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Abstract
It is suggested that a measurement of the temperature dependence of the most probable intensity
of energy-resolved atom–surface scattering spectra can reveal the strength of the surface
corrugation. To support this conjecture, a classical mechanical theory of atom scattering from a
corrugated surface, valid in the weak corrugation limit, is developed. The general result for the
scattering probability is expressed in terms of spatial integrals over the impact parameter within
a surface unit cell. For the case of a one-dimensional corrugation, approximate expressions for
the scattering probability are obtained in terms of analytic closed form expressions. As an
indicator of its relation to experimental measurements, calculations using a one-dimensional
corrugation model are compared with data for Ar scattering from a molten Ga surface and an
approximate value of the corrugation height parameter is extracted.

1. Introduction

Many scattering experiments using atomic projectiles to
investigate the properties of surfaces have been carried out
in the classical regime which is characterized by the transfer
of many phonon quanta in a typical collision [1, 2]. It has
been suggested that in the classical regime the strength of the
surface corrugation can be directly related to the temperature
dependence of atom scattering spectra, and in particular to
the temperature dependence of the most probable scattering
intensity [3].

This concept can be visualized most easily by comparing
two disparate expressions, one for the scattering from a smooth
and uncorrugated surface and the other for a highly corrugated
surface. For both cases, the differential reflection coefficient
dR(pf, pi)/dEf d�f for scattering of an atomic projectile of
initial momentum pi into the state pf has been determined in
the classical limit within the impulse approximation.

For the case of a smooth, flat surface whose only
corrugations are due to small thermal vibrations of the
underlying atomic cores the differential reflection coefficient
is given by [4–6]

dR(pf, pi)

d�fdEf
= m2v2

R|pf|
8π3h̄2 piz Suc

|τfi|2
(

π

kBTS�E0

)3/2

× exp

{
− (Ef − Ei + �E0)

2 + 2v2
RP2

4kBTS�E0

}
, (1)

where m is the projectile atomic mass, piz is the surface-
normal component of the incident momentum, TS is the
temperature, kB is Boltzmann’s constant, the binary recoil
energy is �E0 = (pf − pi)

2/2MC with MC the target substrate
mass, P is the parallel component of the scattering vector
p = pf − pi, and τfi is a transition matrix determined from
the interaction potential. The incident energy is Ei = p2

i /2m,
with a similar expression for the final energy Ef. The factor Suc

is the surface area associated with a single surface atom and vR

is a parameter having dimensions of speed that is completely
determined by the phonon spectral density at the classical
turning point as discussed below in section 2, but which is
usually treated as a parameter. In a purely classical derivation
of equation (1) h̄ is a constant having dimensions of action [5],
while if the same result is derived from quantum mechanical
cross sections by taking the classical limit it is identified as
Planck’s constant divided by 2π [4].

Except for certain cases, such as very low incident
energies equation (1), when viewed as a function of Ef with
all other experimentally controllable parameters fixed, forms
a single-peaked curve whose maximum or most probable
intensity occurs when the argument of the exponential takes
its minimum value. The dependence on surface temperature
appears in two places, in the argument of the exponential and
in the prefactor. The temperature appearing in the denominator
of the argument of the exponential is largely responsible for
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determining the width of the peak. When the peak is nearly
Gaussian in form, for example at incident energies that are
large compared to the temperature, then this width increases
nearly as

√
TS, a behavior characteristic of classical scattering.

The temperature dependence of the most probable intensity is
mainly determined by the prefactor and thus is seen to vary
approximately as 1/T 3/2

S .
The opposing case of a highly corrugated surface can be

viewed as a model in which the surface is so corrugated that
each core atom appears as an individual scattering center. The
well-known differential reflection coefficient, calculated within
the impulse approximation, for an atomic projectile colliding
with a collection of discrete scattering centers whose initial
momenta are in an equilibrium distribution at temperature TS

is given by [6–8]

dR(pf, pi)

dEfd�f
= m2|pf|

8π3h̄4 piz
|τfi|2

(
π

kBTS�E0

)1/2

× exp

{
− (Ef − Ei + �E0)

2

4kBTS�E0

}
. (2)

