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A theoretical model is developed for describing the scattering of molecules from surfaces, which includes
energy and momentum transfers between the surface and projectile for both translational and rotational motion,
and internal-mode excitation of the projectile molecule. The translational and rotational motions, including
multiphonon excitations with the surface, are treated in the classical limit. Internal-vibrational-mode excitation
of the molecules is treated quantum mechanically, with extension to arbitrary numbers of internal modes and
arbitrary excitation quantum numbers. Examples of calculations are carried out for the surface scattering of a
simple diatomic molecule.
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I. INTRODUCTION

The scattering of molecules by surfaces is of significant
current interest largely because of its relationship to the
study of chemical reactions on substrates. However, molecu-
lar scattering is also capable of supplying a great deal of
information on surface dynamics such as excitation of
phonons, and other surface modes such as electron-hole pairs
and surface plasmons. As opposed to the scattering of single
atomic projectiles, molecules can interact with the surface
via excitation or deexcitation of internal modes such as rota-
tion and vibrations. Thus the molecule-surface interaction is
significantly more complicated than the scattering of simple
atoms, but it also holds forth the possibility of supplying
much more interesting information.

In order to extract the maximum information possible
from a scattering experiment, the measurement should be
made state to state, i.e., an experiment in which the mol-
ecules in the beam are prepared in a well-defined transla-
tional, rotational, and vibrational state, and the detector mea-
sures the same properties of the scattered molecules. A
number of recent experiments have achieved excellent state-
to-state measurements for the scattering of light diatomic
molecules such as H2 and D2,1–3 other experiments have
measured heavier diatomic molecule scattering4–8 and sig-
nificant recent advances have been made in the scattering of
larger molecules.9–12

In cases of scattering of light-mass molecules such as H2,
a theoretical treatment of the scattering process must be com-
pletely quantum mechanical, even for describing the energy
exchange with phonons at the surface,13,14 unless the incident
translational energy is significantly more than 100 meV.15 At
typical energies achieved with heavier molecular beams from
hypersonic jet sources, classical physics is adequate to treat
the translational and rotational motions. However, since in-
ternal molecular vibrational modes often have energies larger
than 100 meV it is nearly always necessary to treat the vi-
brational excitations quantum mechanically.

The purpose of this paper is to develop a theoretical
framework for describing the scattering of small molecules
in the regime in which the rotational and translational motion
can be treated classically, while treating the excitation of
internal vibrational modes quantum mechanically. The treat-

ment of phonon transfers is handled using multiphonon
theory that has been demonstrated to explain the inelastic
scattering of heavier rare gases with up to several eV of
translational energy, and also for He-atom scattering at ener-
gies above 100 meV. A classical treatment of rotational ex-
citations is developed along lines similar to that for mul-
tiphonon excitations. The internal molecular vibrations are
treated with a semiclassical theory within the harmonic ap-
proximation. The basic theoretical results for a single colli-
sion of the molecule with the surface can be expressed in
terms of closed-form equations that are readily calculable.
Calculations for scattering of a simple diatomic molecule are
carried out in order to demonstrate the expected scattering
spectra for angular distributions, rotational excitations, trans-
lational energy losses, and internal-mode excitation prob-
abilities.

This paper is organized in the following manner. In the
following section the general theory of molecular scattering
is developed and several models are discussed for the ex-
change of phonons, for rotational excitations, and for the
scattering form factor. Section III gives some representative
calculations for CO scattering from a LiF�001� surface in
order to demonstrate the results of this theory. In Sec. IV the
results are discussed and some conclusions are drawn.

II. THEORY

A. General treatment

A starting point for describing molecular scattering from a
many-body target is the state-to-state transition rate for an
initial molecular projectile with well-defined translational
momentum pi , angular momentum li , and excitation quan-
tum number qgi for the gth mode, to a final state denoted by
pf , lf , and qg f . This is given by the generalized Fermi
golden rule

w�pf ,lf ,qg f ,pi ,li ,qgi��� � 2�

� �
�n f �

�T f i�2��Ef�Ei�� � ,

�1�

where the average over initial translational and rotational
states of the target crystal is denoted by 		 

, and the sum is
over all unmeasured final states �n f� of the crystal that can
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scatter a projectile into its specified final state. The energies
Ei and Ef refer to the total energy of the system of projectile
molecule plus the crystal before and after collision, respec-
tively. The Tf i are the matrix elements of the transition op-
erator T taken with respect to unperturbed states of the sys-
tem. The transition rate is the fundamental quantity for
describing a scattering process, because all measurable quan-
tities in a scattering experiment can be calculated from it.

In the semiclassical limit, the transition rate can be ex-
pressed as the Fourier transform over all times of a general-
ized time-dependent correlation function. In this same level
of approximation, it is useful to assume that the elastic part
of the interaction potential commutes with the inelastic part,
and the the transition rate is expressed as16,17

w�pf ,lf ,qg f ,pi ,li ,qgi�

�
1

�2
�� f i�2�

��

�

exp�i�E f�Ei�t/��

�exp�2W�expQ� t ��dt , �2�

where exp�2W� is a generalized Debye-Waller factor and
Q(t) is a generalized time-dependent correlation function.
�� f i�2 is the scattering form factor, the square modulus of the
off-energy-shell transition matrix of the elastic part of the
interaction potential.

