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As a part of his studies explaining how an enclosed gas comes to equilibrium, Maxwell �Philos. Trans. R.
Soc. Lond. 170, 231 �1879�� proposed what is now known as the “Maxwell assumption,” namely, that when
gas particles collide with the walls of their container, a fraction is directly scattered with little change in state,
while the remaining fraction becomes trapped at the surface and subsequently desorbs in a distribution at
equilibrium with the surface temperature. In this paper a scattering theory is developed, using an iterative
algorithm and classical mechanics for the collision process, which describes both direct scattering and
trapping-desorption of the incident beam. That portion of an incident beam that is initially trapped in the
physisorption potential well can be followed as the trapped atoms continue to make further interactions with
the surface until they are all eventually ejected back into the continuum and leave the surface region. Several
calculations show that this theory predicts when a system will obey the Maxwell assumption. Additional
calculations show that the theory quantitatively explains recent experimental measurements �K. D. Gibson, N.
Isa, and S. J. Sibener, J. Chem. Phys. 119, 13083 �2003�� of Ar scattering from a self-assembled monolayer on
Ag�111� in which clear signals of both direct scattering and a trapping-desorption fraction are exhibited in the
energy-resolved spectra.
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I. INTRODUCTION

Trapping and sticking are important processes that occur
in gas-surface interactions. Sticking is generally associated
with strong chemical bonding to the surface, and once bound
the stuck particle does not desorb. Trapping, on the other
hand, is associated with the physisorption potential well cre-
ated by the relatively weak van der Waals potential and in
many circumstances trapped gas particles will desorb after a
period of residing in the well near the surface.

Maxwell,1 in his studies of gas-surface interactions, is
credited with being the first to invoke the simple assumption
that a gas impinging on a surface is scattered into two frac-
tions, one that reflects specularly and exchanges no energy
and the other that equilibrates or accommodates completely
and desorbs with an equilibrium distribution. This idea was
taken up early in the 20th century by Knudsen,2 who intro-
duced the concept of the term “coefficient of thermal accom-
modation” to measure the efficiency of energy exchange at
the interface between a gas and a surface and developed a
theoretical framework in which to describe it. Since this
early work it has become standard to assume in gas-surface
collisions that the fraction of the incident gas beam that is
trapped and subsequently desorbed leaves the surface in an
equilibrium distribution; i.e., its accommodation coefficient
is assumed to be unity and its distribution function is the
Knudsen flux. This assumption of Maxwell1 appears to be
very useful because it appears to explain qualitatively experi-
mental results measured under a wide range of different con-
ditions. However, such an assumption has never been ad-
equately verified theoretically.

In fact, it is clear that the first part of the Maxwell as-
sumption, i.e., that the direct-scattering contribution is elas-
tic, can hold strictly true only in the case of quantum-
mechanical conditions, which implies low energies, small

temperatures, and small mass ratios. For classical scattering,
which is the regime of large energies, high temperatures, and
large mass ratios, the direct-scattering contribution leaves the
surface as a distribution over a range of energies whose av-
erage is typically smaller than the energy of the incident
beam, but may be larger in the case of high surface
temperatures.3–7 However, the second part of the Maxwell
assumption, i.e., that the trapping-desorption fraction leaves
the surface in equilibrium, is often still today used to explain
experiments.6,7

The purpose of this paper is twofold. First, we test the
Maxwell assumption of equilibrium for the trapping-
desorption fraction using realistic calculations for a simple
model of the gas-surface potential and determine when such
an assumption is valid. Second, we demonstrate that a model
of the interaction potential that retains the basic elements
necessary for trapping, when combined with a calculation
that contains correct statistical mechanics, can explain mod-
ern high-precision energy-resolved scattering measurements.
The gas projectile is taken to be an atom and its interaction
potential is taken to be an attractive square well with a
strongly repulsive surface barrier. The calculations are car-
ried out using classical mechanics, which is justified for
many systems of interest in rarefied surface dynamics. A
classical treatment means that the results will describe
heavy-mass atoms at higher energies and surfaces at high
temperatures where quantum-mechanical effects are not
dominant. The use of an attractive square well to approxi-
mate the slowly varying van der Waals potential is also rea-
sonable when used with a classical calculation since it gives
a good description of the two primary effects upon entering
the well, which are an increase in energy and a refraction of
the atom to steeper angles toward the surface. The authors
earlier presented results using a similar model for one-
dimensional scattering.8 This work extends those earlier re-
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sults to the much more realistic and more complicated case
of fully three-dimensional scattering.9

Once a beam of incoming atoms interacts with the sur-
face, a fraction will be directly scattered while the remainder
will be trapped in the potential well. Of the trapped fraction,
some will lose sufficient energy to be actually trapped in the
well with negative total energy, while others, even though
they have positive total energy, will scatter at angles suffi-
ciently close to grazing that they will be deflected back to-
ward the surface by the attractive part of the well. This latter
positive-energy part of the trapped particles is often called
the chattering fraction. The trapped portion of the incident
beam particles will continue to have interactions with the
surface. With each subsequent interaction some will receive
enough energy and will be projected sufficiently close to the
surface normal that they can escape, while the remainder will
continue to be trapped. Eventually, in a closed system, all
particles initially trapped will ultimately desorb from the sur-
face, although for low temperatures and deep potential wells
this could take a very large time.

For the model considered here, through an iterative algo-
rithm, all of the trapped particles are followed as they con-
tinue to have collisions with the surface. At each iteration the
negative-energy fraction, the chattering fraction, and that
fraction which is desorbed are recalculated. In this manner
the energy distribution of the slowly diminishing trapped
particle fraction as well as the energy and angular distribu-
tion of the desorbed �or scattered� particles can be followed,
and a trapping time can be calculated. By following the ini-
tial direct scattering and the sum of all the subsequently de-
sorbed particles, the approach to equilibrium of the trapping-
desorption fraction can be monitored.

What is determined is that for shallow potential wells and
large surface temperatures, conditions for which little trap-
ping is expected, the desorbed fraction leaves the surface
very quickly and does not at all resemble an equilibrium
Knudsen flux. However, for deeper wells and lower tempera-
tures when the majority of the incident particles are trapped,
it is found that the energy distribution of the trapped fraction
rather quickly saturates to a stable functional form while the
total number of trapped particles slowly diminishes. As a
function of initial conditions favorable to trapping, e.g., low
incident beam energy, deep wells, and low surface tempera-
tures, the approach of the scattered particles toward an equi-
librium distribution is followed. We find that in many cir-
cumstances, the energy distribution of the scattered particles
readily approaches equilibrium shape even for trapping times
that are relatively short. The approach of the angular distri-
bution to equilibrium shape, which is a Knudsen cosine dis-
tribution independent of azimuthal angle, occurs more
slowly and only for very large trapping times. Thus this work
provides a real prediction for the conditions under which the
Maxwell assumption of equilibrium for the trapping-
desorption fraction can be applied with reasonable accuracy.

However, the mere fact that these calculations can indi-
cate the conditions under which the trapping-desorption frac-
tion may appear as a nearly equilibrium distribution is not
sufficient to demonstrate that such conditions are realistic. In
order to be convincing, calculations with the same potential
model should be capable of explaining real experimental

measurements. To demonstrate this ability, we have chosen
to compare our calculations with recent high-precision
energy-resolved data for the scattering of Ar atoms from a
well-ordered monolayer of the polymer 1-decanethiol ad-
sorbed on Au�001�.6 This experiment showed that for well-
defined beams of Ar incident over a large range of energies
and angles, the scattered distributions could be described by
a combination of two features, a direct-scattering fraction
and a trapping-desorption fraction that was nearly in equilib-
rium with the surface. Our calculations provide an excellent
description of both contributions of the scattered spectra and
produce an estimate of the average physisorption well depth
of the interaction potential.