This expression is similar to, but somewhat simpler than
equation (1) for the smooth surface. For Ef much larger than
kBTS it appears as a single-peaked structure when viewed as a
function of Ef, although it is not a true Gaussian shape and
can be highly skewed because of the energy dependence of
�E0. The width of the peak again goes with temperature
approximately as

√
TS. However, the temperature dependence

of the most probable intensity, which occurs when Ef − Ei +
�E0 = 0, is entirely governed by the prefactor and goes as
1/

√
TS.
Comparison of equations (1) and (2) shows that there

is a very distinct difference in behavior of the most
probable intensity with temperature, with the intensity of
an uncorrugated surface behaving approximately as 1/T 3/2

S

while that of a highly corrugated surface going as 1/T 1/2
S .

A logical conclusion is that a moderately corrugated surface
will exhibit behavior somewhere between these two extreme
limits. Consequently, a measurement of the temperature
dependence of the most probable intensity, when compared
with an appropriate theory, can be used to extract the strength
of the corrugation function.

It should also be noted that the temperature in both
equations (1) and (2) always appears multiplied by the classical
recoil energy �E0. Consequently, for both types of surface
corrugation the behavior of the reflected intensity as a function
of �E0 for fixed TS should be similar to that of the temperature
dependence for fixed �E0 (or equivalently for fixed initial and
final momenta). This implies that similar information about
the corrugation strength could be obtained by examining the
most probable intensity as a function of �E0, although such
an experiment is normally more difficult to perform. However,
there are circumstances for which �E0 ∝ Ei, notably the case
in which the incident energy is large compared to the surface
temperature [2]. Under such conditions measurements of the
scattered intensity as a function of incident energy Ei could be
used to get the same information on the corrugation as could be
obtained from a temperature dependent measurement at fixed
energy. However, in view of the fact that most experiments

appear to more easily measure good relative intensities as a
function of temperature than as a function of incident energy,
it is expected that temperature dependent measurements would
be the first method of choice.

In this paper we develop a classical theory of atom
scattering from a corrugated surface and apply it to a
surface having a one-dimensional corrugation. The starting
point is a semiclassical quantum theory valid for small
corrugations in which the collision is treated within the
impulsive approximation. The classical limit is obtained by
invoking the Bohr correspondence principle of large numbers
of phonon quanta excited. The general result is expressed as
a two-dimensional spatial integral over the one-dimensional
surface unit cell. The general result lends itself to an
approximate solution that can be expressed in terms of closed
form analytic expressions. Comparisons of the general result
and the approximate solution with the limited available data
allows an approximate evaluation of the average corrugation
height of liquid metal surfaces as measured by Ar atom
scattering.

The organization of the remainder of this paper is as
follows. Section 2 presents the general theory and the special
case of application to a one-dimensional corrugation. Section 3
develops the approximate solution for a one-dimensional
corrugated surface, section 4 gives the comparison with
experimental data for molten metal surfaces, and discussion
and conclusions are presented in section 5.

2. Classical scattering probability for a corrugated
surface

Although the objective of this section is to develop a theory of
scattering from corrugated surfaces in the classical mechanical
limit it is of interest to begin from a semiclassical quantum
mechanical treatment and then take the classical limit of large
energies, high temperatures and heavy mass projectiles. This
procedure assures that quantum features that persist in the
classical decoherence limit, such as recoil and zero point
thermal motion, are automatically and correctly included.

A good starting point is the generalized Fermi golden rule
for the transition rate

w(pf, pi) = 2π

h̄

〈∑
{nf}

|Tfi|2δ(Ef − Ei)

〉
, (3)

where Tfi is the transition matrix element taken between final
and initial states of the system of projectile plus target surface,
and Ei and Ef are the initial and final global energies of the
entire system. The angular brackets are an average over all
initial states of the target surface and the

∑
{nf} indicates a sum

over all final states of the target.
The differential reflection coefficient is obtained from

the transition rate by dividing by the incident flux which is
proportional to piz and multiplying by the density of states in
final energy

dR

dEfd�f
= m2 L4

(2π h̄)3

pf

piz
w(pf, pi). (4)

