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Abstract
It is shown that a straightforward measure of the temperature dependence of energy resolved
atom–surface scattering spectra measured under classical conditions can be related to the
strength of the surface corrugation. Using classical perturbation theory combined with a
Langevin bath formalism for describing energy transfer, explicit expressions for the scattering
probabilities are obtained for both two-dimensional, in-plane scattering and full
three-dimensional scattering. For strong surface corrugations results expressed as analytic
closed-form equations for the scattering probability are derived which demonstrate that the
temperature dependence of the scattering probability weakens with increasing corrugation
strength. The relationship to the inelastic rainbow is briefly discussed.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The investigation of the structure and dynamical properties
of surfaces using atomic probes as scattering projectiles has
proven to be a useful experimental tool, in part because it
is sensitive only to the outermost layers and, for incident
translational energies in the thermal and hyperthermal regimes,
it is non-destructive. The scattering of light mass atoms,
especially helium at low energies, has become a major
experimental tool of surface science. Typical experimental
conditions are well within the quantum mechanical regime
and prominent features observed when atoms are reflected
from ordered surfaces are diffraction peaks and features
associated with single quantum phonon excitation from
which information about structure, interaction potentials and
vibrational properties of the surface can be ascertained [1–4].

However, for decades there have also been a number of
experimental studies of the scattering of atomic and molecular
beams from surfaces carried out in the classical regime [5, 6].
Under conditions of higher translational energies, larger
surface temperatures and particularly for heavier mass atomic
projectiles, the well defined peaks associated with quantum
mechanical features disappear from the scattered intensity
spectra and the collision events are adequately described within
the framework of classical scattering theory [7]. Under
such classical conditions the scattered spectra tend to consist
of broad peaks exhibiting significant energy transfer with

the surface. However, even in the absence of detailed
quantum mechanical features much information can be gleaned
about the interaction forces. For example, under appropriate
initial conditions energy resolved scattering intensities can
exhibit separate features arising due to direct scattering over
a short collision time or from trapping with subsequent
desorption [6, 8–10], and analysis of these features leads
to physical information about the interaction potential and
its attractive physisorption well [11, 12]. Measurements
of angular distributions scattered from ordered surfaces
can exhibit rainbow patterns that reveal the structure and
corrugation of the outermost surface layers [13].

The concept of surface corrugation is well defined for a
surface represented by a hard repulsive wall interaction force
where the position of the wall is described by a function
of the two-dimensional displacement vectors parallel to the
surface. For scattering in a more realistic interaction potential
a corrugation function can be introduced as the reference
from which the displacement perpendicular to the surface is
measured, and it defines the locus of the classical turning
points.

The purpose of this paper is to point out how the
temperature dependence of energy resolved scattered intensity
spectra can be related to the nature of the surface corrugation.
We develop here theoretical models that show how temperature
dependent measurements can be used to obtain physical
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information on the corrugation function. Typically, energy
resolved spectra are measured using a monoenergetic atomic
beam with both incident and final (detector) angles fixed.
In a plot of scattered intensity as a function of final
translational energy what is often observed is a single broad
peak, although for corrugated surfaces multiple features can
also be observed [14, 15]. As a function of increasing
surface temperature this peak broadens while simultaneously
the most probable intensity decreases. Such behavior is
easily understandable as a consequence of overall unitarity of
the scattering process, if the peak broadens the decrease in
maximum intensity tends to preserve the integrated number
of scattered particles. This decrease in intensity as a
function of surface temperature can be directly related to the
surface corrugation and provides a measure of the corrugation
height [16].

The origin of this temperature effect can be most easily
illustrated by comparing the well-known scattered intensity
probabilities for an incident beam of atomic projectiles making
a single collision with two quite different models of the surface,
a highly corrugated surface and a smooth surface whose only
corrugation is that due to thermal vibrations. A strongly
corrugated surface would appear to resemble a collection of
discrete scattering cores. For such a case the probability,
calculated within the impulse approximation, for an incident
projectile of mass m and momentum pi to be scattered into a
final state of momentum p̄ after a single collision with a target
consisting of a collection of discrete scattering centers of mass
MS initially moving with an equilibrium velocity distribution
is given by [17–19]

P(p̄) ∝
(

1

2πkBTS�E0

)1/2

exp

{
− (Ef − Ei + �E0)

2

4kBTS�E0

}
,

(1.1)
where TS is the temperature, kB is Boltzmann’s constant, the
initial and final projectile energies are Ei = p2

i /2m and
Ef = p̄2/2m, and the binary recoil energy is �E0 = (p̄ −
pi )

2/2MS. Equation (1.1) has the appearance of a Gaussian
when viewed as a function of final energy Ef, but is actually
a skewed function because of the momentum dependence
of the recoil energy �E0 and this asymmetry can be very
pronounced, as for example under conditions of low incident
energy. In equation (1.1) the most probable intensity occurs for
the conditions where the argument of the exponential vanishes,
Ef = Ei − �E0, an equation which is identical to that
for energy transferred in a hard-core binary particle collision
where the only conditions are conservation of translational
energy and momentum. Thus the temperature dependence
of the most probable intensity is governed by the envelope
prefactor and decreases with increasing temperature as 1/

√
TS.