In the remainder of this paper the theory is fully devel-
oped together with a description of the iteration method in
Sec. II. In Sec. III, a number of calculated results describing
the approach of the trapping-desorption fraction toward equi-
librium are shown and discussed. In Sec. IV, calculations are
compared with the experimental data of Ref. 6. Conclusions
are discussed in Sec. V.

II. THEORY

A convenient way of describing a surface scattering event
is through a differential reflection coefficient, written as
dR�p f ,pi� /dEfd� f, which gives the fraction of an incident
beam of momentum pi that is scattered into the small energy
interval and small solid angle in the direction of the scattered
momentum p f. The differential reflection coefficient obeys
the unitarity condition which assures that the number of par-
ticles scattered equals the number incident on the surface,

�
0

�

dEf� d� f
dR�p f,pi�
dEfd� f

= 1. �1�

The interaction potential is specified by a vibrating repul-
sive wall with a square physisorption well in front of depth D
and width b, where the actual length of b plays a role in
calculating the trapping times but is unimportant for all other
calculations as long as it is larger than the selvage region
containing the vibrational corrugations of the repulsive po-
tential. It is assumed that the exchange of energy and mo-
mentum with the surface occurs only in collisions with the
repulsive wall, while all trapped particles collide with a sta-
tionary wall at the front of the well positioned at z=b that
simply reflects specularly. This means that for the purpose of
calculating the resulting distribution after a collision, the dif-
ferential reflection coefficient is calculated using momenta
that include the well depth in the normal component. For
example, a particle that would have momentum pq outside
the well has the momentum pq� inside where the two differ in
that the energy associated with perpendicular motion is in-
creased by the well depth,

pqz�
2 = pqz

2 + 2mD , �2�

where m is the atom’s mass. Similarly, an atom incident from
asymptotically far away with polar angle �i with respect to
the surface normal will be refracted inside the well into the
angle
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cos �i� =�Ei cos2 �i + D

Ei + D
. �3�

The relationship between the differential reflection coeffi-
cients inside and outside of the well for the fraction which
escapes is given by a simple Jacobian that is calculated from
Eqs. �2� and �3�.

Within this model, the trajectory of a given atom consists
of successive collisions with the surface. The incoming beam
first enters the well and then proceeds to have a first collision
with the repulsive wall that scatters it into a distribution of
energies and angles dictated by the differential reflection co-
efficient. Some of these scattered particles have sufficient
energy and small enough polar angles to escape out of the
well; this is the direct-scattering portion. The remaining par-
ticles are trapped, they are specularly reflected by the front
face of the potential well, and then they travel back to the
repulsive potential where they suffer a second collision. This
process repeats multiple times until all of the initially trapped
atoms eventually escape the confines of the potential well.

Based on a zeroth-order differential reflection coefficient
dR0�p f ,pi� /dEfd� f, which, for each collision with the repul-
sive potential, gives the probability of scattering from mo-
mentum state pi to p f, the total differential reflection coeffi-
cient after n such collisions can be written schematically as

dRn�p f,pi�
dEfd� f

=
dR0�p f,pi�

dEfd� f
+� dEbd�b

dR0�p f,pb�
dEfd� f

dR0�pb,pi�
dEbd�b

+� dEbd�b
dR0�p f,pb�

dEfd� f

dR1�pb,pi�
dEbd�b

+ ¯

+� dEbd�b
dR0�p f,pb�

dEfd� f

dRn−1�pb,pi�
dEbd�b

, �4�

where the intermediate integrations in the higher-order terms
are carried out only over those energies and angles that per-
tain to particles trapped in the bound states.

Such a procedure lends itself to an iterative formulation in
which the scattered distribution remaining in the well after
the last collision becomes the source for the next collision.
The angular and energy space within the well is divided into
bins sufficiently small so as to obtain good numerical preci-
sion. It is necessary to keep track separately of the three
different types of trajectories, i.e., the trapped particles with
negative total energy �the trapping fraction�, the trapped par-
ticles with positive energy �the chattering fraction�, and those
that escape at each iteration �the trapping-desorption frac-
tion�.

An explicit mathematical description of how this is ac-
complished follows. After the nth �n�1� iteration, the dif-
ferential reflection coefficient inside the potential well
dRn�p f� ,pi�� /dEf�d� f� is

dRn�p f�,pi��
dEf�d� f�

= �
dRn−1�p f�,pi��

dEf�d� f�
+

dRCon
n �p f�,pi��
dEf�d� f�

for Ef� � D, 0 � � f� � � fc�

dPn�p f�,pi��
dEf�d� f�

otherwise, � �5�

where the upper line of the right-hand side of Eq. �5�, labeled
with the conditions Ef��D and 0�� f��� fc� , gives the inten-
sity scattered into the continuum states after n iterations and
consists of the contribution that was already in the con-
tinuum state after n−1 iterations plus the fraction contributed
to the continuum by the nth iteration. The critical angle for
reflection of particles in the positive-energy chattering frac-
tion from the front of the well is � fc� , which is dependent on
energy and given by an equation similar to Eq. �3�. The
fraction that remains trapped in the well is divided into the
sum of the positive-energy chattering fraction and the
negative-energy trapped fraction, denoted by the subscripts
C and T, respectively, according to

dPn�p f�,pi��
dEf�d� f�

=
dRC

n �p f�,pi��
dEf�d� f�

+
dRT

n�p f�,pi��
dEf�d� f�

. �6�

The positive-energy chattering and negative-energy trapped
fractions are further divided as follows:

dRC
n �p f�,pi��

dEf�d� f�
= 	�1 − N�p f�;� f���

dRC
n−1�p f�,pi��
dEf�d� f�

+
dRIC�C�

n �p f�,pi��

dEf�d� f�
+

dRIT�C�
n �p f�,pi��

dEf�d� f�

 1

Nn ,

�7�

and

dRT
n�p f�,pi��

dEf�d� f�
= 	�1 − N�p f�;� f���

dRT
n−1�p f�,pi��
dEf�d� f�

+
dRIC�T�

n �p f�,pi��

dEf�d� f�
+

dRIT�T�
n �p f�,pi��

dEf�d� f�

 1

Nn .