2



J. Phys.: Condens. Matter 23 (2011) 484003 W W Hayes and J R Manson

A very useful semiclassical approximation for the
transition matrix is to assume that the interaction potential for
the static surface is a strongly repulsive or hard wall barrier
located at the position z = ξ(R), where ξ(R) is the corrugation
function. Applying the eikonal approximation to this model
leads to [11, 12]

Tfi = ieiδf
h̄ pfz

mL

1

L2

∫
dR e−iP·R/h̄ e−i�pzξ(R)/h̄eip·u(R,t)/h̄, (5)

where �pz is the component of p normal to the surface,
u(R, t) is the displacement of the surface due to thermal
vibrations, L is a quantization length and δf is a phase shift
produced by the potential. This phase factor is unimportant
because it disappears in the modsquare of the transition rate
in equation (3). The sum and average over target states
in equation (3) are carried out using the Glauber–van Hove
transformation [9, 10] which leads to

w(pf, pi) =
(

p f z

mL

)2 ∫ +∞

−∞
dtei(Ei−Ef)t/h̄

× 1

L4

∫
dR

∫
dR′ e−iP·(R−R′)/h̄

× e−i�pz [ξ(R)−ξ(R′)]/h̄e−2W (p)e2W(p;R,R′,t). (6)

The argument of the Debye–Waller factor exp{−2W } is given
by

2W (p) = 〈(p · u)2〉/h̄2 ≈ 3p2TS

MCkB�2
D

, (7)

where the final expression on the right-hand side is the standard
approximation for a bulk solid in the Debye model with �D the
Debye temperature.

The position and time dependent correlation function
appearing in the exponential of equation (6) is given by

2W(p; R, R′, t) = 〈p · u(R, t)p · u(R′, 0)〉/h̄2. (8)

Within the same approximations as for the Debye–Waller
factor of equation (7) above this correlation function can be
evaluated in the classical limit for small time and parallel
displacements

2W(p; R, R′, t) ≈ 2W (p) − i�E0t/h̄

− �E0kBTSt2/h̄2 − �E0kBTS(R − R′)2

2h̄2v2
R

+ · · · , (9)

where the velocity parameter vR is given by the relation [4]

1

v2
R

= 1

kBTS

3∑
α,α′=1

p̂α p̂α′
∑
Q,ν

h̄(Q · R̂)2

2NCων(Q)

× eα(Q, ν)eα′(Q, ν)[2nν(Q) + 1], (10)

where R̂ is a unit vector in the direction of R − R′. The
parameter vR is evaluated in terms of the surface phonon
polarization vectors eα(Q, ν) for a phonons of frequency
ων(Q) with Q the parallel wavevector and additional quantum
number ν, NC is the number of phonon modes and nν(Q) is the
Bose–Einstein factor.

The classical limit for which equation (9) is valid is
defined by the recoil energy �E0 being large, and in this
limit the Debye–Waller factor is exactly canceled by the

leading term in (9). This cancelation of the Debye–Waller
factor signals the disappearance of all quantum peaks and the
integrals in equation (6) become separable and converge at
small times and displacements. The time integral is trivial
and (6) becomes

w(pf, pi) =
(

p f z

mL

)2 2π h̄√
4π�E0kBTS

× exp

{
− (Ef − Ei + �E0)

2

4�E0kBTS

}
× 1

L4

∫
dR

×
∫

dR′ e−iP·(R−R′)/h̄e−i�pz [ξ(R)−ξ(R′)]/h̄

× exp

{
−�E0kBTS(R − R′)2

2h̄2v2
R

}
. (11)

The leading terms in equation (11) are identical to the transition
rate of equation (2), showing that if the corrugation function
ξ(R) and the spatial correlations in the last term in the
expansion of equation (9) are ignored the transition rate
becomes that of equation (2) for a discrete surface.

A second interesting limit occurs if the corrugation
function ξ(R) is set equal to a constant in equation (11),
corresponding to a flat surface, then the spatial integrals
become trivial and the result is just that first obtained by Brako
and Newns of equation (1).

