of both surface and gas has been applied to clas-
sical calculations of the AC [7]. The scattering
model used has the distinct advantage, as com-
pared to older treatments of the AC, that it
has been demonstrated to describe state-to-state
atom–surface scattering experiments for low-
energy ions or rare gases colliding with a variety of
surfaces [8–10].

The purpose of this paper is to compare AC
calculations made with 1D models to those made
with full 3D scattering geometry. In particular, a
scattering model is used that has explained the
energy resolved spectra for the scattering of mono-
energetic beams of rare gases from metal surfaces.
This is the discrete model, one that treats the
surface as a collection of discrete scattering cen-
ters. Of the several realistic classical scattering
models available [11] only the discrete model ad-
mits to a straightforward reduction to 1D.

It has been shown that calculations of the AC
with the 3D discrete model underestimate the

Surface Science 502–503 (2002) 352–357

www.elsevier.com/locate/susc

* Corresponding author. Fax: +1-864-656-0805.

E-mail address: jmanson@ces.clemson.edu (J.R. Manson).

0039-6028/02/$ - see front matter � 2002 Elsevier Science B.V. All rights reserved.

PII: S0039 -6028 (01 )01975 -6



known experimental values for the heavy rare
gases exchanging energy with a tungsten surface. A
more sophisticated 3D model, which includes an
attractive potential well and correct momentum
conservation at the surface, was found to satis-
factorily explain the same data [7].

However, in the present work it is found that
the 1D model, in contrast to the 3D model, se-
verely overestimates the AC. Improvements to the
1D model, such as adding an attractive potential
well and including multiple collisions with the
surface for the particles trapped in the well, further
increases the AC and makes the agreement with
measurements even worse.

Because of the generality of the discrete model,
and the fact that it contains physically correct
thermodynamics for both the surface and the gas,
its failure appears to be a general result of 1D
models. The basic conclusion to be drawn from
this work is that full 3D scattering dynamics and
correct conservation of momentum is essential for
correctly describing thermal accommodation.

The energy AC aEðTS; TGÞ is a measure of the
energy actually exchanged by a gas at temperature
TG in contact with a surface at temperature TS

normalized to the maximum that could be ex-
changed if, on average, the gas atoms come into
equilibrium with the surface after colliding with it.
For a 1D system aEðTS; TGÞ is given by

aEðTS; TGÞ ¼
Ef � kBTG

kBTS � kBTG

; ð1Þ

where Ef is the average energy of a gas atom after
colliding with the surface and kB is the Boltzmann
constant. It is convenient to define the equilibrium
accommodation coefficient (EAC) aðT Þ as the limit
of Eq. (1) in which the two temperatures become
equal, i.e., in the limfTG ! TS ! Tg. It is aðT Þ that
will be of interest in this work.

The average final energy required for Eq. (1) is
given by

Ef ¼
Z 1

0

dEi

Z 1

0

dEf Ef

dPMBðEi; TGÞ
dEi

	 dRðEf ;Ei; TSÞ
dEf

; ð2Þ

where for a 1D system dRðEf ;Ei; TSÞ=dEf is the
differential reflection coefficient giving the proba-

bility per unit final energy that an incident parti-
cle of energy Ei will be scattered with final energy
Ef , and dPMBðEi; TGÞ=dEi ¼ expf�Ei=kBTGg=kBTG

is the 1D Maxwell–Boltzmann distribution with
streaming correction which gives the flux of inci-
dent atoms striking the surface.

