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Quantum mechanical expressions for the energy accommodation of a gas at a solid surface are developed
using the general theory of inelastic surface scattering as developed by Manson and Celli. Calculations
are presented for the accommodation of helium at a simplified model of a tungsten surface. The phonon
spectrum at the surface is taken to be that of a semi-infinite isotropic continuum, and contributions to
the accommodation are obtained from bulk, mixed, and Rayleigh phonon modes. For temperatures not
too small the calculations agree qualitatively with experiment, and exhibit the property that the accommoda-
tion is nearly independent of surface temperature over a large range.

I. INTRODUCTION

The energy exchange at the interface between a
surface and a gas can be characterized by the energy
accommodation coefficient, @, originally defined by
Knudsen! and usually expressed as

a=(E_E0)/(Es_Eﬂ)7 (1>

where E, is the average energy of a gas molecule before
making a collision with the surface, E is the average
energy of a gas molecule after making a collision, and
E, has the same meaning as F, but is evaluated for
a gas at the temperature of the surface. The denomi-
nator of Eq. (1) represents the maximum energy
exchange at the surface and can be written as a simple
function of the gas temperature, T, and the surface
temperature, 7,. The numerator is the actual energy
exchange upon collision, and cannot in general be repre-
sented by a simple function of temperature since the
scattered particles will not necessarily be in an equilib-
rium distribution. For theoretical considerations, it is
often convenient to define an accommodation coefficient
which is a function of a single temperature?
a(T)= lim (E—E)/(E.—E,).

T¢->Ts>T

(2)

The most straightforward way to obtain the energy
exchange at the surface is to consider the gas as com-
posed of beams of particles spread over a range of
energies and directed at all angles with respect to the
surface. We then let dR(k;, ki)/ded2; be the prob-
ability that a particle is scattered from the unit incident
beam of momentum k; into the small energy interval
des centered at ¢; and into the small solid angle dQ;. The
energy of a particle of momentum k is given by
e=72%?/2m, where m is the particle mass. The total
energy exchanged at the surface by a unit beam of
particles incident at momentum k; is then obtained by
multiplying dR/de;dQ; by (e;—e;) and summing over all
possible final states into which the particle could be
scattered, i.e.,

Jdes [dQy (es—€;) AR/ desdSYy. (3)
If Eq. (3) is multiplied by the probability, P(k,), that

the incident beam of momentum k; will strike the
surface, and then summed over all angles and energies

of the incoming gas, we obtain the total energy ex-
changed at the surface

E~ Eg = fdeifdﬂiquf(lgf(éf— Gi) P(kl) dR/defde. (4)

The accommodation coefficient follows directly from
either Eq. (1) or (2).

A method for obtaining the differential reflection
coefficient dR/de;dQ; is given by the general theory of
surface scattering as developed by Cabrera, Celli,
Goodman, and the author®® We discuss only the
essential features of the theory here. The starting point
is the transition rate w;; where f and ¢ describe the
quantum numbers of the final or initial state of the
entire system (surface and particles),

wpi= (2w/h) | Tyi |2 8(8,—8:), (5)

where & and &; are the total energies of the final and
initial states, respectively, and Ty; is the transition
matrix. To obtain the transition rate for the scattering
of a single particle, Eq. (5) must be averaged over
initial phonon states of the surface and summed over
final states. The differential reflection coefficient is then
obtained by dividing by the incident particle flux,
ji=FRk../m (where k.; is the component of k; perpen-
dicular to the surface) and multiplying by the density
of final particle states.

dR/desdQy= {m(2me,) /[ (2wh)% ]}
X X X p({nd)wy,

{nf} Ins)

where p({n.}) is the density of initial phonon states.
The summations can be evaluated by standard field
theoretical methods and dR/dedQ; can be expressed
as an ordered series, the first term describing elastic
scattering, the next two terms describing single phonon
emission or absorbtion, then two-phonon terms and so
on. This result, together with Eqs. (4) and (1), shows
that the accommodation coefficient can also be written
in a similar type of ordered series.