Equation (11) as it stands can be regarded as an extension
of the results of Brako and Newns [4] to the case of a vibrating
surface that is repulsive and has a static corrugation given by
the corrugation function ξ(R). The physical significance of this
Gaussian-like term in (R−R′) is that it denotes the limitation of
influence of the correlations in surface vibrations. In fact, the

factor � =
√

2h̄2v2
R/�E0kBTS appearing in the argument of the

exponential can be regarded as a correlation length over which
surface vibrational correlations are important in the classical
limit.

3. One-dimensional corrugated surface

For certain simple forms of two-dimensional corrugation
functions the spatial integrals appearing in the result of
equation (11) can be reduced to a three-dimensional integral,
but in general it appears easier to treat it numerically as a four-
dimensional integral. However, if the corrugation function
is one-dimensional, a case that has many useful applications
in the scattering of rare gases from stepped surfaces [13],
equation (11) becomes significantly simplified and in some
cases lends itself to approximations that can be cast into closed
form expressions.

In order to show some of these simplifications it is useful
to rewrite the transition rate of equation (11) as the product of
the transition rate for the highly corrugated discrete surface and
a structure factor contribution arising due to the corrugation
function:

w(pf, pi) = wdisc(pf, pi)S(pf, pi), (12)

where obviously

3
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S(pf, pi) = 1

L4

∫
dR

∫
dR′ e−iP·(R−R′)/h̄

× e−i�pz[ξ(R)−ξ(R′)]/h̄ exp

{
−�E0kBTS(R − R′)2

2h̄2v2
R

}
. (13)

Now, if the corrugation function is one-dimensional, such as a
sinusoidal function of period a that we will make use of below,
i.e.,

ξ(x) = ha cos

(
2πx

a

)
, (14)

the structure factor simplifies to

S(pf, pi) = 1

L3

√
2π h̄2v2

R

�E0kBTS
exp

{
− 2v2

R Py
2

4kBTS�E0

}

×
∫

dx
∫

dx ′ e−iPx (x−x′ )/h̄ e−i�pz [ξ(x)−ξ(x′)]/h̄

× exp

{
−�E0kBTS(x − x ′)2

2h̄2v2
R

}
. (15)

In the classical limit in which the correlation length � is
smaller than the period a the integrals in (15) can be reduced
to integrals over a single period multiplied by the number of
periods. As in the case of the full expression of equation (11)
the one-dimensional case presented in equation (15) cannot
be integrated in closed form for a general one-dimensional
corrugation function. However, in the case of a one-
dimensional corrugation function the dominant contributions
to the scattering come from the portions of the corrugation
function that are nearly straight lines, namely the flat parts
that contribute strongly in the specular direction, such as the
top and bottom (e.g., for the corrugation of equation (14) near
x = 0 and ±a/2), and the inflection points that contribute
strong intensity in the directions of the classical rainbows
(e.g., for equation (14) near x = ±a/4 where the slope is
given by dξ/dx = 2πh). This suggests the approximation
of replacing the smoothly varying corrugation function such
as equation (14) by a combination of straight line segments
having zero slope and slopes equal to that of the inflection
point as illustrated in figure 1. The relative lengths along
the x-axis of the straight line segments can be chosen in a
variety of ways, but the most reasonable is to choose these
relative lengths according to the Taylor series expansion of the
corrugation function at the critical points. For example, in the
case of the sinusoidal corrugation function of equation (14)
the Taylor series expansion at the maximum is ξ(x)/hb ≈
1 − (2πx/b)2/2! while the expansion for small deviations x
around the inflection point is ξ(x)/2πhx ≈ 1 − (2πx/b)2/3!
which would imply that the zero slope and inflection point
slopes would occupy lengths along the x-axis in the ratio 1:√3
as shown in figure 1. Along these straight line segments the
structure factor of equation (15) can be integrated to a closed
form expression when the correlation length � is small. For
example, along the zero slope it is identical to the Brako–
Newns result

S0(pf, pi) = 1

L2

2π h̄2v2
R

�E0kBTS
exp

(
− 2v2

RP2

4kBTS�E0

)
, (16)

Figure 1. An example of a one-dimensional sinusoidal corrugation
function and its approximation by straight line segments having
either zero slope or the slopes at the inflection points.

while along the straight line portion having the slope at the
inflection point the result is similar, but with a shifted x-
component of the parallel momentum

S±(pf, pi) = 1

L2

2π h̄2v2
R

�E0kBTS

× exp

(
−2v2

R[(Px ± 2πh�kz)
2 + P2

y ]
4kBTS�E0

)
, (17)

where the ± signs refer to the two inflection points with
positive and negative slopes.