�8�

In the above equations the factor �1−N�p f� ;� f���, where
N�p f� ;� f�� is the ratio of normal velocity to that of the maxi-
mum normal velocity of all bound states, is given by
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N�p;�� =
p cos �

Pz
Max , �9�

where Pz
Max is the largest normal momentum component of

all the trapped particles and p cos � is the momentum com-
ponent in the z direction for any other trapped particle. The
terms multiplied by this factor takes account of the fact that
the slower particles collide less often than the faster particles.
The Nn is a normalization coefficient chosen such that
dRn�p f� ,pi�� /dEf�d� f� is normalized as in Eq. �1�. The inter-
mediate differential reflection coefficients for the chattering
and negative-energy trapped fractions at each iteration are
given by

dRIC�X�
n �p f�,pi��

dEf�d� f�
= �

D

�

dEq��
�fc�

	/2

d�q��
0

2	

d
q�
dR0�p f�,pq��

dEf�d� f�

�N�pq�;�q��
dRC

n−1�pq�,pi��
dEq�d�q�

, �10�

and

dRIT�X�
n �p f�,pi��

dEf�d� f�
= �

0

D

dEq��
0

	/2

d�q��
0

2	

d
q�
dR0�p f�,pq��

dEf�d� f�

�N�pq�;�q��
dRT

n−1�pq�,pi��
dEq�d�q�

, �11�

where the symbol X can stand for any one of the three pos-
sibilities: C for the chattering fraction, T for the negative-
energy trapped fraction, or Con for the fraction that goes into
the continuum. For example, dRIT�C�

n �p f� ,pi�� /dEf�d� f� is the
intermediate differential reflection coefficient giving the
probability during the nth iteration that a particle will make a
transition from the negative-energy trapped fraction to the
chattering fraction. Finally, the contribution to the continuum
states in the total differential reflection coefficient of Eq. �5�
coming from the nth iteration is

dRCon
n �p f�,pi��
dEf�d� f�

=
1

Nn

dRIC�Con�
n �p f�,pi��

dEf�d� f�
+

1

Nn

dRIT�Con�
n �p f�,pi��

dEf�d� f�
.

�12�

At the end of n iterations the fraction of all incident par-
ticles that remain trapped in the positive-energy chattering
states is

PC
n = �

D

�

dEf��
�fc�

	/2

d� f��
0

2	

d
 f�
dPT

n�p f�,pi��
dEf�d� f�

, �13�

while the fraction trapped with negative total energies is

PT
n = �

0

D

dEf��
0

	/2

d� f��
0

2	

d
 f�
dPT

n�p f�,pi��
dEf�d� f�

. �14�

Thus the total trapped fraction after n iterations is

Pn = PC
n + PT

n . �15�

The fraction escaping into the continuum state after n itera-
tions is

PCon
n = �

D

�

dEf��
0

�fc�
d� f��

0

2	

d
 f�
dRn�p f�,pi��

dEf�d� f�
, �16�

and the unitarity condition assures that the total number of
particles is conserved,

PC
n + PT

n + PCon
n = 1. �17�

The major numerical operations in this procedure are the
two volume integrals associated with evaluation of the inter-
mediate differential reflection coefficients of Eqs. �10� and
�11� and the unitarity summations of Eqs. �13�, �14�, and
�16�, which taken together amount to a six-dimensional inte-
gral. The angular integrations are carried out using Gauss-
Legendre quadratures and the energy integrals use Gauss-
Laguerre quadratures. Because classical differential
reflection coefficients are positive definite and typically tend
to consist of a single broad peak or a small number of such
peaks in both the energy and angular variables, Gauss
quadratures are ideally suited for these integrals.

The only remaining element of this procedure that needs
to be specified is the zeroth-order differential reflection co-
efficient. There are a number of choices that have been used
in the past to describe classical mechanical collisions of at-
oms with vibrating surfaces.10–12 The simplest of these, and
the most appropriate for the present calculations, is the dif-
ferential reflection coefficient for an atomic projectile collid-
ing with a surface of discrete scattering centers of mass M
whose initial momenta are distributed in an equilibrium dis-
tribution at temperature TS. This is given by12–14

dR0�p f,pi�
dEfd� f

=
m2�p f�

8	3�4piz
� fi�2� 	

kBTS�E0
1/2

�exp	−
�Ef − Ei + �E0�2

4kBTS�E0

 , �18�

where �E0= �p f −pi�2 /2M is the recoil energy, piz is the z
component of the incident momentum, kB is the Boltzmann
constant, and � fi�2 is the form factor of the scattering center
which depends on the interaction potential. To lowest order,
the amplitude  fi is identified as the transition matrix element
of the elastic interaction potential extended off the energy
shell.15 However, for this work we use the value appropriate
for hard sphere scattering which is a constant. The differen-
tial reflection coefficient of Eq. �18� can be obtained from a
purely classical calculation or from a quantum-mechanical
formulation in which the classical limit is extracted. In the
case of a completely classical derivation, the constant � is
unspecified except for its dimensions of action, whereas
quantum derivations identify � as Planck’s constant divided
by 2	.

To obtain the trapping time  a variety of methods can be
used, but we have found that the most convenient is to first
calculate the average speed normal to the surface for the
trapped particles after each iteration. The time for that itera-
tion is then determined as that required to travel the distance
2b from the repulsive wall to the front of the well and back.

The average normal speed for the positive-energy trapped
fraction is
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�vn�C =
1

PC
n �

D

�

dEf��
�fc�

	/2

d� f��
0

2	

d
 f��2Ef�

m

�cos�� f��
dPT

n�p f�,pi��
dEf�d� f�

, �19�

and for the negative-energy trapped fraction it is

�vn�T =
1

PT
n�

0

D

dEf��
0

	/2

d� f��
0

2	

d
 f��2Ef�

m

�cos�� f��
dPT

n�p f�,pi��
dEf�d� f�

. �20�

The total trapping time is then given by summing the times
at each iteration,

 = 2b�
n
� 1

�v�T
n

PT
n

P0 +
1

�v�C
n

PC
n

P0  = T + C, �21�

where P0 is the fraction of initially trapped particles. The
actual definition of trapping time used in this work is the
time required for the fraction of trapped particles remaining
in the well to be reduced to 1% of the number of incident
atoms.

The method of calculation of the average trapping time is
clearly not unique, and we have evaluated it several ways
using the trapped fraction probabilities as in Eqs. �19� and
�20� above. For example, instead of determining the average
speed, one can use the root-mean-square normal speed, or
find the average time directly by obtaining the average of
2b /vz at each iteration. In cases in which the trapping time is
relatively long, all of these different methods yielded values
which were quite similar. For all average trapping times re-
ported here the width of the well was taken to be b=3Å, and
Eq. �21� shows that  scales linearly with b.

III. APPROACH TO EQUILIBRIUM

In this section we present a number of calculations that
demonstrate the approach toward an equilibrium distribution
of the trapping-desorption fraction. The parameters are pri-
marily chosen to represent monoenergetic and angularly de-
fined beams of either Ar or Ne scattering from a tungsten
surface. This leads to a set of guidelines for when one may
expect the Maxwell assumption to be valid, i.e., for when the
trapping-desorption fraction approximates an equilibrium
distribution.

Figure 1 shows an example calculation of the evolution of
the energy distribution as a function of number of iterations
for the case of argon scattering from a tungsten surface. The
incident angle is 45°, the incident energy is 1 meV, the well
depth is chosen to be 80 meV, and the surface temperature is
273 K. The dotted curve shows the continuum energy distri-
bution after the first iteration, which is the second collision
with the surface. The trapping fraction is P1=0.953, indicat-
ing that 95.3% of the incident particles remain trapped in the
potential well. The dashed and dash-dotted curves show the
evolution of the continuum scattered distribution after in-

creasing numbers of iterations of 5, 50, and 500. After 500
iterations there is still approximately one-third of the inci-
dent particles trapped. After 3500 iterations the trapped frac-
tion drops below the arbitrary threshold of 1% of the incident
particles.