The differential reflection coefficient must obey
the condition of detailed balancing, given by

dRðEi;Ef ; TSÞ
dEi

¼ exp
Ef � Ei

kBTS

� �
dRðEf ;Ei; TSÞ

dEf

;

ð3Þ
i.e., Eq. (3) is the relation between scattering in-
tensities for the two cases in which a particle
scatters from energy Ei to Ef , or scatters from the
initial energy Ef to the final energy Ei. Making use
of the detailed balancing condition, the limit
TG ! TS can be carried out on Eq. (1), and after
some manipulation a general expression for the
EAC is given by

aðT Þ ¼ 1

2ðkBT Þ2
Z 1

0

dEi

Z 1

0

dEf ðEf � EiÞ2

	 dPMBðEi; T Þ
dEi

dRðEf ;Ei; T Þ
dEf

: ð4Þ

The discrete scattering model that will be used
with Eq. (4) to evaluate the EAC is obtained by
treating the scattering of a projectile of mass m
colliding with a surface of hard core scattering
centers of mass M that are in thermodynamic
equilibrium at the temperature TS [12]. The kine-
matical conditions of conservation of energy and
momentum are obeyed upon collision. In 1D the
differential reflection coefficient becomes

dR
dEf

¼ 1

Ni

1

4pkBTSDE0

� �1=2

	 exp

(
� ðEf � Ei þ DE0Þ2

4kBTSDE0

)
; ð5Þ

where DE0 ¼ lð
ffiffiffiffiffi
Ei

p
þ

ffiffiffiffiffi
Ef

p
Þ2 is the recoil energy of

a 1D collision and l ¼ m=M . The normalization
constant Ni assures that the differential reflection
coefficient obeys unitarity, i.e., the integral of
dR=dEf over all final energies equals 1.

Calculations of the EAC of Eq. (4) using the
differential reflection coefficient of Eq. (5) show
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that aðT Þ is independent of the temperature and
depends only on the mass ratio l. This dependence
is shown in Fig. 1 where aðT Þ is plotted as a
function of l and compared with results of the
same calculations for the full 3D discrete model.
Also shown in Fig. 1 is the simple Baule expression
for the 1D AC, which is the expression for the
energy transfer in a head-on collision between two
hard spheres

a ¼ 4l

ð1 þ lÞ2
: ð6Þ

It is seen that the Baule approximation is in good
agreement with the full calculations for l < 0:2.
The Baule approximation is valid only up to l ¼ 1,
but the EAC calculated from Eq. (5) can be ex-
tended to l > 1 because the thermal motion of the
target can still back scatter the gas particles even if
m is greater than M.

The calculations for the 3D model involve in-
tegrations over incident and exiting angular vari-
ables in addition to the integrations over initial
and final energies [7]. The results for this model are
again independent of temperature and are also
shown in Fig. 1 as a dash-dotted curve. Goodman
has proposed a version of the Baule approxima-
tion of Eq. (6)

a � 2:4l

ð1 þ lÞ2
; ð7Þ

which is obtained by averaging the Baule expres-
sion of Eq. (6) over classical trajectories in a 3D
scattering process [13]. It is clear that the exact 3D
calculations agree well with the Goodman ex-
pression for l < 0:6. A significant point to be
drawn from Fig. 1 is that the 1D calculation is
much larger than the 3D calculation for all values
of l. This is important because both are exact
calculations carried out with the 1D and 3D ver-
sions of the same surface scattering model.

Up to this point the surface interaction has been
treated with a purely repulsive potential. However,
the Van der Waals forces between a surface and an
approaching particle create an attractive well in
front of the surface. The simplest way to introduce
such an attractive interaction is with a square well
potential. For classical scattering the primary ef-
fects of the adsorption well are to accelerate the
incoming particle and cause it to collide with the
surface at higher effective kinetic energy. A square
well models this effect quite satisfactorily, not only
under purely classical conditions, but also in
atom–surface scattering under quantum mecha-
nical conditions where it is known as the Beeby
correction [14]. The approximation of using a
square attractive well is further justified by its use
in 3D calculations with models similar to that used
here. A calculation and comparison with experi-
mental data for the scattering of rare gases from
liquid metals showed that a square well gave a
good explanation of the effects of the attractive
well on the observed scattered angular distribu-
tions [15].