The above discussion illustrates that for any one-
dimensional corrugation function a closed form approximation
can be obtained by approximating the corrugation function by
a combination of straight line segments. The combination
approximation for the sinusoidal corrugation function of
equation (14) is

Scombo(pf, pi)

=
(

2S0(pf, pi) + AS+(pf, pi) + AS−(pf, pi)

2(1 + A)

)
, (18)

where according to the choice based on the Taylor series
expansions at the critical points A = √

3.
For a repulsive surface with a one-dimensional corrugation

function of the type such as equation (14) an analytic closed
form approximation to the full three-dimensional transition
rate of equation (11) is then

w(pf, pi) =
(

p f z

mL

)2 2π h̄√
4π�E0kBTS

× exp

{
− (Ef − Ei + �E0)

2

4�E0kBTS

}
Scombo(pf, pi). (19)

4. Comparison with experimental measurements

It is of interest to compare the intensities calculated from the
theory developed in section 3 above in order to see if such
calculations can explain the dynamical scattering of atoms

4
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Figure 2. Energy-resolved spectrum for Ar scattering from molten
Ga with θi = θf = 55◦, Ei = 95 kJ mol−1 and TS = 673 K. The
calculations shown as a dashed–dotted curve are for the smooth
surface of equation (1), the combination approximation with
h = 0.08 is shown as a solid curve, and the full 1D corrugation
calculation with h = 0.08 is the dotted curve. The data points shown
as open circles are from [14].

from surfaces, and in particular to see if reasonable values of
the corrugation height can be extracted through comparisons
with the temperature dependence of the most probable
intensities, as anticipated in the discussion of section 1 above.
However, the available experimental data for comparison with
a model of classical scattering from a one-dimensionally
corrugated surface is quite limited. There is an extensive
history of experiments involving scattering of molecular beams
from surfaces under classical conditions, and many of these
used stepped or otherwise nearly one-dimensionally corrugated
surfaces combined with measurements over a range of surface
temperatures. However, due to experimental difficulties in
most such published papers the information on the relative
intensities taken at different temperatures was not reported. In
fact, to our knowledge, there is only one series of experiments
that reported carefully measured relative intensities for the
energy-resolved spectra taken over a large range of surface
temperatures and was also in the classical mechanical regime.
These are measurements of Ar atoms scattering from the
molten metal surfaces of In and Ga by Nathanson et al [14, 15].
Although the amorphous nature of liquid metal surfaces is
quite different from the one-dimensional corrugation model
developed in section 3 above, since this is the only data
available that provides relative scattering intensities over a
range of temperatures we use this data as a guide for
comparison with our calculations. It should be stressed,
however, that this comparison can only be regarded as
indicative of the behavior of the scattered spectra as functions
of the controllable experimental parameters. Comparisons of
calculations with this data can be expected to be qualitative,
but not quantitative.

In addition to the energy-resolved spectra taken at fixed
incident and detector angles Nathanson et al also reported

Figure 3. In-plane angular distribution for Ar/Ga with θi = 55◦ and
Ei = 92 kJ mol−1. The calculations are for the smooth surface of
equation (1), dashed–dotted curve; combination approximation with
h = 0.08, solid curve; and full 1D corrugation calculation with
h = 0.08, dotted curve. The data points shown as open circles are
from [14].

angular distributions taken both in and out of the scattering
plane. The angular distributions are taken for fixed incident
beam angles, are functions of final in-plane scattering angle,
and are the integrated intensity over all final scattered energies.
Thus, for these systems there are four distinctly different
types of measurements available for comparison with the
theory. These are energy-resolved spectra taken with a time-
of-flight (TOF) detector, in-plane angular distributions, out-
of-plane angular distributions and temperature dependence
measurements of the energy-resolved spectra.