Also shown for comparison in Fig. 1 is the Knudsen dis-
tribution given by

dK

dEfd� f
=

Ef cos � f

	�kBTG�2exp	−
Ef

kBTS

 . �22�

It is clearly seen that the total scattered distribution closely
approximates the Knudsen flux when nearly all the initially
trapped particles have been desorbed.

What is actually plotted in Fig. 1 is the integral over all
final angles of the differential reflection coefficient, which is
essentially the average energy distribution scattered over all
outgoing angles. However, the energy distribution at any
fixed final polar and azimuthal angle behaves quite similarly,
and at the maximum iteration number the dependence of the
distribution on energy is essentially the same at all angles.
This is in agreement with the Knudsen flux which has ex-
actly the same energy dependence at all final angles.

The average trapping time as calculated using the average
normal speed from Eq. �19� in order to reach the arbitrary
threshold of 1% of the particles still remaining trapped is 
�6.71�10−9 s. If the number of iterations is extended to
larger than the N=3500 shown in Fig. 1, there is essentially
no change in the scattered distribution because the number of
particles remaining in the well is insignificant.

For incident energies small compared to the well depth D,
the final, converged energy distribution after a large number
of iterations is independent of incident energy and incident
angle. However, the distributions calculated after only a
small number of iterations will vary somewhat with the
choice of these incident parameters.

The evolution of the angular distribution for the same
Ar/W system as shown in Fig. 1 except for a higher tempera-

0 40 80 120 160
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n
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1
=0.962
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5
=0.937

n=50; P
50

=0.841

n=500; P
500

=0.455

n=3500; P
3500

<0.01
Knudsen Flux

FIG. 1. Argon scattering from a tungsten surface: the evolution
of the final energy distribution for particles scattered into the con-
tinuum states after a specified number of iterations. The surface
temperature is 273 K, the incident energy Ei=1 meV, the well
depth D is 80 meV, and the incident angle �i=45°. Five curves of
the final distributions for the iteration numbers N=1, 5, 50, 500, and
3500 are shown. For comparison a Knudsen equilibrium flux is
given as open circles.
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ture TS=303 K is given in Fig. 2. It is seen that as the
number of iterations increases, the angular distribution as a
function of the polar angle � f gradually approaches the cos � f
form of the Knudsen flux, which is shown as open circles.
The calculations of Figs. 1 and 2 very quickly become inde-
pendent of the azimuthal angle 
 even for very small num-
bers of iterations. This is consistent with the behavior of the
Knudsen flux which is independent of azimuthal angle.

For the set of initial conditions chosen in Fig. 2, it is seen
that the angular distribution does not achieve a Knudsen dis-
tribution even at the largest iteration number calculated. The
shape closely resembles a cosine function but, for example,
its value at � f =0 is only about 88% of that for the corre-
sponding Knudsen cosine. This behavior is typical of many
of the systems examined. If the well depth is sufficiently
large and the incident energy is small compared to D and
kBTS, the system will usually achieve an equilibrium energy
distribution after large numbers of iterations and it becomes
independent of azimuthal angle very quickly. But the polar
angular distribution is usually very slow to converge to the
equilibrium cosine distribution as seen in Fig. 2 and also in
Fig. 4.

The evolution of a system toward a final equilibrium dis-
tribution as a function of potential-well depth D is shown in
Fig. 3. The parameters are similar to the Ar/W system of Fig.
1 and the projectile is incident normally at �i=0° with Ei
=1 meV and TS=273 K, but completely converged calcula-
tions �meaning less than 1% of the incident particles remain
trapped� are shown for the three different well depths of 20,
50, and 80 meV. This figure shows clearly that even if the
incident energy is very small and the initially trapped frac-
tion is large, the total scattered distribution does not ap-
proach equilibrium unless the adsorption well is sufficiently
deep to cause long average trapping times. For a shallow
well of 20 meV with an average desorption time of about
5.3�10−10 s as shown in Table I the final distribution devi-
ates strongly from an equilibrium distribution. It is only
when the well depth is increased to about 80 meV that near-
equilibrium conditions are achieved.

The response of the angular distribution of the final scat-
tered particles for the same conditions as shown in Fig. 3 is

given in Fig. 4. The progression toward a cosine distribution
is clearly evident with increasing well depth, but even for the
rather large value of D=120 meV, for which the average
trapping time is 1.28�10−7 s, the result deviates somewhat
from cosine behavior, although at � f =0° the calculated value
is 91% of the cosine maximum.

An example showing the effect of mass on the conver-
gence toward equilibrium is shown in Fig. 5 corresponding
to Ne scattering from tungsten at 1 meV of incident energy.
For this system the mass ratio is roughly half that of Ar/W
and approximate equilibrium behavior is not achieved unless
the well depth is approximately 150–200 meV in depth. The
corresponding average trapping time for D=200 meV is
about 3.9�10−7 s as seen from Table II.

The effects of mass on the approach to equilibrium are
even more dramatically exhibited in Fig. 6, which shows the
scattered energy distribution as a function of the projectile to
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FIG. 2. The evolution of the final distribution in polar angle � f

for the Ar/W system with the same parameters as in Fig. 1 except
that the temperature is 303 K. A Knudsen cosine distribution is
shown as open circles.
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FIG. 3. Final energy distributions for the Ar/W system as a
function of potential-well depths D=20, 50, and 80 meV are shown.
The temperature of the surface is 273 K, the incident energy Ei

=1 meV, and �i=0°. A Knudsen distribution is shown as open
circles.

TABLE I. The desorption times  and initial sticking fractions
P0 for Ar/W. Ei is 1 meV, �i is 45°, and TS is 303 K, and well depths
ranging from 20 to 200 meV are shown. The upper set of values
was obtained from the normal rms speed of trapped particles, and
the lower set of values was determined from the average normal
speed.

Ar/W rmsC rmsT rms P0

D=20 meV 1.28�10−10 1.66�10−10 2.94�10−10 0.825

D=50 meV 1.26�10−10 6.63�10−10 7.89�10−10 0.933

D=70 meV 1.35�10−10 1.58�10−9 1.72�10−9 0.958

D=80 meV 1.40�10−10 2.42�10−9 2.56�10−9 0.966

D=200 meV 1.99�10−10 3.59�10−7 3.59�10−7 0.995

 �v̄� C T 

D=20 meV 2.27�10−10 3.04�10−10 5.31�10−10

D=50 meV 2.10�10−10 1.16�10−9 1.37�10−9

D=70 meV 2.21�10−10 2.74�10−9 2.96�10−9

D=80 meV 2.29�10−10 4.20�10−9 4.43�10−9

D=200 meV 3.26�10−10 6.40�10−7 6.40�10−7
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surface mass ratio �. The well depth is chosen to be 50 meV,
the incident energy is 1 meV, �i=45°, and the temperature is
303 K. When the mass ratio is small, for instance �=0.005
corresponds to hydrogen atoms scattering from tungsten, the
total scattered intensity is far from an equilibrium distribu-
tion. However, for a mass ratio of about one-half the scat-
tered spectra is very nearly in equilibrium.

Larger temperatures tend to make initial trapping more
difficult and lead to more rapid desorption. Thus at high
temperatures the trapping-desorption fraction will deviate
more strongly from an equilibrium distribution. This is
shown in Fig. 7, where calculations are shown for similar
initial conditions as in Fig. 1, i.e., Ar/W at a low incident
energy of 1 meV and a well depth of 80 meV, but three
different surface temperatures of 303, 600, and 1200 K. For
each temperature a Knudsen flux distribution is shown as
points. For the lowest temperature the scattering is in very
good agreement with the corresponding Knudsen equilib-
rium curve, but begins to deviate quite strongly as the tem-
perature is increased. As the temperature is increased to the
point where the trapping-desorption no longer is in equilib-
rium, the average final energy becomes less than the 2kBTS
value of the Knudsen distribution.