If we restrict the gas particles to move perpendicu-
larly to the surface the initial distribution probability

is given by
P=(1/kT,) exp(—e;/kT,). (7
Using Egs. (7), (4), and (1) the accommodation

(6)

3451

Downloaded 28 Jan 2009 to 130.127.189.57. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/jcp/copyright.jsp



3452 I

coefficient becomes

a(Ts, Ty) =[1/B°T(T,—Ty) Jfdei[der (e~ e:)

Xexp(—<i/KT))dR/de;,  (8)
where dR/de; is the one dimensional form of (6) and
we have used the relation E =T ,.

If we make the further restriction that only a single
phonon is transferred at the surface (this does not ex-
clude the possibility of virtual phonon transfers)
Eq. (8) can be cast into a somewhat simpler form
through the use of detailed balancing. In this ap-
proximation the total energy absorbed by the gas is

(1/kT,) [de;[des(es—€;) exp(—e/kT,)ARW /de;s, (9)

where dR@/de, is the differential reflection coefficient
for the absorption of a single phonon by a scattered
particle. To calculate the energy given up to the surface
we start with the inverse of the differential reflection
coefficient. Let dR® /de; be the probability that a par-
ticle initially in the small energy range de; centered at ¢,
be scattered into the well defined beam of energy ¢; via a
single phonon emission. Then the total energy given up
to the surface in a single phonon process is

(kTg)'lfdeffdei(ei—ef) CXP(_Gi/kTg)dR(e)/dff. (10)

Noting that | e;—e; | =7iw, the energy of the exchanged
phonon, Egs. (9) and (10) can be combined to obtain
the total energy exchanged at the surface:

fi *® “D des €;
E-E= 2 [T m(—) (—-—)
=T, ), dw) © P\ g,

% [dR(a) dR® ( Fico )] (11)
LSS G )
dg  dg P\ T/l

where wp is the cutoff frequency corresponding to the
minimum phonon wavelength. The principle of detailed
balancing gives

dR®/des=exp (w/kT,) AR /desdy.  (12)

This can be seen directly from the results in I, where it
is shown explicitly that the differential reflection
coefficient for single phonon absorption is proportional
to

n(w) =[exp(hw/kT:)— 177, (13)

the density of phonons at the unperturbed surface;
while the differential reflection coefficient for single
phonon emission is proportional to [#(w)417.

Combining (12), (11), and (1) we obtain the
accommodation coefficient in the form

"
kng ( T,— To)

0 WD d i
X /0 dﬁ/o dw (i)w exp <— ]:Ta)

IR fw
x & {1—exp [——(Tg—l—Ts‘l):“». (14)
des k

a(Tsa TU) =

R. MANSON

It is now apparent that we can use the definition of
Eq. (2) to obtain

h ] wp d
ao(T)= lim (T, Ty) = “/ ‘lfi/ dw (ﬁ> w?
0 0

TenT,y BT dw

i Y dR®@
€ )( (15)

Xexp <~ kT des

Equations (14) and (15) with de;/dw=T: are the expres-
sions for the accommodation coefficient given in the
fundamental paper of Devonshire.®

II. THE DIFFERENTIAL REFLECTION
COEFFICIENT

In order to proceed further with Eqs. (14) or (15)
we must determine the differential reflection coefficient
for single phonon absorption, dR®/de;. In the work of
Jackson® and Devonshire,’ and many other treatments
which have followed ! dR@/d¢; is calculated for the
collision of the incoming molecule with a single surface
atom, where the surface atom is treated as a quantum
mechanical harmonic oscillator.

However, the true interaction must be a many body
process, with the incident particles interacting with a
large number of surface atoms. Thus such a restrictive
model cannot account accurately for the interaction of
the incident molecules with the phonon field of the
surface, nor can it account for diffraction effects.

As a more realistic model for the differential reflection
coefficient we choose

AR® /de;= [dQ,dR® /dedy, (16)

where dR®/de;dS; is the term in (6) describing single
phonon absorption, and is calculated for a perpen-
dicularly incident beam using the general theory of
inelastic surface scattering developed in I. This ap-
proximation assumes a perpendicularly incident gas,
but allows the gas particles to scatter in accordance
with the conservation of momentum and energy upon
colliding with the surface.