The energy-resolved spectra are plots of intensity as a
function of final energy and are single-peaked structures with
the most probable intensity at a final energy significantly less
than the incident energy, and a typical example is shown for
the case of Ar scattering from Ga in figure 2. The in-plane
angular distributions give the measured intensity as a function
of final detector polar angle with fixed incident angle, and
an example for Ar/Ga is shown in figure 3. The out-of-
plane angular distributions are taken with both the incident
and final polar angles fixed and the detector was moved
perpendicularly to the scattering plane, and the intensities as
shown in figure 4 are presented as a function of an angle αf that
is measured perpendicular to the scattering plane. Comparison
of calculations with all of these measurements provides a
redundant test of the predictive behavior of a theory.

Figure 5 gives an example of the type of comparison
with experimental data from which this work argues that a
measure of the surface corrugation height can be extracted.
This shows the behavior as a function of surface temperature
TS of the most probable intensity, or peak intensity, of a series
of energy-resolved spectra such as that shown in figure 2 for Ar
scattered from liquid Ga. The incident Ar translational energy
is 95 kJ mol−1 (0.98 eV) and the incident and final angles are

5
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Figure 4. Out-of-plane angular distributions for Ar/Ga with θi = 55◦
and Ei = 92 kJ mol−1. The data points for TS = 308 K (circles),
436 K (squares) and 586 K (triangles) are from [14]. The calculations
are for the smooth surface of equation (1), dashed–dotted curves;
combination approximation with h = 0.08, solid curves; and full 1D
corrugation calculation with h = 0.08, dotted curves.

θi = θf = 55◦. The experimental points shown as circles [14]
show a monotonic decrease with TS that lies in between the
dash-dotted curve for the smooth surface model of equation (1)
and the highly corrugated discrete model of equation (2) shown
as a dashed curve. The solid curve is the calculation using
the approximate closed form expression for the combination
model of equation (19) using the one-dimensional corrugation
function of equation (14) with a corrugation height parameter
h = 0.08. The dotted curve is the result for the full calculation
of equation (11) with the one-dimensional corrugation function
of equation (14) and the same value of h. All calculations
were carried out using a velocity parameter vR = 600 m s−1.
As mentioned above a one-dimensional corrugation function
is a crude approximation to the type of two-dimensional
corrugation function that would be needed to properly describe
an amorphous liquid surface, however, the agreement between
the data and the calculated curves indicates that the behavior
of the theory is qualitatively correct. The calculated curves
lie between the extreme limits provided by the smooth and
discrete models, roughly in agreement with the experimental
points, and the corrugation height value h = 0.08 can be
regarded as an approximation to the average corrugation height
of the liquid surface provided by the crude model of a one-
dimensional corrugation.

Figure 6 shows a graph for Ar/Ga similar to figure 5 except
for a lower incident energy of 42 kJ mol−1 (0.44 eV). Again,
the two curves for the one-dimensional corrugation considered
here agree with the data calculated with the slightly smaller
corrugation height h = 0.07. This is again in qualitative
agreement with the intuitive expectation that at smaller incident
energies the Ar projectiles would penetrate less into the surface
and hence experience a smaller corrugation strength.

Although the qualitative agreements with experimental
data exhibited in the intensity versus temperature graphs of

Figure 5. Temperature dependence of the most probable intensity of
energy-resolved spectra for Ar scattering from molten Ga with
θi = θf = 55◦ and Ei = 95 kJ mol−1. The solid curve shows
calculations for the closed form combination approximation with
h = 0.08, the dotted curve is the result for the full one-dimensional
corrugation also with h = 0.08, the dashed curve is the 1/

√
TS

behavior of the highly corrugated discrete model of equation (2), and
the dashed–dotted curve gives the results for the smooth surface
approximation of equation (1). The data points shown as circles for
temperature values TS = 313, 483 and 673 K are from [14].