The method of calculation presented here permits an ex-
amination of the energy distribution of the trapped particles
at any average time after the initial collision. An example of
this is shown in Fig. 8 for Ar/W with the same initial condi-
tions as in Fig. 2. Both the negative-energy trapped fraction
and the positive-energy chattering fraction are exhibited. It is
seen that even after a very few iterations a smooth distribu-
tion with a maximum in the negative-energy range appears.
As the iteration number increases, the most probable energy
of all of the trapped particles shifts downward toward the
bottom of the well as the trapped particles continue to lose
energy to the surface on average. For very large numbers of
iterations the trapped distribution begins to look exponential-
like as a function of energy and reaches a steady-state distri-
bution that retains essentially the same functional form but
gradually decreases in total integrated area as more and more
particles are desorbed. Interestingly, just after the initial col-
lision the positive-energy chattering fraction extends out-
wards to rather large energies with nonzero amplitude at
positive total energies larger than the magnitude of the well
depth.
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FIG. 4. �Color online� The polar angular distribution for the
same system shown in Fig. 3. The evolution toward the Knudsen
distribution, displayed as open circles, is shown for a series of in-
creasing well depths.
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FIG. 5. Energy distributions of the scattered particles for Ne/W
for several well depths are shown. The temperature of the surface is
303 K, the incident energy Ei=1 meV, and �i=0°. The Knudsen
distribution is shown as open circles.

TABLE II. The desorption time for Ne/W with other parameters
the same as in Table I.

Ne/W C T  P0

D=20 meV 9.56�10−11 1.35�10−10 2.30�10−10 0.848

D=30 meV 9.50�10−11 2.10�10−10 3.05�10−10 0.891

D=70 meV 9.47�10−11 1.11�10−9 1.20�10−9 0.954

D=80 meV 9.70�10−11 1.66�10−9 1.76�10−9 0.961

D=150 meV 1.16�10−10 2.88�10−8 2.89�10−8 0.984

D=200 meV 1.29�10−10 2.22�10−7 2.22�10−7 0.990

 �v̄� C T 

D=20 meV 1.73�10−10 2.42�10−10 4.16�10−10

D=30 meV 1.59�10−10 3.70�10−10 5.29�10−10

D=70 meV 1.58�10−10 1.92�10−9 2.07�10−9

D=80 meV 1.61�10−10 2.88�10−9 3.04�10−9

D=150 meV 1.89�10−10 5.07�10−8 5.08�10−8

D=200 meV 2.10�10−10 3.93�10−7 3.93�10−7
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FIG. 6. The energy distribution as a function of the mass ratio �
for a system with �i=45°, Ei=1 meV, TS=303 K, and D
=50 meV.
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Some representative calculations of average trapping
times  are shown in Tables I and II based on the assumption
of a square well of width b=3Å. Table I shows calculations
for the Ar/W system of Fig. 1 with 1 meV of incident energy
and TS=303 K. The trapping times for several well depths
are calculated in two slightly different ways, first by obtain-
ing the average speed after each iteration as in Eqs. �19� and
�20� and then also from the root-mean-square speed. The two
contributions to the total  from the negative-energy trapped
fraction and from the positive-energy trapped fraction are
exhibited separately. Also shown in Table I are the trapped
fractions after the initial collision P0. Table II shows similar
information calculated for the Ne/W system of Fig. 5 with
the same incident energy and temperature.

For both systems the results are similar. For shallow well
depths the trapping times are very short and the average
times spent in negative- and positive-energy trapped states
are comparable. As the well depth is increased, trapping
times increase dramatically and the average time spent in the
positive-energy chattering state becomes negligible com-
pared to the average time in the negative-energy bound
states. This increase in trapping times is nearly exponential
as a function of well depth as seen in Fig. 9, which graphs
the numbers presented in Tables I and II. Generally, the trap-

ping times based on the rms speed after each iteration are
somewhat smaller than those based on a calculation of the
average speed. For Ar/W with a physically reasonable well
depth of around 100 meV, the average trapping time for 99%
of the initially trapped particles to desorb is approximately
10−8 s.

All of the above calculations have been done for energies
relatively small compared to the well depths in order to il-
lustrate the conditions for which the trapping-desorption
fraction approaches an equilibrium distribution. When the
incident energy becomes comparable to or larger than the
well depth, the nature of the scattered intensity becomes
quite different. As noticed in an important series of experi-
ments first performed some years ago, the intensity often
exhibits a double-peaked structure, with a high-energy peak
due to direct scattering and a lower-energy peak arising from
the trapping-desorption fraction.3 Figure 10 shows this for a
system corresponding to Ar/W with �i=45°, D=80 meV,
TS=303K, and incident energies ranging from 100 to 500
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FIG. 7. Energy distribution of the scattered particles for Ar/W
with incident energy Ei=1 meV, �i=45°, and a well depth D
=80 meV. Three different surface temperatures TS=303, 600, and
1200 K are shown as curves. The corresponding equilibrium distri-
butions are shown as circles, crosses, and stars, respectively.
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FIG. 10. The direct and trapping-desorption scattering energy
distributions for incident energies that are large compared to the
well depth. The system is Ar/W with �i=45°, D=80 meV, TS

=303 K, and incident energies as marked. �a� The upper panel
shows the direct-scattering contribution, and �b� the lower panel
shows the trapping-desorption intensity. A Knudsen distribution is
also included in the lower panel.
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meV as marked. The two contributions are shown in separate
panels, with the upper panel giving the direct scattering and
the lower panel giving the trapping-desorption. With increas-
ing Ei the total integrated direct scattering becomes larger
and the peak becomes broader, with the width roughly in-
creasing proportionately to �Ei. For the direct scattering the
energy dependence of the widths, as well as the most prob-
able final energies, is consistent with estimates based on bi-
nary collisions as discussed below in connection with Eqs.
�23�–�25�.

On the other hand the total trapping-desorption fraction,
shown in the lower panel, becomes smaller and with increas-
ing incident energy the shape of the distribution becomes
less and less like that of an equilibrium Knudsen curve. For
large Ei the trapping-desorption intensity develops a long
high-energy tail although its peak position always remains
near to the most probable energy of the Knudsen distribution.
The situation in which the differential reflection coefficient
exhibits both distinct direct and trapping-desorption peaks is
discussed further in Sec. IV in the context of comparisons of
the present theoretical model with recent experimental data.

IV. COMPARISONS WITH EXPERIMENT

The calculations exhibited in Sec. III describe the range of
initial conditions that lead to an equilibrium distribution in
the trapping-desorption fraction, but no comparisons with
experimental data other than to a Knudsen distribution were
made. However, in order to be credible, the theoretical ap-
proach should be capable of explaining real experiments.
Demonstrating that ability is the objective of this section.