The solid is approximated by a semi-infinite isotropic
continuum whose surface can undergo perpendicular
vibrations. Since the phonon spectrum is isotropic the
particles will be scattered symmetrically about the

incoming beam and (16) reduces to
dR(a)/d6f= 27rfd0 sinOdR(")/de;de, (17)

where 8 is measured from the normal to the surface.
The interaction potential is taken as a step function

V="VS(—s+tu,), (18)

where V, is the strength of the interaction, u. is the
small displacement from equilibrium in the perpen-
dicular direction, and

S(x)=1,
=0,

x>0

<0, (19)
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This model is very crude, most notably in that it
neglects the discrete nature of the lattice, i.e., there are
no diffraction effects, and does not account for the
possibility of a bound or absorption state near the
surface. Hence, we expect this model to reproduce only
the qualitative features of the quantum mechanical
accommodation coefficient.

Near the surface of an isotropic solid there are three
types of phonon modes, surface or Rayleigh waves,
mixed waves, and bulk waves. Each contributes inde-
pendently to the scattering and the corresponding
differential reflection coefficients are derived in T,
For the case of Rayleigh modes the frequency is com-
pletely specified by the parallel component, Q, of the
phonon wave vector; ie., w=w(Q)=%c| Q| where
¢, is the velocity of transverse waves and # satisfies the
Rayleigh condition'?

$—864-8£2(3—2¢*/c?) —16(1—c2/c2) =0, (20)

with ¢; the velocity of longitudinal waves. Then the
single phonon absorption term of Eq. (6) is
[dR® [de;dQs (R | Ky | koy?h.:f 2m200)

Xn(w) | e:(Q) [*6(¢—ei~Fiw), (21)

where p is the mass density of the surface; #(w) is given
by (13); and e.(Q), the perpendicular component of
the polarization vector, is given by

| e(Q) 7= (1 Q [+xb)?
y (K,2+Qz L

+u1Ql), @

2k, 2k;
with

kio= (QP—w?/cy, 212, (23)
and

b=2(1-8)"2/(2—g). (24)

For bulk and mixed phonons, there are three inde-
pendent components of the wave vector and

dR® [de;dQ= (| ky | k.y?k.:/ 2m%00)
X (dg./dw) | €. * n(w),

where energy conservation implies e —e;=%w and
dg/dw is the density of phonon states for perpendicular
motion. For the bulk modes we can write

(25)

_ ¢* cosBy(c sin26; sin26, sinf,— ¢; cos?26, sind;) 2
sinf;(c ! sin?26, sin?20,— ¢;* cos*26,) » (26)

where 6; and 6; are, respectively, the angles at which
the transverse and longitudinal parts of the waves are
incident on the surface.

3453

For mixed modes this becomes

1
:lw—q | €. 2= (c: cosf,) ™

2 sin20,(sin%,— c?/c?)
c0s%20,+4 sin?26, sin?9,(sin20;—c2/c?)

Finally we need the density of states de;/dw appearing
in (14) and (15). This is simply % for bulk and mixed
modes where there are three independent components
of the wave vector, but for surface modes it is given by
Zef/w.

In obtaining the results (21) and (25) we have made
use of the distorted wave Born approximation for the
transition rate of Eq. (6). In I it is shown that in this
case the transition matrix for single phonon processes
becomes the matrix element of the first derivative of
the thermal average of the total interaction potential,
V, taken between wavefunctions of this thermally
averaged potential. In the limit of small surface vibra-
tions the thermal average of (18) is a step function, the
one-phonon interaction is proportional to a § function,
and the matrix elements become independent of the
strength V, of the interaction.

The extension of this process to the exchange of
two or more phonons is straightforward, If (V) is the
thermal average of V then the interaction potential for
the exchange of » phonons is proportional to d*(V)/dz"
and the matrix element is again taken with the wave-
functions of (V).

