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Using the London theory we investigate the inductance of a system consisting of a long straight conductor
of uniform cross section situated parallel to a nearby superconducting plate. Explicit formulas are derived
for the particular cases of conductors having cylindrical, rectangular, and thin-film cross sections and the
limitations of the theory are discussed. The conclusions indicate that measurements of the inductance of
such a system can be used to determine the penetration depth of a superconductor.

I. INTRODUCTION

The London penetration depth A in a superconductor
is usually calculated from measurements on spherical
or cylindrical samples because the boundary-value
problems for these geometries have been solved. On
the other hand, measurements in geometries involving
thin films and plates appear far easier, and if the
solution of the boundary-value problems were known
for these geometries, they could similarly be used to
determine A. This paper derives the solution to these
boundary-value problems using the London theory!
and calculates the inductance of a straight conductor
of arbitrary constant cross section paralleling a nearby
flat slab of superconductor. In Sec. IT we find the
vector potential for a filamentary conductor and use
this result in Sec. III to determine the vector potential
for conductors of rectangular and cylindrical cross
sections. The inductance for cylindrical, rectangular,
and thin-film conductors, with appropriate limiting
expressions, is calculated in Sec. IV, and Sec. V contains
a discussion of the limitations imposed on the results
and the approximate errors involved in using the
London theory.

II. GREEN’S FUNCTION FOR THE
VECTOR POTENTIAL

We consider first of all a line current of unit intensity
near a flat slab of superconducting metal. Assume
the superconductor to lie in the region y<0 with the
xz plane defining its surface and let the line current
lie parallel to the z axis at the distance y=d. In the
region ¥>0 the 2z component of the vector potential
is given by V4= (4n/c)d(x)d(y—d) and can be
represented as consisting of two parts: a part due to
the original line current plus an image current at
y=—d, and an additional contribution due to the
finite penetration of the magnetic field into the super-
conductor. Thus for y>0 this implies

A=A;+Ap, (2.1)
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where
Aqi(x, y)=—c1log{{2*+ (y—d)?]/[2*+ (y+d) 2]}
, (2.2)
and
V24,=0. (2.3)

In the region of the superconductor, i.e., for y<O0,
the vector potential, which we shall call A4,, is a solution
of London’s equation

V2d,— A,/A2=0,

where X is the penetration depth. The most general
solutions of (2.3) and (2.4) are:

(2.4)

' o gk
Ah(x) y) = n
o 27
- X A(k) exp(ikx) exp(— | k| y); y>0 (2.5)
o dk
A y)= [
X A,(k) explikx+ (2422 129];  y<0. (2.6)

To completely define the solution we need only satisfy
the following two matching conditions at the surface:

Az, 0Y) = A(x, 07), (2.7)
(04/0y) y—o*= (84/9y) y—o™. (2.8)

Since A;(x,0)=0 the first condition gives simply
An(k) = A,(k) and the second condition becomes

dk ; 2 —2\1/2 — 94,
/ 7= e (k) LBk | & 144 (8) = (ay )Fo.

(2.9)

Using (2.2) to find 94,/dy at y=0 and inverting
the Fourier integral we find

An(k) = 4,(k) = (4dmj\/) [ (RN 12— | k| ]
Xexp(— | E|d). (2.10)

We are now in a position to éompute An(x, v) and
A(x,y) by (2.5) and (2.6). However, it is never
necessary to calculate A4,(x, y) since, as shown below
in Sec. IV, the integral of J-A in the superconductor
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3076 CELLI,
is always canceled by the kinetic induction of the
superconducting electrons.

We have thus obtained the solution for a line current,
i.e. the Green’s function of the boundary-value problem
at hand. The nontrivial part of this Green’s function
is explicitly:

8wA2 [

dk
Gi(a—a' |3, y)=—[ —L(B#+A)"~E]

0
Xcos[k(x—a') ] exp[—k(y+3") ] (2.11)

This integral can be evaluated by noting that G
is an integral representation of Lommel functions?

S1a(z%)

‘ 2
e 13 1= 25

_ So,;iZ'*') + Sl,;EZ—) _ So,l(Z—)

}, (2.12)

where
wt=[y+y =i(x—z") J/A.

III. VECTOR POTENTIAL FOR
VARIOUS CONDUCTORS

Now the vector potential can_be calculated for any
arbitrary current density J(x,y) parallel to the z
axis by the formula

Axm9) = [ 3y 7@, ) Gala= 13,5 B.1)

In the case of a current-carrying cylinder of normal
metal where the current is evenly distributed over
the cross section the result is quite simple. The magnetic
field around a cylindrical wire is independent of the
radius, and the same is true even if it is brought near
the superconducting slab; hence the vector potential
in this case is of the same form as (2.11).

8mja? dk
0 27

XL(BANYHY2—Fk] cos(kx) exp[—k(y+d)] (3.2)

Ah(xz y) =

or
27 (Sy1(yt So.1(yt
An(x, y) = ;j{ 1;(3 ) y(+y :
" Sl.lgy—) _ So,1€y—)}’ (3.3)
y y

where 7 is the total current, y*= (y+d=ix)/A, and d
is now the distance of the axis of the conductor from
the superconducting slab.

If the current is evenly distributed over a rectangular
conductor of width ¢ parallel to the superconducting
slab and height b, the vector potential is readily found

2W. Magnus and F. Oberhettinger, Functions of Mathematical
Physics (Chelsea Publ. Co., New York, 1949), p. 42.
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to be

32w\t [~ dk
A y — —— k2 —2Yy1/2__
)= [ L]

Xsinhj (&b) sin}(ka) cos(kx) exp[ —k{y+d)], (3.4)

where again d is the distance of the axis of the conductor
from the superconducting slab.