Figure 6. Same as figure 5 except for a lower incident energy
Ei = 42 kJ mol−1 and the calculations are for h = 0.07. The data
points shown as circles for temperature values TS = 309, 343, 373,
403, 453 and 463 K are from [15].

figures 5 and 6 are satisfying, that alone is not sufficient to lend
confidence in the validity of the theory. A satisfactory model
of the scattering process should also explain all of the observed
spectra and an illustration of this is the objective of figures 2–
4. Figure 2 shows a complete TOF spectrum converted to final
energy for TS = 673 K. The experimental point at this value
of TS in the most probable intensity versus temperature plot
of figure 5 comes from this data. As before the dash-dotted
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curve shows the results of the smooth surface model, the solid
curve is for the combination model with a one-dimensional
corrugation with h = 0.08, and the dotted curve is for the
full one-dimensional corrugation calculation with the same
h value. All three calculated curves, each representing the
results of a single collision with the surface, show reasonable
qualitative agreement with the data, and with each other.

The angular distributions are shown in figure 3. Plotted is
the total incident intensity, summed over all final energies, as a
function of final scattering angle for incident angle fixed at θi =
55◦. The experimental points show a broad angular distribution
with the most probable intensity at a slightly supraspecular
position of a little larger than 60◦ and a width of more than 40◦.
For comparison of calculations with the angular distribution
data, the energy-resolved differential reflection coefficients are
integrated over all final energies. The dash-dotted, solid and
dotted curves are, respectively, the same model calculations
as described above in connection with figures 2 and 5. All
three calculations are in reasonable qualitative agreement
with experiment. The two calculations for the corrugated
surface exhibit a somewhat broader angular distribution than
that of the smooth surface, and this is to be expected since
a corrugated surface would tend to scatter particles out to
larger angles as compared to a flat surface. In fact, as
discussed below in section 5 the comparison of calculated
results for the corrugated versus uncorrugated surfaces helps
to answer a fundamental question of which is more important
in forming the angular spread of the scattering distribution,
energy transfer through phonons or surface corrugation. The
present calculations would indicate that both phonons and
corrugation can cause roughly equivalent angular spreads.

A comparison with out-of-plane angular distributions
is shown in figure 4. These were taken for an incident
energy Ei = 92 kJ mol−1 (0.95 eV) with fixed θi =
θf = 55◦. Measurements at three different temperatures are
exhibited [14], 308 K are shown as square points, 436 K
as circles and 586 K as triangles. The smooth, dash-
dotted and dotted curves are the present calculations as
described in the previous figures. Again, for these out-of-
plane angular distributions the calculations give reasonable
qualitative agreement with the measurements. The results for
the corrugated surfaces show a slightly larger angular spread in
the intensity as intuitively expected.

It should be again emphasized that the data used for
comparison in this section is for Ar scattering from a liquid
metal surface, and is not expected to be fully explained by the
present calculations for corrugations restricted to a single linear
dimension on the surface. Thus the results of calculations can
be regarded only as indicative of the general trends expected
in the measurements. However, out of the four different
types of comparisons shown in figures 2–6 comes a reasonably
consistent picture illustrating the predictions of the scattering
theory for a corrugated surface. The theory provides a
qualitative explanation of the behavior of the observed energy-
resolved spectra as well as the angular distributions over a wide
range of energies and temperatures, and it provides a prediction
of the corrugation strength parameter h that is reasonable.

5. Discussion and conclusions

This paper discusses how relatively straightforward mea-
surements of the temperature dependence of atom–surface
scattering spectra taken in the classical or multiphonon regime
can be used to extract physical information on the corrugation
strength of the surface. We develop a semiclassical quantum
theory of atom–surface scattering from a corrugated surface
that is valid in the weak corrugation limit. The most general
form of the final result is expressed in terms of a double surface
integral over all possible impact parameters on the surface, that
is to say a four-dimensional integral over the surface. This
theory is extended to the regime of classical mechanics by
taking the limit in which large numbers of vibrational quanta
are transferred in the collision process, providing an example
of the application of the Bohr correspondence principle for
relating quantum to classical physics. In this classical limit
all quantum correlations disappear and the surface integrals
can be limited to a single surface unit cell. The theory can
be regarded as an extension of the well-known classical atom–
surface scattering theory of Brako and Newns [4] to the case
where the surface is corrugated.