There can be several mechanisms for energy transfer in
the collision process, such as phonons, rotational excitations,
and internal mode excitations, all of which are considered
here. If each of these processes is considered as independent,
then the transition rate can be written in this separability
limit as

w�pf ,lf ,qg f
,pi ,li ,qgi

�

�
1

�2
�� f i�2�

��

�

�exp�i�E f
T�Ei

T�E f
R�Ei

R�E f
V�Ei

V�t/��

�KT� t ,TS�KR� t ,TS�KV� t ,TB�dt , �3�

where E f ,i
T is the translational energy of the final �f� or initial

�i� projectile state, E f ,i
R is the corresponding rotational energy

of the projectile, and E f ,i
V is the energy of the projectile’s

internal vibrational state. KT(t ,TS) is the scattering kernel
for translational motion and phonon excitation, KR(t ,TS) is
the scattering kernel for rotational excitation, and KV(t ,TB)
is the kernel for internal-vibrational-mode excitation. Equa-
tion �3� is self-consistent in the following sense: although
each of the three energy-exchange mechanisms is indepen-
dent, each operates taking into consideration the energy
losses or gains caused by the other mechanisms.

Starting from Eq. �3�, the problem now becomes one of
choosing models for the scattering kernels for each of the
energy-exchange processes. For the interaction with
phonons, an extension of the semiclassical model originally
introduced by Bortolani and Levi and by Brako and Newns
for inelastic scattering of ions and atoms from smooth sur-

faces will be applied.16,18,19 They showed that in the semi-
classical limit the phonon-scattering kernel can be expressed
in terms of a general exponentiated correlation function
QT(R,t) as

KT� t ,TS���
��

�

dReiK•Re�2WT(pf ,pi)eQT(R,t), �4�

where 2WT(pf ,pi)�QT(R�0,t�0) is the contribution to
the total Debye-Waller factor due to phonon exchange.

If the semiclassical limit is now extended to the limit of
rapid collisions in which the semiclassical force exerted on
the scattering particle can be replaced by the momentum im-
pulse, then the correlation function simplifies to the time-
dependent displacement-correlation function

QT�R,t ��	p•u�0,0�p•u�R,t �
/�2, �5�

where u(R,t) is the phonon displacement at the position R
on the surface and p�pf�pi is the linear-momentum trans-
fer. The argument of the Debye-Waller factor is given by the
standard form, which for TS greater than the Debye tempera-
ture �D is

WT�pf ,pi��
3p2TS

2M CkB�D
2

, �6�

where kB is Boltzmann’s constant and M C is the crystal
mass.

The classical limit of multiple-phonon exchange is ob-
tained from Eq. �5� by making an expansion over small times
and small position vectors around the point of collision, lead-
ing to

	p•u�0,0�p•u�R,t �
/�2

�2WT�pf ,pi��
i

�
t�E0�

t2

�2
�E0kBTS�

�E0kBTSR2

2�2vR
2

,

�7�

where �E0�p2/2M C is the translational recoil energy and
vR is a weighted average over phonon velocities parallel to
the surface.19

If phonons are the only mechanism for energy transfer,
such as in atom scattering, then the scattering kernel of Eqs.
�4�–�7� leads to a transition rate that is Gaussian-like in both
the translational-energy transfer E f

T�Ei
T and the parallel

component P of the momentum transfer18,20,21

w�pf ,pi��
2 �vR

2

Su .c .
�� f i�2� �

kBTS�E0
� 3/2

�exp� �
�E f

T�Ei
T��E0�2�2vR

2 P2

4kBTS�E0
	 . �8�

This is the smooth-surface-scattering model for classical
multiphonon transfers in an atom-surface collision. It takes
into account the broken symmetry in the perpendicular direc-
tion caused by the presence of the surface, i.e., for every
phonon exchanged only momentum parallel to the surface is
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conserved. The perpendicular momentum exchange is not
conserved as a consequence of the broken symmetry in that
direction. The Debye-Waller factors, normally present in
quantum-mechanical theory, have disappeared because they
were canceled by the first term in Eq. �7� leaving the
Gaussian-like behavior with an envelope factor that varies as
the negative 3/2 power of the recoil and surface temperature.

There are also other classical expressions for describing
classical multiphonon exchange. If the surface is regarded as
a collection of isolated scattering centers in thermodynamic
equilibrium, then the scattering kernel in the classical limit
becomes simpler than Eq. �7�,

KT� t ,TS��exp� �
i

�
t�E0�

t2

�2
�E0kBTS	 , �9�

which leads to another Gaussian-like expression for the tran-
sition rate for atomic scattering given by

w�pf ,pi��
1

�
�� f i�2� �

kBTS�E0
� 1/2

�exp� �
�E f

T�Ei
T��E0�2

4kBTS�E0
	 . �10�

This is the discrete model for atomic scattering and it differs
from Eq. �8� in that the Gaussian-like factor in P2 is absent
and the envelope function varies only as the �1/2 power of
the temperature rather than the �3/2 power. The physical
difference between the two expressions of Eqs. �8� and �10�
is the corrugation of the surface. Equation �8� describes a
surface that is smooth except for the vibrational corrugations
caused by the time-dependent motions of the underlying at-
oms, while Eq. �10� describes a surface that is highly corru-
gated, so highly corrugated that each scattering center is dis-
tinct. Other models for the classical-multiphonon limit have
been proposed for surfaces that are corrugated in a manner
intermediate between these two extreme limits.22 These in-
termediate models all have the common feature of Gaussian-
like behavior in energy transfer, and show that the corruga-
tion of the surface can be directly related to the temperature
and recoil-energy dependence of the envelope factor. These
expressions of Eqs. �8� and �10�, when extended to include
multiple collisions with the surface, have been demonstrated
to explain the scattering of rare-gas atoms23,24 and low-
energy ions25 from a variety of surfaces.