There is a long history of gas-surface scattering experi-
ments using hyperthermal atoms3,4,7,16–27 and molecules28–40

as projectiles. If the projectile gas has mass larger than that
of hydrogen or helium, such high energies imply that the
scattering will be classical, which means that many phonons
will be transferred in the collision. This is the type of experi-
ment that should be amenable to the theoretical treatment
described here. In many cases the energy-resolved scattered
spectra exhibit a double-peaked structure, with a somewhat
narrow high-energy peak centered at smaller energy than the
incident-beam energy �if the incident energy is large com-
pared to the surface temperature� and a broader low-energy
peak at thermal energies. The usual interpretation has been
that the high-energy peak is direct scattering from a single
collision �or at most, a very small number of collisions� and
the low-energy peak arises from trapping in the physisorp-
tion well of the interaction potential with subsequent desorp-
tion at a sufficiently later time so that those particles come
into near equilibrium at the surface temperature.3

A recent and important paper reporting extensive mea-
surements that show clearly a set of conditions for which
direct scattering and trapping-desorption can be observed is
that of Gibson et al.6 for scattering of Ar from an ordered
1-decanethiol self-assembled overlayer on a Au�111� sub-
strate. The experiments were carried out with well-defined
monoenergetic beams of Ar incident at energies ranging from
roughly 60 to 600 meV, and with both incident and detector
angles independently variable and ranging from near normal

to near grazing with respect to the surface. All measurements
were made in the scattering plane �the plane containing the
surface normal and the incident beam�, which was aligned
along the �11̄0� direction of the Au�111� surface. At low
incident energies and if �i or � f was near normal, Gibson
et al.6 did not observe a clear double-peaked intensity in the
scattered spectra. However, at higher energies and for large
incident or final angles, the characteristic double-peaked
structure was very apparent. Gibson et al.6 analyzed their
data quantitatively with an ad hoc model consisting of the
sum of a shifted Maxwell-Boltzmann distribution to fit the
direct scattering and an equilibrium distribution to fit the
trapping-desorption fraction. They also made some more
qualitative analysis of their data using classical trajectory
calculations developed by Hase et al.41 In the process of their
analysis they determined, by assuming that the direct scatter-
ing was due to a single collision and using well-known Baule
relations for binary collisions, that the effective mass of the
surface implied a mass ratio �=0.62, or MC=64.4 amu, as
opposed to the total mass of the 1-decanethiol, which is
174.3 amu. The potential-energy landscape function devel-
oped for the classical trajectory calculations had a well depth
ranging from 33 meV at the on-top sites above the terminal
CH3 groups to 67 meV in the center of the rhombus formed
by a group of four of the methyl groups.6

Figure 11 shows an example of calculations compared to
the Ar scattering data taken from the upper panel of Fig. 2 of
Ref. 6, and this is for the lowest incident energy Ei
=65.3 meV. The data were reported as intensity versus time
of flight �TOF�, and the calculations have been transformed
accordingly. The other incident parameters are �i=45°, � f
=50°, and TS=135 K. The calculations were carried out for
a well depth D=35 meV and an effective surface mass MC
=71 amu ��=0.56�.

This effective surface mass ratio is slightly smaller than
the value �=0.62 estimated in Ref. 6. For this case of low
incident energy, the calculations are not particularly sensitive
to the value of � because there is very little evidence for a
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FIG. 11. Intensity versus TOF for Ar scattering from a
1-decanethiol layer on Au�111� with Ei=65.3 meV, �i=45°, and
� f =50°. The calculation shown as a solid curve is the total differ-
ential reflection coefficient converted to TOF calculated with �
=0.56 and D=35 meV, the dash-dotted curve is the trapping-
desorption fraction, and the dotted curve is a Knudsen equilibrium
distribution.
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significant direct-scattering component. However the value
of �=0.56 is chosen as a consequence of comparisons with
the higher-energy data discussed below, where the much
more pronounced direct-scattering component is extremely
sensitive to �. In this example the data do not exhibit a
double-peaked structure and the calculated most probable en-
ergy �peak position� has a TOF corresponding to Ef
=12.57 meV, very close to the equilibrium value of 11.6
meV at this temperature, again indicating that the scattering
is mostly trapping-desorption.

Three calculated curves are shown in Fig. 11. The solid
curve is the total differential reflection coefficient converted
to TOF, and the dashed curve is the trapping-desorption con-
tribution only. For comparison a Knudsen equilibrium distri-
bution is included as a dash-dotted curve. The Knudsen dis-
tribution and the calculation are both normalized to unit
intensity as in Eq. �1�. Although it is apparent that the Knud-
sen curve, if renormalized to fit as closely as possible to the
data, would match essentially as well as the total calculated
intensity, the fact that it is smaller and nearly the same as the
calculated trapping-desorption fraction indicates that there is
significant direct scattering but its most probable energy and
width is nearly the same as the equilibrium distribution. Be-
cause of the strong overlap of the direct and trapping-
desorption fractions, it is not surprising that the data of Fig.
11 can be matched roughly as well by a total scattering in-
tensity using a range of well depths from 20 meV to some-
what over 35 meV. We have chosen D=35 meV because of
the much stronger constraints placed on this parameter by the
higher-energy data considered below.

Three examples of data measured at the intermediate en-
ergy of 365 meV are shown in Fig. 12 at the same tempera-
ture of 135 K and for three different combinations of incident
and final angles. The middle panel for � f =50° and �i=30°,
relatively close to normal incidence, does not exhibit a
double-peaked structure. The other two panels, for �i=45°

and � f =50° �upper panel� and �i=30° and � f =80° �lower
panel�, present a clear distinction between the rather sharp
peak at short TOF and a broader shoulder at larger times.
These data were taken from the middle panel of Fig. 2 and
the lower two panels of Fig. 4, respectively, of Ref. 6. The
solid curves in Fig. 12 are calculations carried out with �
=0.56 and D=35 meV. The calculations explain the data
quite well, and they show clearly the separation between the
direct and trapping-desorption fractions. The value D
=35 meV agrees well with that of the potential-energy func-
tion for this system developed in Ref. 6 in that it lies closer
to the value of 33 meV that Gibson et al.6 obtained for the
on-top position as opposed to their hollow-site value of 67
meV.

Also shown in Fig. 12 are the calculated trapping-
desorption fraction and the Knudsen curves. Interestingly,
the trapping-desorption fraction itself has a multiple-peaked
structure with a small subpeak appearing at almost the same
final energy as the direct-scattering contribution. This small
high-energy subpeak comes from the first few collisions as
the initially adsorbed particles travel in the potential well.
These first few collisions have a high probability of ejecting
particles back into the continuum with relatively little loss of
energy compared to the direct-scattering fraction. However,
it is clear that a significant part of the trapping-desorption
fraction resembles closely the shape of the Knudsen curve,
particularly in the low-energy tail.

It also becomes apparent from Fig. 12 that there is a
straightforward manner in which the comparison of calcula-
tions with data allows for the determination of the two pa-
rameters. The effective mass determines the most probable
final energy of the direct contribution and then the well depth
determines the relative intensity of the trapping-desorption
fraction which becomes bigger with increasing D. The peak
position of the direct-scattering contribution is extremely
sensitive to the mass ratio. This is why we chose the value
�=0.56 as opposed to the value �=0.62 of Ref. 6 which was
based on the Baule equations describing hard sphere scatter-
ing.

Three examples of data for scattering at the high energy
Ei=582 meV, all of which exhibit the double-peaked struc-
ture, are shown in Fig. 13. The data were taken from the
lower panel of Fig. 2 and the middle and lower panel of Fig.
3, respectively, of Ref. 6. The upper panel of Fig. 13 is for
�i=45° and � f =50°, the middle panel is for �i=45° and � f
=40°, and the lower panel is for �i=60° and � f =40°.