It is also shown in I that a much better approximation
to this one phonon transition matrix is obtained by
replacing d({V')/dz with

(d{V)/dz)/ (1+R:/4),

and taking matrix elements with states of (V). Here R;
is the total probability in the Born approximation that
a particle in the incoming beam of momentum k; will
be scattered out of the specular beam, and is equal to
the integral of the one-phonon Born approximation
differential reflection coefficient (both for absorption
and emission) over all final energies and angles. In this
approximation the total number of particles is con-
served during the scattering process, i.e., the property
of unitarity is obeyed. Thus we see that the one-phonon
Born approximation is valid only if R; is small com-
pared to unity and this gives a very good test for the
validity of the approximation.

(27)

(28)

III. CALCULATIONS AND DISCUSSION
OF RESULTS

Figure 1 shows the results of a numerical calculation
of the accommodation, a(T), of helium at a tungsten
surface, using Eqs. (15) and (17) together with (21)
and (25). Values of ¢, ¢;, and p are taken from the

" American Institute of Physics Handbook.” The cutoff

frequency was determined by assigning the same
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minimum wavelength to each of the three phonon
modes which contributed to the scattering. The cutoff
was adjusted to match the experimental data of Thomas
et alM at T=100°K, and corresponds to a Debye
temperature of 325°K for bulk longitudinal modes. A
temperature of 100°K was chosen because it is well
within the range of validity of the one-phonon Born
approximation, as seen by evaluating R; for the highest
energy incoming particles which contribute significantly
to the accommodation. Specifically, in the integration
over ¢; in Eq. (15) the factor exp(—e;/kT) insures that
only those energies for which ¢<5kT< 5fwp con-
tribute significantly to the accommodation, while a
closer investigation shows that the largest contributions
come from the region e;~2fiwp. The value of R; for
€= Shwp and T=100° is 0.35 (i.e., 359 of the inci-
dent beam of momentum Kk; is scattered out of the
specular beam) while for e;=2%wp we obtain R;=0.14.
These values together with Eq. (28) show that the
error incurred by the neglect of unitarity is less than 59
for temperature around 100°,

Each of the three types of phonons contributes
separately to the accommodation, with the contribution
due to the surface modes being considerably larger than
that of the bulk or mixed modes. The agreement with
the experimental data is qualitatively good for tem-
peratures greater than 50°K, while for lower tempera-
tures the agreement seems rather poor. The tabulated
values for the Debye temperature of tungsten range
from 270°K® to 379°K'" so the chosen value of 325°
lies well within this range. (One would expect that
the Debye temperature would be lower in the surface
region due to the change in periodicity of the lattice
and this result has been confirmed by low energy elec-
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tron diffraction experiments.’®7) At low temperatures
the accommodation coefficient falls to zero and it can
be readily shown that it follows a 7® dependence as
T—0 if Aiwp<<2mc.®. For the parameters used in Fig. 1,
fiwp/2me*~0.1 and the low temperature behavior goes
very nearly as 73,

The fact that the accommodation falls to zero as
T—0 is in agreement with other quantum mechanical
calculations.51* However, this behavior is in disagree-
ment both with the experimental data shown in Fig. 1,
and also with classical calculations, which generally
show the accommodation rising to a finite value at
T=0.8"2 The quantum mechanical results of Gilbey®
using the Devonshire theory seem to indicate that the
accommodation coefficient could rise sharply before
falling to zero, but in order to obtain this “hump” at
low temperatures, rather unrealistic values of the
parameters describing the surface must be used.
No such behavior appears in the present calculations,
but one might suspect that, as in the case of Gilbey’s
calculations, this “hump” is due to the effects of the
attractive adsorption well which has been neglected
here. However, calculations have been carried out for
the square well and Morse potentials and the results are
quite similar to those shown in Fig. 1, with no rises in
a(T) at low temperatures

Measurements have shown that the accommodation
coefficient is virtually independent of the temperature
of the surface!* To test this aspect of the present
theoretical model we have carried out calculations of the
double temperature accommodation coefficient using
Eq. (14). It is readily shown using Egs. (14), (17),
(21), and (25) that a(7T,, T,) with T, fixed approaches
nonzero finite limits both for 7,—0 and Ty—». A
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typical result of these calculations is given in Fig. 2
whoch shows the accommodation coefficient as a func-
tion of surface temperature with the gas temperature
fixed at 100°K, all other parameters being the same as
for Fig. 1. For surface temperatures above 100° it is
seen that the accommodation is very nearly constant in
agreement with experiment. However, this model seems
to indicate that for low temperatures the accommoda-
tion does vary rather strongly with surface temperature.
These calculations have also been carried out with the
square well and Morse potentials for the surface
interaction and the results are again similar to those in
Fig. 22