The next task is to develop a scattering kernel for the
rotational motion of the molecular projectile. In order to be
consistent with the smooth-surface model of Eq. �7� for the
translational motion, a model is developed that preserves the
correct angular momentum conservation for a rotating mol-
ecule interacting with a smooth surface, i.e., angular momen-
tum will be conserved in the direction perpendicular to the
surface but not in the directions parallel to the surface. Start-
ing from Eq. �1� in the semiclassical limit, but with the
proper angular momentum conservation for a smooth sur-
face, the scattering kernel for rotational motion is26

KR� t ,TS���
��

�

d�ze
ilz�z /�e�2WR(lf ,li)eQR(�z ,t), �11�

where li , f are, respectively, the final and initial angular mo-
menta of the molecule, l�lf�li is the angular momentum
transfer, QR(�z ,t) is a generalized rotational-correlation
function, and the rotational contribution to the Debye-Waller
factor is 2WR(lf ,li)�QR(�z�0,t�0). In the limit of a quick
collision, where the angular forces are given by the angular
impulse, the correlation function becomes a correlation func-
tion of the angular displacement �(�z ,t),

QR��z ,t ��	l•��0,0�l•���z ,t �
/�2. �12�

At this point, the calculation of the angular-scattering kernel
is still fully quantum mechanical, although it is in the semi-
classical limit. The extension to the classical limit of ex-
change of large numbers of rotational quanta is again similar
to Eq. �7�,

	l•��0,0�l•���z ,t �
/�2

�2WR� lf ,li��
i

�
t�E0

R�
t2

�2
�E0

RkBTS�
�E0

RkBTS�z
2

2�2�R
2

,

�13�

where �E0
R�lx

2/2Ixx
c �ly

2/2Iyy
c �lz

2/2Izz
c is the rotational recoil

energy, the Ixx ,yy ,zz
c are the principal moments of inertia of a

surface molecule, and �R is a weighted average of frustrated
rotational angular velocities of the surface molecules in the z
direction. The constant �R plays a similar role for rotational
transfers as the weighted average of parallel phonon veloci-
ties vR in Eq. �8�. Both of these quantities can be computed
if the complete dynamical structure function of the surface is
known. For the purpose of this work, these quantities will be
treated as parameters. The principal moments I ii

c are nor-
mally expected to be those of a surface molecule in the case
of a molecular target. However, if the projectile molecules
are large and strike more than one surface molecule simulta-
neously, then I ii

c is expected to become an effective moment
of inertia, larger than that of a single molecule. In the case of
monatomic solids, an effective surface molecule consisting
of two or more surface atoms must be chosen. In either case,
the product �R

2 I ii
c can be regarded as an alternative choice of

the parameter �R .
The remaining task is to include in the transition rate the

contributions from vibrational excitations of the internal
modes of the molecular projectile. If these modes are treated
in the harmonic limit, and consistently with the semiclassical
approximations used in obtaining the translational and rota-
tional scattering kernels, the problem becomes that of a col-
lection of forced harmonic oscillators.27 The general result
has been worked out for the case of surface scattering,28 and
the internal-mode scattering kernel can be written in the fol-
lowing form:
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KV� t ,TB�� �
� ,���1

NA

�exp i�pf•�r� ,��
f

�pi•�r� ,��
i

�/��

�exp�WV ,�
p �pf ,pi��

�exp�WV ,��
p

�pf ,pi��expQV ,� ,��
p

�pf ,pi ,t ���,

�14�

where NA is the number of atoms in the molecule and m� is
the mass of the �th molecular atom. The position of the �th
atom of the molecule just before the collision �i� or just after
�f� is given by r�

i (t)�r�
i �u�

i (t) so that, for example,
�r� ,��

f
�r�

f �r��
f . The vibrational displacement relative to r�

i

due to the internal mode, decomposed into cartesian compo-
nents denoted by � , is

u�
�� t ���

j�1

N� � �

2N�m�� j
e� j

����a je
�i� jt�a j

†ei� jt� ,

�15�

where N� is the total number of internal modes, a j and a j
†

are, respectively, the annihilation and creation operators for
the j th mode of frequency � j , and e( j

���) is the polarization
vector that is obtained from a normal modes analysis of the
molecule.