Iv. INDUCTANCE

The inductance L of a current-carrying system is
defined by L2=2W, where W is'the total energy due
to the current j. For a system containing a super-
conductor, W is made up of two parts®: the magnetic
energy and the kinetic energy of the superconducting
electrons. The magnetic energy can be writtent as
(1/2¢) [d*xJ-A, where J indicates both the current
density in the wire and the induced current density
in the superconductor. In simply conmected super-
conductors the London equation gives a relationship
between the supercurrent J, and the vector potential:

J.= — (c/4m\)A,. (4.1)

On the other hand, the kinetic energy of the super-
conducting electrons® is (2w\%/c?) [d%]2. Adding all
contributions, we have in our case 2W= (L;+ Ls)7?,
where L; is the inductance of the conductor and its
image, and

Li= (20 [ v [Tdy J(5, 9) Aals,9). (4.2)
[
We will be interested only in L, since L; depends only
on the geometry of the system® and not on the penetra-
tion depth A.

First we calculate the inductance L, of a cylindrical
conductor whose axis is a distance & from the super-
conducting slab. Using the fact that A4, is a harmonic
function we see that the result must be independent
of the radius and we get

2
L= ? exp(—2kd) [ (422 V2~ ]
[} T

62
= (20/c*d) { $14(2d/N) — Son(2d/M)}.  (4.3)

A graph of L, as a function of A/d is given in Fig. 1.
In the limiting case A<<d we can set (k24-X72)Y2—jf~
1/\ in Eq. (4.3) and it is seen that L, increases linearly
with the penetration depth.

Ly,=2)\/c4. (4.4)
To find the limiting behavior in the opposite region

3 Reference 1, p. 65.

4¢W. Panofsky and M. Phillips, FEleciricity and Magnetism
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§ The inductance of parallel conductors of many types can be
found in_F. W. Groves, Inductance Calculations (Dover Publica-
tions, Inc., New York, 1962).
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CIRCUITS CONTAINING A SUPERCONDUCTING PLATE

where A\>>d we make the substitution k= (y—y~1)/2)
in Eq. (4.3).

2 [=dy (—yd) d
= 2 [ Dep( 2N 149715 St 45
e [ Zen( )i f<t 4

The right-hand side can be expressed in terms of
exponential integrals® and the asymptotic form is

Li=(2/¢*) { —log(d/2\) —v+3},

where v is Eulet’s constant.,

It is also of interest to calculate the inductance for
a conductor of rectangular geometry. From Egs.
(4.2) and (34): :

2 poo i
o (B [ i 2
, 2d

cab ¢
. b B2\1/2
XSlnhz(ﬁ)[(tz-l- )\’—2) —l] N (47)

where the dimensionless variable of integration is
defined by t=kd.

In the limit A<<d we can again set (124d%/A2) 12—~
d/\ and obtain linear behavior with the penetration
depth

(4.6)

2 o dt 1/ th
L= (i) AP f P rsine Lginhe 2. (4.8)
0

cab tt 2d 24"

Of especial interest from an experimental point of
view is the case of a thin film conductor. Letting
b—0 in Eq. (4.7) shows that the inductance of such
a system is

NI . fta a?\\2
n= () [ G| (e ) ] @

20 -

151 <

05 4

1 1 1 1
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[ Fic. 1. The inductance per unit length L, of a long straight
cylindrical conductor whose axis parallels a flat superconducting
slab at a} distance d.

¢ Reference 2, p. 92.

3077

and for A&d this shows similar linear beha ior

4\2 @ dt i
=(= & ot ging =

L (w) M fo Settsint oL (410)
However there is a much more interesting limiting
behavior for a thin film with a large width. If in Eq.
(47) we simultaneously satisfy the conditions a>>b,
a>-d, and a=>Nd we can make use of the é-function
representation

3(t) =lim sin?(gt) /wgi? (4.11)
. g
and obtain

Li=4x)\/c%. (4.12)

This result may also be obtained through a simple
direct calculation and can be good even for A greater
than d.

V. DISCUSSION

In the above we have derived expressions for the
inductance of a linear conductor of arbitrary constant
cross section situated parallel to a nearby super-
conducting plate. Explicit formulas were derived for
conductors of cylindrical and rectangular cross sections.
However, since these results were obtained using the
London theory, we need to specify the limitations
which the theory imposes on our results. Comparing
the London theory with the more general nonlocal
theory of Pippard,” it is seen that in our case London’s
Eq. (4.1) is valid when (£/)) is much less than unity.
Here £ is the coherence length. Thus the above results
for the inductance calculated using the London theory
should be very good both for impure superconductors
where £ is small, and near the transition temperature
when A becomes large.

Finally, it should be remarked that for mathe-.
matical simplicity we have actually computed the
inductance per unit length of a circuit consisting of
an infinitely long conductor carrying current § and a
superconducting plate carrying the return current —j.
In practice it may be more convenient to let the
conductor be part of a closed circuit with a distant
return wire. The theory of Sec. III can be easily
adapted to handle this system. It is seen that the
dominant dependence of the inductance on A still
comes from Ly as given in Sec. IV. There are other
A-dependent contributions to the total inductance,
but they are of the order A/D, where D is the distance
of the return wire from the superconducting plate.
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