For light gas atoms and low temperatures one would
expect the interactions between gas particles and the
surface to be definitely quantum mechanical in nature.
This can be verified in the present model by calculating
the total number of particles scattered by single phonon
events, and as discussed above this is quite small at low
temperatures. Thus the discrepancy between theory and
experiment may be a result of some rather severe limita-
tions in the theory. The most obvious deficiency in the
present model is the lack of an attractive adsorption
well near the surface, and the possibility of interacting
with the bound states. As mentioned above, the simple
inclusion of an attractive well without considering the
bound states does not seem to significantly alter the
low temperature behavior. However, if the gas particles
can interact with the bound states there is the possi-
bility of adsorption which could lead to larger transfers
of energy. Perhaps equally important is the fact that
this model does not allow diffraction of particles at the
surface. If diffraction is allowed then it is possible for a
gas particle to interact resonantly with a bound state
(i.e., a particle can enter a bound state while still
conserving energy). Such processes generally lead to
enhanced scattering probabilities and could possibly

contribute significantly to adsorption and energy
transfer.

ACKNOWLEDGMENTS

The author would like to express his appreciation
for many helpful and stimulating discussions with
Dr. V. Celli and Dr. F. O. Goodman.

1 M. Knudsen, The Kinetic Theory of Gases (Methuen, London,
1950) pp. 46-61.

2J. M. Jackson and N. . Mott, Proc. Roy. Soc. (London)
Al137, 703 (1932).

3 N. Cabrera, V. Celli, and R. Manson, Phys. Rev. Letters 22,
346 (1969).

4N. Cabrera, V. Celli, F. O. Goodman, and R. Manson, Surface
Sci. 19, 67 (1970). }

3R, Manson and V. Celli, Surface Sci. 24, 495 (1971), here-
after referred to as I.

8 A. . Devonshire, Proc. Roy. Soc. (London) Al58, 269
(1937).

7 F. O. Goodman, Surface Sci. 24, 667 (1971).

8J. M. Jackson, Proc. Cambridge Phil. Soc. 28, 136 (1932).

9D. M. Gilbey, J. Phys. Chem. Solids 23, 1453 (1962).

10 R, Allen and P. Feuer, J. Chem. Phys. 40, 2810 (1964).

1 E. Drauglis, Molecular Processes on Solid Surfaces (McGraw-
Hill, New York, 1969), p. 367.

127, Landau and E. Lifshitz, Theory of Elasticity (Pergamon,
New York, 1959), Chapter III.

3 Anerican Institute of Physics Handbook, edited by Dwight
E. Gray (McGraw-Hill, New York, 1957).

UL, B. Thomas, Advan. Appl. Mech., Suppl. 4, Vol. 1, 155
(1967).

15 C, Kittel, Introduction to Sclid State Physics (Wiley, New
York, 1956) Second Ed., p. 132.

1 A.) U. McRae and L. H. Germer, Phys. Rev. Letters 8, 489
(1962).
( ;J.)C. Gregory and I. Dalins, Bull. Am. Phys. Soc. 14, 833

1969).

8 F. 0. Goodman, J. Phys. Chem. Solids 23, 1269 (1962); J.
Chem. Phys. 50, 3855 (1969).

‘W], Trilling, Advan. Appl. Mech., Suppl. 4, Vol. 1, 139 (1967).

”7D). Hollenbach and E. Salpeter, J. Chem. Phys. 53, 79
(1970).
( 21I7). M. Gilbey, Advan. Appl. Mech. Suppl. 4, Vol. 1, 121
1967).

2 B, Gaffney and R. Manson (to be published).

Downloaded 28 Jan 2009 to 130.127.189.57. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/jcp/copyright.jsp