The displacement-correlation function for internal bend-
ing modes of the projectile molecule is then written as

QV ,� ,��
p

�pf ,pi ,t �

� �
� ,���1

3

p�p���
j�1

N� 1

2N���m�m��� j

e� j
����e*� j

������

��n�� j�ei� jt�n�� j��1�e�i� jt�, �16�

where n(� j) is the Bose-Einstein function, and the Debye-
Waller factor associated with the �th atom of the projectile

molecule becomes

WV ,�
p �pf ,pi��

1

2
QV ,����

p
�pf ,pi ,t�0 �. �17�

In the internal-mode correlation function
QV ,� ,��

p (pf ,pi ,t) the orthogonal modes commute with each
other, and Eq. �16� can be further expanded to29

eQ
V ,� ,��
p

(pf ,pi ,t)�e�
j�1

N� Q jV ,� ,��
p (pf ,pi ,t)

��
j�1

N�

�
� j���

� � I �� j�
„b� ,���� j�…

�
n�� j��1

n�� j�
�� j/2

e�i� j� jt	 , �18�

where I �� j�
(z) is the modified Bessel function of integer or-

der � j and argument z. The argument of the modified Bessel
function of Eq. �18� is given by

b� ,���� j�� �
� ,���1

3

p�p��

1

N���m�m��� j

�e�� j

� ���e*�� j

�������n�� j�n�� j��1� .

�19�

Equations �14�–�19� define the scattering kernel for excita-
tion of internal molecular modes.

The three scattering kernels for translation, rotation, and
internal vibrations can now be inserted back into Eq. �3� and
all integrals can be readily carried out. The general result for
the state-to-state transition rate is

w�pf ,lf ,pi ,li��
1

�2
�� f i�2� 2��2vR

2

�E0kBTS
� � 2��2�R

2

�E0
RkBTS

� 1/2� ��2

��E0��E0
R�kBTS

� 1/2

exp
�
2P2vR

2

4�E0kBTS
�exp
�

2lz
2�R

2

4�E0
RkBTS

�
� �

� ,���1

NA � exp i(pf•�r� ,��
f

�pi•�r� ,��
i )/��

�exp[�WV ,�
p (pf ,pi)]exp[�WV ,��

p (pf ,pi)]�
j�1

N�

�
� j���

�

I �� j�
„b� ,���� j�…

�
n�� j��1

n�� j�
�� j/2

exp
 �

� E f
T�Ei

T�E f
R�Ei

R��E0��E0
R���

s�1

N�

�s�s� 2

4��E0��E0
R�kBTS

� 	 . �20�

The transition rate of Eq. �20� is actually expressed, for compactness, as a product over all normal modes labeled by j and a
summation over the excitation quantum number denoted by � j . To obtain the discrete transition rate to a particular internal-
mode final state or combination of states, one takes the corresponding ( j ,� j)th term of Eq. �20�.
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The result of Eq. �20� retains many of the features of the
simpler expressions of Eqs. �8� and �10� for atomic scattering
with the exchange of only phonons. The dominant feature is
the Gaussian-like function containing the three different
modes of energy exchange �phonons, rotations, and internal
molecular vibrations� together with the recoil terms from
phonons �E0 and from rotational exchange �E0

R . The width
of the Gaussian-like function varies as the square root of the
temperature and the sum of the two recoil energies. This is
not a true Gaussian because of the momentum dependencies
of the recoil energies. There are also Gaussian-like functions
in the exchange of parallel momentum P and perpendicular
angular momentum lz that arise from retaining the correct
momentum conservation conditions for a smooth surface.
The envelope factors vary as negative powers of the tem-
perature multiplied by recoil energies. These envelope fac-
tors guarantee the overall unitarity of the total scattered in-
tensity, i.e., as the temperature and/or incident energy is
increased, the maximum intensity of the Gaussian-like func-
tion decreases in order that the total integral over final states
remains constant.

In Eq. �20� the quantum behavior of the internal-mode
excitations is expressed differently than the classical behav-
ior for translational and rotational motion. The strength of
the � j quantum excitation of the j th mode is proportional to
the modified Bessel function I �� j�

„b� ,��(� j)…. Because these
are quantum features the vibrational contribution to the
Debye-Waller factor is still present, as are quantum phase
factors involving the positions r� of the individual molecular
atoms before and after the collision. The presence of these
quantum phase factors can cause interference effects, but be-
cause in an actual experiment the orientation of a molecule is
not measured, the transition rate must be averaged over mo-
lecular orientations in order to compare directly with experi-
ments. Recoil effects due to the excitation of internal modes
are not explicitly apparent in Eq. �20�, but they are included
within the modified Bessel function.

In many cases, such as where the incident molecular en-
ergy and the surface temperature are not large compared to
the energy of internal-molecular-vibrational excitations, the
expansion of Eq. �20� to only single quantum excitations is
sufficient. This expansion is

w�pf ,lf ,pi ,li��
1

�2
�� f i�2� ��2

��E0��E0
R�kBTS

� 1/2� 2��2vR
2

�E0kBTS
� � 2��2�R

2

�E0
RkBTS

� 1/2

exp
�
2P2vR

2

4�E0kBTS
�

�exp
�
2lz

2�R
2

4�E0
RkBTS

� �
� ,���1

NA

exp i�pf•�r� ,��
f

�pi•�r� ,��
i

�/��exp�WV ,�
p �pf ,pi��exp�WV ,��

p
�pf ,pi��

�� exp
�
�E f

T�Ei
T�E f

R�Ei
R��E0��E0

R�2

4��E0��E0
R�kBTS

�� �
� ,���1

3

p�p���
j�1

N� 1

2�N��m�m��� j

e� j
����e*� j

������

�� n�� j�exp
�
�E f

T�Ei
T�E f

R�Ei
R��E0��E0

R��� j�
2

4��E0��E0
R�kBTS

��n�� j��1�

�exp
�
�E f

T�Ei
T�E f

R�Ei
R��E0��E0

R��� j�
2

4��E0��E0
R�kBTS

� � 	 . �21�

Of the three terms in Eq. �21� the one proportional to
n(� j)�1 gives the single quantum creation rate, the term
proportional to n(� j) is for single quantum annihilation, and
the third term is the rate for scattering with no internal-mode
creation.