In the upper two panels with �i=45° two curves showing
the total scattering intensity are shown, for D=35 and 45
meV, while in the lower panel with �i=60° only the D
=35 meV calculation is shown. All calculations were done
with �=0.56, the value that leads to agreement with the data
for the direct-scattering peak. The dotted curve is the Knud-
sen distribution and the dash-dotted curves show the
trapping-desorption fraction for the calculation that is in best
agreement with experiment.

It is interesting that at this larger incident energy the two
cases with the more normal incident angle of 45° require a
well depth of 45 meV in order to obtain agreement between
calculations and data, while for the much more grazing inci-
dence of 60° the best well depth is 35 meV, the same as used
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FIG. 12. Intensity versus TOF for Ar scattering from a
1-decanethiol layer on Au�111� with Ei=365 meV: �a� �i=45° and
� f =50°, �b� �i=30° and � f =50°, and �c� �i=30° and � f =80°. The
solid curves are calculations with �=0.56 and D=35 meV, the
dash-dotted curves are the trapping-desorption fractions, and the
dotted curves are the Knudsen distribution.
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for all the lower-energy calculations. This appears to indicate
that for larger normal incident energy the incoming atoms are
probing deeper parts of the potential-energy landscape.
Again, as in Fig. 12 the trapping-desorption fraction exhibits
structure at larger final energies near the energy of the direct
scattering.

Comparison of the present calculations to this Ar scatter-
ing data leads to a few general comments that can be applied
to the observed energy-resolved spectra for cases in which a
double structure appears due to the distinct phenomena of
direct scattering and trapping-desorption:

�1� A characteristic double-feature structure, with a well-
defined direct-scattering peak and a secondary peak or shoul-
der arising from trapping-desorption, appears only at rela-
tively high incident-beam energy and when one or the other
of �i or � f is large, as was already clear from Ref. 6. It is also
necessary that the physisorption well depth is sufficiently
large to cause significant trapping in the bound states during
the initial collision, and the temperature must be smaller than
D. However, for near-normal-incidence conditions and with
a large well, the initial trapping becomes so large that the
direct-scattering contribution becomes small. This explains
the need for the incident angle to be relatively large in order
to observe a double-peaked structure in the TOF intensities.
This situation becomes evident in Fig. 14, which shows cal-
culations for Ei=582 meV with �i=� f =10° and D
=35 meV. Even though the incident energy is large com-
pared to the well depth, the normal-incidence conditions
gives rise to such large trapping that the total scattering is not
very different from the trapping-desorption fraction.

�2� When the direct-scattering contribution is significant,
the trapping-desorption intensity deviates substantially from
that of an equilibrium Knudsen distribution. In fact, the
trapping-desorption signal can exhibit structure and small
peaklike features at high energies close to those of the direct
contribution as shown in Figs. 12 and 13. However, in many
cases the largest portion of the trapping-desorption intensity

resembles the shape of a Knudsen distribution. This is espe-
cially true for the low-energy tail.

�3� It is interesting to note that the direct and trapping-
desorption fractions should have very characteristic and quite
different signature behaviors in their temperature depen-
dence. The direct scattering, which in the present calcula-
tions arises from a single collision with the surface, is essen-
tially given by Eq. �18�. Under conditions for which the
direct scattering of Eq. �18� appears nearly Gaussian type in
the energy transfer, which is the situation in several of the
cases shown here, the mean-square energy deviation which is
proportional to the full width at half maximum �FWHM�
is11,12,42

�Ef
2� =

FWHM

8 ln�2�
= 2g��,��EikBTS, �23�

where

g��,�� =
��1 + f��,�� − 2�f��,��cos ��

�1 + � −
� cos �

�f��,��
2 , �24�

with

f��,�� = ��1 − �2 sin2 � + � cos �

1 + �
2

, �25�

where � is the total scattering angle �i.e., the angle between
pi and p f� and Eqs. �23�–�25� are obtained under the assump-
tion of binary collision conditions for which Ef = f�� ,��Ei.
Thus, Eq. �23� shows that the FWHM of the direct-scattering
peak will be approximately proportional to �TS, which is the
characteristic of the multiphonon-scattering regime. How-
ever, the trapping-desorption fraction will have a FWHM
temperature dependence more closely approximating the lin-
ear in TS behavior of the Knudsen distribution of Eq. �22�.
Similarly, the most probable intensity �maximum peak inten-
sity� of the direct scattering will vary as 1 /�TS according to
Eq. �18�, while the trapping-desorption peak intensity should
behave more like that of the 1 /TS behavior of the Knudsen
distribution of Eq. �22�.
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FIG. 13. Intensity versus TOF for Ar scattering from a
1-decanethiol layer on Au�111� with Ei=582 meV: �a� �i=45° and
� f =50°, �b� �i=45° and � f =40°, and �c� �i=60° and � f =40°. The
curves are labeled similarly to those in Fig. 12 except calculations
are shown for both D=35 and 45 meV in panels �a� and �b�.

0 200 400 600 800 1000
TOF (µs)

0

200

400

600

800

In
te

n
si

ty

D=45meV
Trapping−desorption
Knudsen

FIG. 14. Calculations similar to those of Fig. 13 with Ei

=582 meV and D=35 meV but with �i=10° and � f =10°, showing
that for normal incidence a distinct direct-scattering peak is not
expected.

THEORY OF DIRECT SCATTERING, TRAPPING, AND… PHYSICAL REVIEW B 79, 045424 �2009�

045424-11



�4� Finally, the comparison of the present calculations
with the data provides a simple way to extract the two rel-
evant parameters. The position in final energy of the narrow
direct-scattering peak determines the value of the effective
surface mass. In fact, the most probable energy is quite sen-
sitive to this parameter. The intensity of the broad trapping-
desorption peak increases with the well depth, and fixing the
relative intensities of the two contributions determines D.
This indicates that for the large incident energies considered
here, the primary influence of the well depth is to establish
the initial trapping fraction. Once trapped, the details of the
shape of the potential well are not important as is evidenced
by the fact that the long-time tail trapping-desorption frac-
tion �the low-energy tail� eventually desorbs at thermal ener-
gies.

V. CONCLUSIONS

In this paper we have developed a theoretical formulation
of the scattering of atomic projectiles with surfaces that in-
cludes not only the direct scattering arising from a single or
a small number of collisions with the surface but also allows
for trapping and subsequent collisions of trapped particles
inside the physisorption well. The trapped particles can be
followed until they eventually all desorb and leave the sur-
face region. The multiple collisions of the initially trapped
fraction with the surface are treated with an iteration algo-
rithm that tracks trapped particles with both negative and
positive total energies and determines at each subsequent
collision the fraction scattered back into the positive-energy
continuum which then leaves the surface region.

Using this theoretical formalism, first we have calculated
numerous examples, in order to establish the conditions un-
der which the trapped and subsequently desorbed particles
approach an equilibrium distribution, i.e., to establish the
conditions under which the Maxwell assumption is valid.
Second we have used the theory to produce quantitative
agreement with recent measurements, thus providing expla-
nations of the basic underlying processes that give rise to the
experimental scattered spectra.