Using the classical theory, we make the prediction that a
simple measurement of the most probable intensity in energy-
resolved scattering spectra can be directly related to the corru-
gation strength. More precisely, the temperature dependence
of the most probable intensity is a monotonic function of
the height parameter of the corrugation function, and this
dependence ranges between that of a flat and uncorrugated
surface and that of a highly corrugated surface resembling a
collection of discrete scattering centers. Consequently, such
measurements of the temperature dependence of the most
probable intensity can be used to extract the value of the
corrugation height parameter.

Calculations are carried out for the case of a simple
one-dimensional sinusoidal corrugation function. For one-
dimensional corrugations it is shown that the general form
of the theory lends itself to a useful approximation based on
the assumption that the most important regions of the surface
for forming the scattered spectrum are those that contribute
to the classical rainbow patterns, i.e., the flat portions of the
surface where the first derivative of the corrugation function
vanishes and the inflection regions where the second derivative
of the corrugation function vanishes. This approximation can
be expressed in terms of analytic closed form expressions.

Calculations are carried out with both the full version
of the theory for a one-dimensional corrugation function
of equation (11) and the closed form approximation of
equation (19). These calculations are compared with data
for the scattering of Ar atoms at hyperthermal energies from
molten Ga surfaces. Although a liquid metal surface is
expected to be rather poorly represented by a one-dimensional
periodic corrugation, we use these data because they are
the only measurements available that include consistent
temperature dependence of the energy-resolved spectra. Thus
we would expect at best only qualitative agreement with this
data, but it should indicate general trends expected as functions
of the controllable experimental parameters.
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Comparisons of calculations with this data do show
qualitative agreement with the measurements. For the
Ar/Ga liquid metal system the calculated energy-resolved
spectra, the in-plane angular distributions, and the out-of-plane
distributions are reasonably well depicted. Furthermore, the
approximate closed form result of equation (19) is shown
to provide very good numerical approximations to the full
theoretical expression of equation (11) in the weak corrugation
limit.

Comparisons of calculations with the measurements of the
temperature dependence of the most probable intensity of the
available energy-resolved spectra for the Ar/Ga system allow
us to extract a value for the corrugation height parameter. Even
though the use of a one-dimensional corrugation function to
describe the amorphous liquid metal surface is a relatively
crude representation of reality, the value of the extracted
corrugation parameter is reasonable. Furthermore, it has the
intuitively correct property that for larger incident Ar energies
the corrugation height increases. More than doubling the
energy from 42 to 92 kJ mol−1 gives a small increase in the
predicted height parameter from approximately h = 0.07 to
0.08 for a sinusoidal corrugation function.

These calculations can also help to answer a very
fundamental question in the field of molecular beams scattering
from surfaces, and this question is the following: is the major
contributor to the width of the measured angular distributions
due mainly to surface corrugation or to energy transfer via
the exchange of many phonons? Two competing theoretical
approaches seem to indicate that both mechanisms can explain
the rather large angular widths over which molecular beams
can be scattered under classical conditions. The washboard
model of Tully [16] has been extensively used to interpret
experimental data, and this model has in many cases been
shown to describe reasonably well the angular spread of the
scattered distributions in spite of the fact that it does not
include a mechanism for energy transfer with the surface.
On the other hand, theories based on the Brako–Newns
approach for a flat and non-corrugated surface have also been
successful in explaining the observed widths of measured
angular distributions [2]. The results of the calculations
carried out here indicate that both static corrugations, and
energy and momentum transfer to phonons can contribute to
similar angular spreads in the measured spectra. Thus, to
separate out the effects of static corrugation versus those due
to phonons requires more extensive comparison with a larger
range of data. In particular what is needed is comparisons of

calculations with energy-resolved data taken over large ranges
of incident projectile energies and angles as well as surface
temperatures. Particularly important in this endeavor would be
studies of atom–surface scattering under conditions in which
rainbow behavior can be observed, because rainbow behavior
can be produced not only through static corrugations of the
surface [17–20], but also through inelastic scattering [21].

Future work on this and related problems will include
considerations of systems and incident conditions in which
rainbow behavior, both due to static corrugations and inelastic
effects, can be observed. Calculations using the full
theory for two-dimensional corrugations, more appropriate for
application to the data available for rare gases scattering from
amorphous liquid metal surfaces, are planned [22].
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