B. The attractive potential well

The Van der Waals force between the surface and the
incident molecular projectile gives rise to an attractive well
in front of the surface that can have important effects at low
incident translational energies, and can also affect the rota-
tional excitations. In the case of classical scattering, the main
effect of the Van der Waals attractive potential is to enhance
the energy of the incoming particle associated with the direc-
tion normal to the surface. This is a refractive effect quite

similar to that which occurs for light waves in optically re-
fractive media. Since refraction is the dominant effect, the
potential can be modeled by a one-dimensional potential
well, and for a given well depth �D� the refraction does not
depend on the functional shape of the attractive part of the
potential. Thus, this attractive force can be simulated by an
attractive one-dimensional square-well potential in front of
the repulsive barrier, and the width of the well is unimpor-
tant. The effect of the collision process is to replace the per-
pendicular component of the momentum pqz near the surface
by a larger value pqz� , which includes the well depth D

p�qz
2 �pqz

2 �2m�D�. �22�

This refracts all projectiles at the leading edge of the well
and causes them to collide with a barrier with a higher nor-
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mal energy. The expressions for projectile translational en-
ergy and for scattering angle inside of the potential well be-
come, respectively,

E� f ,i
T �E f ,i

T ��D� �23�

and

cos�� f���� E f
Tcos2�� f ���D�

E f
T��D� � 1/2

. �24�

Transition rates calculated for molecular scattering inside
the well can then be projected to the asymptotic region out-
side the well by multiplication with an appropriate Jacobian
function, which can be easily determined from Eqs. �23� and
�24�.

C. The scattering form factor

The scattering form factor �� f i�2 appearing as a multipli-
cative factor in the transition rate has not yet been specified.
In the semiclassical limit of interest here � f i has been iden-
tified as the transition matrix for inelastic scattering, calcu-
lated from the elastic part of the potential, i.e., the transition
rate for the elastic Hamiltonian extended off of the energy
shell.17 A very useful expression, first applied to atom scat-
tering, is the function suggested by the distorted-wave Born
approximation for an exponentially repulsive surface barrier
potential30

V0�z ��V0e��z. �25�

This is given by the product of the Jackson-Mott matrix el-
ement in perpendicular momentum and a cutoff function in
parallel momentum30

�� f i�2��vJ�M�p f z ,piz��2e�P2/P0
2
. �26�

The Jackson-Mott matrix element vJ�M(p f z ,piz) is the ma-
trix element of Eq. �25� taken with respect to its own dis-
torted Schrödinger-equation eigenstate. It depends on only
the perpendicular component of the momentum. Defining
qi�piz /�� and q f�p f z /�� , it is given by

vJ�M�p f z ,piz��
�2�2

m

�qiq f�q f
2�qi

2�

cosh��q f ��cosh��qi�

�� sinh��q f �sinh��qi�

qiq f
� 1/2

. �27�

In the semiclassical limit of a very hard repulsive surface �or
an infinitely hard repulsive wall�, �→� , the Jackson-Mott
matrix element as well as matrix elements for other one-
dimensional potentials with a hard repulsive part, become

vJ�M�p f z ,piz�→2p f zpiz /m �28�

and P0→� . Thus the cutoff function goes to unity in the
semiclassical limit, and the expression for the form factor
reduces to simply the Jackson-Mott matrix element. This
form factor has been successfully used to analyze atom-
surface scattering in the classical limit, and has been used in

an earlier attempt to describe molecular scattering with rigid
molecules.31 This is the expression that will be used in the
calculations reported in Sec. III below.

D. Measurable quantities

The remaining task is to connect the transition rate of Eq.
�1� to quantities that can be measured in actual experiments.
The experimental quantity usually measured in a scattering
process is the differential reflection coefficient d3R/d� fdE f

T

giving the fraction of the incident particles that are scattered
into a final solid angle of the detector d� f , and into energy
interval dE f

T centered at E f
T . This is proportional to the tran-

sition rate shown in Eqs. �20� and �21� and is obtained by
dividing by the incident flux crossing a plane parallel to the
surface, j i�piz /mL , where L is a quantization length, and
multiplying by the density of available final particle states

d3R

d� fdE f
T

�pf ,lf ,pi ,li��
L4

�2���3

m2�pf �
piz

w�pf ,lf ,pi ,li�.

�29�

Some experiments use a detector, which is velocity de-
pendent, and thus the differential reflection coefficient must
be multiplied by a detector correction. The most common of
these corrections is for the time-of-flight density detector
whose sensitivity varies inversely with the speed of the par-
ticles passing through it. In this case the detector correction
to be applied to Eq. �29� is to multiply the right-hand side by
a factor of 1/v f�1/p f .