The attractive well in the interaction potential
will be important at low energies, where the energy
is comparable to the well depth D. It also gives rise
to additional phenomena, such as the possibility
for sticking and trapping of gas atoms. For clas-
sical scattering the width of the well is unimpor-
tant. The effect on the scattering process is to
enhance the energy at which the incoming gas
particle collides with the repulsive wall according
to

E0
i;f ¼ Ei;f þ jDj: ð8Þ

Fig. 1. The equilibrium energy AC aðT Þ as a function of mass

ratio l ¼ m=M . The solid curve shows the 1D calculation of Eq.

(4) and the dotted curve is the Baule formula of Eq. (6). The 3D

calculation is the dash-dotted curve [7] and the dashed curve is

Goodman’s modified Baule formula of Eq. (7).
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Once an attractive well is introduced, there is a
non-zero probability that gas particles will become
trapped in the well after a collision. Unless the
surface temperature is very low, these trapped
particles will suffer multiple collisions with the
surface and eventually escape. When they escape,
since they will have had many collisions inside the
well, the appropriate assumption is that they will
leave the surface with an equilibrium distribution
at the temperature of the surface [4]. The fractional
probability of trapped and scattered atoms is de-
termined from the scattering kernel appearing in
Eq. (4) according to

1 ¼
Z 1

0

dEi

Z 1

0

dEf

dPMBðEi; TGÞ
dEi

dR0ðE0
f ;E

0
i; TSÞ

dE0
f

þ
Z 1

0

dEi

Z 0

�jDj
dEf

dPMBðEi; TGÞ
dEi

dR0ðE0
f ;E

0
i; TSÞ

dE0
f

¼ Nc þ Nt: ð9Þ

In Eq. (9) Nc is the fraction of all atoms in the gas
that are scattered back into the continuum after a
collision. It is this contribution to the scattering
kernel that is used to calculate the EAC from Eq.
(4) in the presence of the well. Additionally, the
trapped fraction Nt can be assumed to leave the
surface eventually in an equilibrium distribution,
thus this fraction is normally assigned an AC of
unity and added to the contribution calculated
from Eq. (4) using the fractional scattered proba-
bility [4].

For the fraction of gas particles that is trapped
in the well after the first collision, the relatively
simple model of a square well allows for following
those particles as they continue to make successive
collisions with the repulsive wall. The most phys-
ical approximation of this multiple scattering
process is to assume that the trapped particles
scatter elastically from the attractive step at the
front of the well, and then scatter inelastically ac-
cording to the differential reflection coefficient
dR0ðE0

f ;E
0
i; TSÞ=dE0

f of Eq. (5) evaluated at the re-
pulsive wall inside the well. The justification that
the attractive step of the square well does not vi-
brate, and hence does not contribute to inelastic
scattering, is the same as the argument that the
V ðzÞ � C3=z3 surface Van der Waals potential is
static, i.e., the Van der Waals attraction arises

from a summation over the full 3D bulk of the
target and hence all vibrational motion averages to
zero. The process of multiple scattering in the well
can be developed into an infinite series in which
each successive term is a convolution of all previ-
ous scattering differential reflection coefficients.
Such a series can be calculated exactly for a few
low-order terms. Higher order terms can be sum-
med by making use of several interesting approx-
imations. Carrying out this multiple scattering
process gives a more accurate evaluation than the
simple assumption of an equilibrium distribution
for the contribution to the differential reflection
coefficient of the gas particles escaping from the
trapped state after multiple scatterings. It also
gives estimates of the lifetimes of particles in the
trapped state.

A representative calculation for the EAC with
an attractive well is shown in Fig. 2 for the ac-
commodation of Ar gas at a tungsten surface. The
1D EAC is plotted as a function of temperature T
with well depths D ¼ 0 meV (solid line) and D ¼ 5
meV (dashed curve). The data are those of Tho-
mas [16] (open symbols) and of Kouptsidis and
Menzel [17] (filled symbols). The general behavior