Under many conditions, the observed spectra in gas-
surface scattering experiments consist of two distinct contri-
butions. The first contribution is the direct-scattering part,
which is usually a relatively sharp peak with a most probable
energy somewhat lower than the incident energy provided
that the surface temperature is not large compared to the
incident energy. The second of these contributions is the
trapping-desorption, attributed to particles that are initially
trapped and then spend a large time moving in the physisorp-
tion well where they slowly begin to exchange energy with
the surface and then eventually desorb in a distribution at
thermal energies corresponding to the surface temperature. A
large part of the work considered here is devoted to deter-
mining when the trapping-desorption fraction approaches an
equilibrium Knudsen flux.

Our calculations show that under conditions in which a
clear direct-scattering and trapping-desorption double-
peaked structure is evident in the energy-resolved spectra,
the trapping-desorption fraction, although mainly emitted at

thermal energies, can differ considerably from an equilib-
rium distribution. It can even exhibit structure consisting of
small peaks at high energy near the most probable energy of
the direct scattered intensity. These higher-energy peaks arise
from the first few collisions with the surface inside the well,
indicating that these initial collisions have a large probability
of ejecting particles into the continuum with little additional
energy loss as compared to the direct scattering. However,
even under conditions for which the trapping-desorption
fraction is highly nonequilibrium, its low-energy tail still is
well described by a Knudsen distribution. Thus, our calcula-
tions show that the Maxwell assumption is rarely achieved in
real experimental conditions, although it is very useful as an
approximate guide as evident from the fact that it is still
often used as a method to analyze measured data.

We carried out a number of calculations in order to char-
acterize the conditions under which the trapping-desorption
fraction does approach an equilibrium distribution. Basically,
equilibrium behavior is achieved only for cases where the
direct scattering is negligible and average trapping times are
long, which implies that nearly all of the incident beam is
adsorbed after the first collision. This implies an incident
energy relatively small compared to the interaction potential
physisorption well depth and temperatures corresponding to
energies �measured in units of kBTS� that are also small com-
pared to the well depth. The approach to equilibrium occurs
more rapidly with larger gas-to-surface-atom mass ratios
when this ratio is less than unity.

The approach to equilibrium of the trapping-desorption
fraction was studied as a function of all the initial experi-
mental parameters that can be manipulated, including the
projectile and surface mass, the well depth of the potential,
the incident energy and angles, the final scattering angles,
and the surface temperature. For example, as the well depth
is increased with all other parameters held constant, we find
that the energy-resolved scattered spectrum rather quickly
approaches that of a Knudsen distribution when the well
depth becomes significantly larger than the incident energy
provided the temperature is also small compared to the well
depth. The angular behavior becomes independent of azi-
muthal angle under the same conditions that the energy dis-
tribution becomes Knudsen type. However, the polar angle
cos � f behavior is only approximately obeyed for conditions
under which the energy dependence first approaches equilib-
rium, even though the energy dependence is nearly Knudsen
type at all polar angles. Only for well depths very large com-
pared to the incident energy and temperature does the
trapping-desorption fraction achieve the classic Knudsen
cos � f shape.

The rapid approach toward azimuthal angle independence
of the calculated trapping-desorption fraction is easily under-
stood in the context of our calculations because of the sig-
nificant amount of large-angle scattering caused by the bi-
nary collision differential reflection coefficient of our Eq.
�18� used for all multiple-scattering collisions. After just a
few collisions, this rapidly causes the trapped atoms to lose
memory of their incident azimuthal angle. The slow ap-
proach of the trapping-desorption fraction toward the Knud-
sen cos � f distribution in polar angles, even for cases in
which the energy distribution quickly achieves the expected
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Knudsen behavior, is less easy to explain and not completely
understood.

In this formalism, because of its iterative approach, the
number of collisions of the trapped particles with the surface
can be followed. This means that trapping times can be cal-
culated as well as other information such as the relative frac-
tions of particles trapped with negative total energies and
those trapped in the chattering states having positive total
energies. Under conditions in which the trapping-desorption
fraction did achieve near equilibrium, the trapping times
were estimated to be as large as 10−8–10−7 s. The positive
total-energy chattering fraction can be large under conditions
where equilibrium is not achieved. But for conditions that
produce equilibrium in the trapping-desorption, the fraction
of trapped particles residing in the chattering states becomes
negligible.

An important aspect of this work is that the theoretical
model used for the calculations provides quantitative expla-
nations of experimental measurements. We made compari-
sons with important and recent Ar scattering data obtained in
beam-surface scattering experiments with a surface consist-
ing of a self-assembled adsorbed layer of 1-decanethiol on a
well-ordered Au�111� substrate.6 In agreement with the ex-
perimental observations, we found that clearly distinguish-
able direct and trapping-desorption contributions arise when
the incident-beam energy is large compared to the potential-
well depth and when one or the other of the incident and
detector angles is large relative to the surface normal. In
addition the calculations indicate that, in order to resolve
distinct direct and trapping-desorption features, the tempera-
ture must be small compared to the well depth and the well
depth must be large enough to cause trapping of a significant
fraction of the incident beam at the initial collision.

Under conditions for which distinct direct and trapping-
desorption features were evident, the data can be used to
determine two important characteristics of the interaction po-
tential, the effective surface mass of the adsorbate and the
well depth. The effective mass is determined by matching the
calculated direct-scattering peak to that of the experiment,
and the well depth then is determined by matching the rela-
tive intensity of the trapping-desorption contribution. As dis-
cussed in Ref. 6 the calculated potential-well depth is not
uniform but varies substantially across the surface unit cell.
To obtain agreement with the experiments, our calculations
require a larger well depth when the incident energy is large

and combined with near-normal incident angles. We interpret
this as indicating that the shallower parts of the potential
well are more strongly sampled with more grazing incident
angles, while the deeper parts of the potential well are
probed at higher energies and more normal incidence.

An interesting prediction coming out of this work is that
the direct and trapping-desorption contributions have clearly
different signature behaviors as a function of surface tem-
perature. The FWHM of the direct peak should increase ap-
proximately with the square root of the temperature, whereas
the trapping-desorption has a full width that increases ap-
proximately linearly with TS, similarly to the Knudsen distri-
bution. The most probable intensity of the direct peak, ac-
cording to the scattering model used here, decreases
inversely with the square root of temperature, while the
trapping-desorption decreases roughly linearly with the in-
verse of the temperature, again similarly to the Knudsen dis-
tribution. For both peaks, the increase in FWHM and de-
crease in most probable intensity is the behavior expected in
order to preserve unitarity. It should be noted that the direct
scattering, as shown in the approximations to Eq. �18� ap-
pearing in Eqs. �23�–�25�, exhibits the same behavior in the
incident energy Ei as it does in the temperature TS. However,
the most appropriate parameter in which to carry out an ex-
perimental search for these behaviors would be the tempera-
ture because the interaction potential surface is likely to
change with variation in Ei but is less likely to change with
TS.

This work demonstrates that calculations of direct scatter-
ing, trapping, and desorption in atom-surface scattering can
provide real quantitative explanations of experiments as well
as indicate the conditions for the validity of the Maxwell
assumption on the equilibrium nature of the trapping-
desorption fraction. It shows that the interaction potential
model must contain two essential ingredients: a physisorp-
tion well depth and allowance for transfer of mechanical en-
ergy between the projectile and the surface atoms. However,
it also shows that the most important aspect is to have a
theory in which the statistical mechanics is treated in a rea-
sonably correct manner.
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