In a typical experiment, the incoming beam of molecules
usually can be considered to have a well-defined transla-
tional energy and angular spread. However, normally the ro-
tational state will be a distribution, which will be denoted by
P(li ,TiR), usually assumed to be a Maxwell-Boltzmann dis-
tribution at temperature TiR and often with a temperature
lower than that of the gas reservoir from which the hyper-
sonic jet beam was produced. In this case, the differential
reflection coefficient of Eq. �29� must be averaged over this
distribution of incident rotational angular momenta. The
translational energy distribution at a fixed final angle �the
differential reflection coefficient� is then obtained from Eq.
�29� by performing the averages and sums over all unmea-
sured degrees of freedom and is given by

d3R

d� fdE f
T

�� � dliP� li ,TiR�� dlf

d3R

d� fdE f
T

�pf ,lf ,pi ,li��
R

,

�30�

where 	
R refers to an average over all orientations of the
initial and final angular momenta of the projectile molecule.

The angular distribution of scattered projectiles, summed
over all rotational and internal-vibrational states is then ob-
tained by summing Eq. �30� over all final translational ener-
gies

d2R

d� f
��

0

�

dE f
T� d3R

d� fdE f
T� . �31�
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In a similar manner, and with appropriate averaging over
degrees of freedom not measured, the results of all possible
experiments can be compared with the differential reflection
coefficient of Eq. �29�. Also, Eq. �29� can be used as a dis-
tribution function for determining averages and moments of
observable quantities, such as, average rotational energies,
fractional internal-mode excitation probabilities, etc. Several
examples of calculations are shown in the following section.

III. MODEL CALCULATIONS

In this section several examples of calculations for the
scattering of a simple diatomic molecule are presented. The
model chosen is CO scattering from the alkali halide insula-
tor surface LiF�001�.

A. Translational energy-resolved spectra

Figure 1 shows the energy-resolved spectrum as a func-
tion of the final translational energy. Three different incident
energies Ei

T , 200, 500, and 1000 meV are shown. Specifi-
cally, what is plotted in Fig. 1 is the differential reflection
coefficient of Eq. �30� as a function of the final translational
energy. The incident angle was chosen to be � i�45° and the
final angle is taken at the position of the maximum in the
corresponding angular distributions calculated for the same
incident energies and shown in Fig. 2 below.

The fixed input parameters needed in this calculation
are the masses and moments of inertia of both CO and LiF,
and for these the known atomic masses and interatomic dis-
tances were used.32 In the present calculations, we consid-
ered M CO�27.995 amu, M LiF�25.94 amu, ICO�1.46
�10�46 kg m2, and ILiF�3.41�10�46 kg m2. The fre-
quency of the CO stretch vibration was taken to be 269 meV

and the polarization vectors appearing in Eq. �16� were cal-
culated from a simple ball-and-spring model, consisting of
the O and C molecules connected by a single spring.

The surface temperature is TS�300 K and the rotational
temperature of the incident beam was chosen to be TiR
�30 K. The value of the weighted parallel phonon speed
was chosen as vR�1000 m/s, which is consistent with the
values used for analyzing the scattering of He atoms15 and
C2H2 �Ref. 33� from this same LiF surface. The value of the
average angular frequency of frustrated LiF molecular rota-
tions was chosen to be �R�2�1010 s�1, but the value of
this parameter is not important because it can be varied by as
much as an order of magnitude from this value without sig-
nificantly affecting the shapes of the curves in Fig. 1. The
well depth D is taken to be zero.

The shapes of these energy-resolved spectra are very
much similar to those measured for purely atomic beam
scattering.34–36 For all incident energies, the differential re-
flection coefficient is a Gaussian-like curve, with the position
of maximum intensity at less than one-half of the incident
translational energy, indicating a significant energy loss in
the scattering process. However, all the curves have a long
tail in the high-energy region, and especially at the lower
incident energies. This tail extends to energies higher than
the incident energy, indicating that a non-negligible fraction
of the scattered particles gains energy from the surface. The
shapes of these curves being so similar to those often ob-
served for atomic scattering under classical conditions,
would indicate that the dominant energy-loss mechanism is
to phonons in the collision with the surface. Detailed calcu-
lations of the average energy losses to phonons, rotational
excitations and to internal excitations confirm this opinion.

B. Angular distributions

Figure 2 shows the angular distributions calculated from
Eq. �31� for the same incident conditions as in Fig. 1. In
these polar plots the incident angle of � i�45° is shown as a
straight line and the scattered differential reflection coeffi-
cients appear as broad lobes in the vicinity of the specular
direction. The position of the maximum intensity of these
scattered lobes is somewhat greater than the specular angle,
and this supraspecular shift increases with incident transla-

FIG. 1. Translational energy-resolved spectra for CO scattering
from LiF�001�. The initial angle � i�45° and the final angle is, for
each incident energy, the position of the maximum in the angular
distribution. The differential reflection coefficient of Eq. �30� is
plotted as a function of the final translational energy for three dif-
ferent incident energies, as shown.