Fig. 2. The equilibrium energy AC aEðT Þ as a function of

surface temperature T for Ar on a W surface. The experimental

data are those of Thomas [16] (�) and of Kouptsidis and

Menzel [17] (j). The calculated curves for the 1D model are for

well depth D ¼ 0 meV (––) and D ¼ 5 meV (– – –). The 3D

model of Ref. [7] is shown for D ¼ 0 meV (� � �) and D ¼ 15 meV

(– � –).
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of aðT Þ as a function of T and well depth D is
exhibited clearly here. Without a well, aðT Þ is es-
sentially constant. With a well, the value of aðT Þ
increases, with the increase becoming greater as T
decreases, in qualitative agreement with experi-
ment. This general behavior of the EAC as a
function of well depth is well known [4], and is
similar for both 1D and full 3D calculations [7].
Also shown in Fig. 2 is the best fit 3D calculation
using the smooth surface model discussed in Ref.
[7] with D ¼ 0 meV (dotted line) and D ¼ 15 meV
(dash-dot curve). The smooth surface model is one
that assumes a smooth vibrating repulsive barrier
for the atom–surface potential and includes the
correct conservation of momentum, i.e., conser-
vation of momentum only in directions parallel to
the surface. For simplicity, the 3D discrete model
calculations are not exhibited in Fig. 2, however,
from Fig. 1 it is seen that for D ¼ 0 meV the AC
value is constant and equal to 0.35, while for
D ¼ 5 meV it increases and is always larger than
the experimental points but always significantly
less than the 1D values.

The important point to be drawn from Fig. 2 is
that the 1D calculation of the AC, even with a very
small attractive well depth, not only overestimates
the experimental values, but is also larger than the
3D discrete model calculations for the same well
depth. This is in contrast to the case of full 3D
calculations with the smooth surface model where,
as seen in Fig. 2, it was possible to match the ex-
perimental data with a non-zero value of the well
depth [7].

It should be noted that the best-fit value of
D ¼ 15 meV for the well depth used in the calcu-
lations shown in Fig. 2 is small compared to mea-
sured and calculated values for this system.
Although there is large discrepancy in the measured
values, they range from 80 meV to somewhat more
than 120 meV [18]. Theoretical calculations are
somewhat smaller, ranging from 33 to 47 meV [18].

The behavior of the EAC shown in Fig. 2 for Ar
on tungsten is qualitatively the same in compari-
son with the experiments for the other heavy rare
gases which have been measured, namely Kr and
Xe. It should be mentioned that these calculations
also overestimate the EAC for He and Ne ac-
commodating at a tungsten surface. However,

since He and Ne are light atoms they exhibit
quantum behavior in surface scattering, and the
present classical calculations are not expected to be
valid for these gases at low temperatures.

To summarize, detailed calculations for a 1D
model of the energy AC have been carried out,
compared with previous 3D calculations, and
compared with experimental data for rare gases
accommodating at a tungsten surface. Classical
surface scattering theory is adequate for the heavier
rare gases and the discrete model was chosen for
the following three reasons: (1) it contains the
correct thermodynamics and full temperature de-
pendence of both the gas and surface; (2) the dis-
crete model is the appropriate 3D model from
which one can reduce to the 1D case, and (3) the 3D
discrete model is physically realistic because for
several measured systems it has been demonstrated
to explain state-to-state atom–surface scattering
data.

The results of the calculations show that the
EAC calculated with the 1D model is substantially
larger than that calculated with the 3D version of
the same model, and it severely overestimates the
experimentally measured values. Improvements in
the basic repulsive hard-core scattering, such as
inclusion of an attractive well, increase the value of
the calculated EAC and make the agreement with
experiment even worse. On the other hand, a
properly formulated 3D model can be made to
agree with experiment.

Clearly, one conclusion that can be drawn from
this work is that the 1D discrete model for atom–
surface scattering is inadequate for calculations of
the EAC because it consistently calculates values
of the EAC that are too large. The fact that the 3D
models can be made to agree with the experimental
data with reasonable potential parameters indi-
cates that full 3D scattering geometry and physi-
cally correct conservation of momentum parallel
to the surface are important to correctly predict
the accommodation at a gas–surface interface.
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