FIG. 2. Angular distributions for the same incident angle and
energies as in Fig. 1.
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tional energy. The angular distribution also becomes nar-
rower in width with increasing incident energy. These prop-
erties are similar to previously observed behavior for atomic
beam scattering where the only mechanism for energy ex-
change is phonon excitation.34–36 Again, detailed analysis
and breakdown of the three possible modes of energy trans-
fer for the CO molecule indicates that the shapes of the an-
gular distributions are most strongly influenced by phonon
exchange.

C. Intensity versus rotational energy

The scattered intensity as a function of the final rotational
energy for the scattering of CO from LiF�001� is shown in
Fig. 3. The incident energies are again the same as in Fig. 1
and the incident angle is � i�45°. The final angle is, for each
incident energy, the position of the maximum in the angular
distribution �see Fig. 2�.

What is plotted here is the differential reflection coeffi-
cient of Eq. �29� for fixed incident energy, fixed incident and
final angles, averaged over the rotational distribution of the
incident beam with a temperature TiR�30 K, and finally
summed over all other degrees of freedom except for the
final rotational energy E f

R .
What is seen in this semilogarithmic plot is that the inten-

sity falls off very rapidly as a function of E f
R for the first 10

meV, and then takes on nearly exponentially decreasing be-
havior as indicated by the curves becoming nearly straight
lines. A behavior similar to this has been observed experi-
mentally by Miller and coworkers for the scattering of C2H2
from LiF�001� �Ref. 10� under similar conditions of angles
and energies. This C2H2 experiment did not observe a rapid
decay of intensity at very small rotational energies, but the
measurements were made only for E f

R�7 –9 meV. Miller
and coworkers interpreted their observations as purely expo-

nential decay of the intensity with E f
R , and through compari-

son with a Maxwell-Boltzmann distribution, they extracted a
final rotational temperature for each incident energy. If a
similar interpretation is applied to the curves of Fig. 3 for the
straight-line region for E f

R�20 meV then it is seen that the
final rotational temperature increases with increasing inci-
dent energy, in qualitative agreement with the observations
of Miller and coworkers. The actual values of these final
rotational temperatures are 372, 511, and 628 K for Ei

R

�200, 500, and 1000 meV, respectively.

D. Internal-mode excitation

An example of the excitation probability for the internal
molecular mode is shown in Fig. 4. Plotted as a function of
the incident translational energy is the fraction of the inci-
dent beam �expressed in percent� that is excited into the first
and second quantum-excited states (��1,2) of the internal
mode. The incident angle is � i�45°, the surface temperature
is 300 K and the incident beam rotational and vibrational
temperatures were set at 30 K and 116 K, respectively, which
implies essentially zero excitation probability for the vibra-
tions in the incident beam. It is seen that the total probability
for the single quantum excitation, shown as a solid curve,
becomes non-negligible for incident energies only slightly
higher than the threshold value of ���269 meV for the
energy of the stretch mode. The double quantum excitation
probability, shown as a dashed curve, is not appreciable until
approximately four times this incident energy. Triple and
higher quantum excitations are negligible at incident ener-
gies below 3 eV.

The nearly linear behavior of the ��1 excitation prob-
ability as a function of Ei

T reflects the biquadratic depen-
dence on momentum exchange p of the single quantum ex-
citation probability of Eq. �21�. The ��2 term in the
expansion of the full scattering probability of Eq. �20� de-
pends on the product of four factors of p, and this explains
the nearly quadratic behavior of the double quantum excita-
tion probability above its threshold.

FIG. 3. Scattered intensity versus final rotational energy for CO
scattering from LiF�001�. The initial angle � i�45°, the final angle
is, for each incident energy, the position of the maximum in the
angular distribution, and Ei

T�200, 500, and 1000 meV as marked.

FIG. 4. Excitation probability of the CO internal vibrational
mode versus incident translational energy for CO scattering from
LiF�001� with an incident angle � i�45°. The total probability of
the first quantum creation excitation is shown as a solid curve, and
the dashed curve is for the second quantum excitation.
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IV. CONCLUSIONS

In this paper a theory has been developed for describing
the distributions of molecules scattered from a surface illu-
minated by a well-defined incident molecular beam. This
theory is based on a classical-mechanical treatment of the
excitation of lattice vibrations upon collision, and a classical-
mechanical treatment of rotational transitions of the mol-
ecule. The excitation of internal modes of molecular vibra-
tion is handled with a quantum-mechanical treatment in the
semiclassical limit. This theory should be useful for describ-
ing the scattering of molecules having thermal translational
velocities or even larger, and having molecular masses sig-
nificantly larger than hydrogen. Examples of such molecules
would be CO, NO, N2, and CO2. At thermal velocities such
molecules have de Broglie wavelengths significantly shorter
than 1 Å, thus a classical treatment of translational motion
is adequate. Similarly, rotational quantum numbers of these
molecules even at temperatures lower than 100 K are of or-
der 10 or more, and our calculations suggest that the number
of rotational quanta that will be exchanged in a typical col-
lision with a surface is also large, thus a classical treatment
of the rotation is adequate. However, internal molecular vi-
brational modes often have large frequencies compared to
thermal energies implying that excitation quantum numbers
will be small, thus making a fully quantum treatment neces-
sary. In the present case, the theory provides for arbitrary
numbers of internal vibrational modes and arbitrarily large
quantum excitation numbers for each mode.

The condition for classical-mechanical theory to be valid
for describing phonon exchange is that the number of
phonons transferred is large. However, for each phonon
transferred in surface scattering, linear momentum parallel to
the surface is conserved, modulo a surface reciprocal lattice
vector. This feature of parallel momentum conservation is
important even in the classical multiphonon limit except for
the fact that diffraction peaks become densely spaced and all
diffraction effects disappear. Linear momentum perpendicu-
lar to the surface, on the other hand, is not conserved in
phonon transfer due to the broken symmetry normal to the
surface. The present theory retains this feature of correct
conservation of parallel momentum at a smooth surface.
Similarly, for rotational processes, the broken symmetry im-
posed by the presence of the surface implies that the angular
momentum in directions parallel to the surface will not be
conserved, but the component perpendicular to the surface
will obey a conservation law, and this feature is automati-
cally included in the theory presented here.

The basic result of this theory, as expressed in Eq. �20�, is
a state-to-state transition rate, which describes a molecule
prepared in a well-defined initial momentum, angular mo-
mentum, and internal vibrational state to make a transition
after collision with a surface to a well-defined final momen-
tum, angular momentum and vibrational state. This theory
has a distinct advantage that the fundamental state-to-state
transition rate is expressed in closed form as an analytic
function. Not only does this make for relatively straightfor-
ward calculations, but it provides equations for which the
basic physical behavior of the scattering process can readily

be predicted as a function of incident parameters, such as
temperatures, energies, and beam angles. Any quantity that
can be measured with a detector on the state of the final
scattered molecules can readily be calculated from the state-
to-state transition rate.

The clarity of the analytic expression of Eq. �20� for the
scattered intensities gives physical insight and allows for
ready interpretation of the various methods of energy transfer
in molecule-surface collisions. The calculations shown in
Figs. 1 and 2 indicate that phonon transfers are by far the
dominant mechanism for energy transfer. This is evident
from Eq. �5�, the correlation function for phonon transfer,
which is quadratically dependent on the momentum transfer
p. A surface scattering experiment is inherently a back-
scattering configuration with large momentum transfers, es-
pecially in the direction perpendicular to the surface. These
large momentum transfers lead to large probabilities for pho-
non excitation, just as for the case of scattering of large-mass
atomic projectiles. Probabilities for rotational excitation are
rather small for a similar reason that they depend on the
angular momentum transfer that is relatively small compared
to the linear momentum exchange. Also, rotational excita-
tions are suppressed by the large probabilities of phonon ex-
citation, which tends to lead to large translational energy loss
and slower final translational velocities. The behavior of
internal-mode excitation probabilities is also clearly exhib-
ited in Eq. �20�. Both the argument of the modified Bessel
function and of the internal-mode contribution to the Debye-
Waller factor depend, in the simplest picture, exponentially
on the ratio p2/m j� j , where � j is the mode frequency and
m j is an effective mass for the j th mode, which depends on
the mode polarization vectors and is calculated from the nor-
mal modes model. For a given scattering configuration,
which defines p, and for the regime of low-excitation prob-
abilities, as encountered here, when the product m j� j is large
the excitation probability for the j-th mode will be small, and
vice versa. The interplay between the three modes of energy
transfer can also be seen from the form of Eq. �20�. For
example, the Gaussian-like dependence on energy transfer
implies that probabilities for all excitations will tend to be
small when the final translational energy is either small or
large compared to the incident translational energy. A similar
argument implies that choosing a scattering configuration
that minimizes the value of the energy transfer term in the
Gaussian-like factor is the best condition to observe rela-
tively larger probabilities for rotational- and internal-mode
excitations.

Limitations of this theory include the facts that the inter-
action is strongly repulsive, only phonons are considered as
the energy-transfer mechanism to the surface thus neglecting
elementary and collective electronic excitations, and the sur-
face is assumed smooth and uncorrugated. Thus in its present
form the theory is more applicable to inert surfaces, such as,
alkali halides and other insulators, and is less applicable to
reactive surfaces, such as metals, where the corrugation of
the molecule-surface interaction potential is generally strong
and electronic excitations can be important.

A number of improvements to this theory are possible and
are in progress. Among these are the inclusion of roughness
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and corrugation in the surface, with concomitant multiple
collisions of the molecular projectiles with the surface. For
describing hyperthermal and higher-energy molecular scat-
tering with metal surfaces it will be necessary to include the
additional electronic excitation modes of the surface, such
as, electron-hole pairs and both surface and bulk plasmons.
Also the form-factor treatment of the interaction used here
can be extended to include much more sophisticated models
of the interaction potential.

In order to demonstrate the utility of this theory, several
representative calculations for the simple diatomic molecule
CO scattering from the inert insulator surface LiF�001� were
carried out. More extensive calculations and comparison
with recent high-precision experiments for the scattering of

C2H2 from LiF�001� �Ref. 10� are presented in another
paper.33 There it is shown that this theory can explain mea-
sured quantities, such as, angular distributions, scattered in-
tensities as a function of the final rotational energy, and final
rotational temperatures as functions of the incident beam en-
ergy. Thus it appears that the theoretical approach discussed
here can be a useful tool in describing the surface scattering
of certain classes of molecules.
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