On the other hand, if the scattering is a single impulsive
collision with a smooth surface that is flat and uncorrugated
except for small thermal ripples caused by vibrations of the
underlying atomic cores the classical scattering probability
distribution is [19–21]

P(p̄) ∝
(

1

2πkBTS�E0

)3/2

× exp

{
− (Ef − Ei + �E0)

2 + 2v2
RP2

4kBTS�E0

}
, (1.2)

where P is the parallel component of the scattering vector
p̄ − pi . The quantity vR is defined as a weighted average
of phonon velocities parallel to the surface, but in usual
practice it is taken to be a constant [20, 21]. Although
the temperature dependence appearing in the prefactor of
equation (1.2) varies as 1/T 3/2

S , this does not necessarily
dictate the temperature dependence of the most probable
intensity. It is only under special circumstances that both
the energy transfer and parallel momentum transfer terms in
the argument of the exponential are simultaneously vanishing,
thus this total argument rarely vanishes and the most probable
intensity occurs when the argument of the exponential attains a
minimum value. Consequently, the temperature dependence
of the most probable intensity is only approximately given
by the 1/T 3/2

S envelope prefactor of equation (1.2), but under
conditions corresponding to that of available experiments
at hyperthermal energies this dependence is a very good
approximation.

The temperature dependence of the widths of the scattered
intensity probabilities is largely driven by the appearance
of the factor of TS in the denominator of the argument
of the exponentials in equations (1.1) and (1.2). Under
conditions such as high incident energies in which the
scattering appears as a single peak, and is approximately
symmetric and nearly Gaussian-like in the final energy Ef,
the full width at half maximum increases very nearly as√

TS. This
√

TS temperature dependence of the widths of
the scattered intensity is characteristic of classical scattering
distributions regardless of the specific properties of the surface,
as illustrated by the widely different surface corrugations that
lead to equations (1.1) and (1.2). However, the effect of
surface corrugation is manifest in the temperature dependence
of the prefactors and with equation (1.2), showing that a
weakly corrugated surface has a much stronger temperature
dependence than that of a highly corrugated surface such as
that illustrated by the discrete model of equation (1.1).

This analysis indicates that if one considers the thought
experiment of starting with a smooth, non-corrugated surface
and then gradually increasing the corrugation amplitude, the
temperature dependence would gradually weaken from the
strongly decreasing approximately 1/T 3/2

S behavior and would
approach the 1/T 1/2

S behavior of the discrete surface model
if the corrugation becomes strong, such that each atomic core
of the surface appears as a nearly discrete scattering center.
This strong difference in temperature behavior between the
highly corrugated and flat surfaces described by equations (1.1)
and (1.2) would indicate that comparison of experimental
data with an appropriately developed theory for arbitrary
corrugation should allow extraction of information on the
average corrugation height of the surface by merely examining
the temperature dependence of the most probable intensity.

It should also be noted that the temperature in both
equations (1.1) and (1.2) always appears multiplied by the
classical recoil energy �E0. Thus for both types of surface
corrugation the behavior of the reflected intensity as a function
of �E0 for fixed TS should be similar to that of the temperature
dependence for fixed �E0 (or equivalently for fixed initial
and final momenta). However, there are circumstances for
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which �E0 ∝ Ei, notably the case in which the incident
energy is large compared to the surface temperature [7]. In
such conditions measurements of the scattered intensity as a
function of incident energy Ei could be used to get the same
information on the corrugation as could be obtained from a
temperature dependent measurement at fixed energy. However,
in view of the experimental observation that it is usually easier
to obtain good relative scattering intensities as a function
of TS than as a function of beam energy Ei, it is expected
that temperature dependent measurements would be the first
method of choice.

Starting from a treatment of surface scattering using
classical perturbation theory with energy transfer treated
within the generalized Langevin formalism as developed by
one of the authors [14, 15] we examine the temperature
dependence of the state to state scattering probability. This
model allows the general result for the scattering probability
to be expressed in terms of a spatial integral over a unit
cell of the surface. In the case of two-dimensional, in-
plane scattering and relatively strong corrugation strengths the
spatial integral can be evaluated approximately leading to a
scattering probability expressed in terms of analytic closed-
form expressions whose temperature dependence clearly
exposes the different behaviors predicted for smooth versus
highly corrugated surfaces.

The remainder of this paper is organized as follows.
Section 2 presents a brief review of classical perturbation
theory as applied to surface scattering. Explicit expressions for
the scattering probabilities are developed for two-dimensional
scattering, the approximate analytic forms are extracted
under the conditions of large corrugation amplitudes, and
some numerical examples are presented. Section 3 gives
the development of the theory for full three-dimensional
scattering. In section 4 some conclusions on the usefulness
of these results are presented as well as a brief discussion of
quantum mechanical implications.

2. Classical two degrees of freedom scattering
probability

2.1. General theoretical considerations

The starting point of this study is the problem of an atomic
projectile colliding inelastically with a surface, modeled by
Langevin baths. Restricting the problem to two-dimensional
scattering, including vibrational motion of the surface in both
perpendicular and parallel directions, the final momentum
distribution has been shown to be [14]

P( p̄x , p̄z) = 1

l

∫ l

0
dx 〈δ( p̄x − pxf)δ( p̄z − pzf)〉x,z , (2.1)

where p̄z and p̄x are the final momenta perpendicular and
parallel to the surface, l is the length of a unit cell of
the surface, and the averaging is over the thermal baths in
the vertical and horizontal z, x directions. From general
considerations we assume that

pxf = 〈pxf 〉 + δpxx , (2.2)

where δpxx are the Gaussian stochastic fluctuations created by
the horizontal bath. Similarly

pzf = 〈pzf〉 + δpzz + δpzx, (2.3)

where in addition to the stochastic fluctuations contributed
by the vertical bath (assumed independent of the horizontal
bath) we have stochastic Gaussian fluctuations induced by the
horizontal bath in the form of δpzx . We note that all terms in
equations (2.2) and (2.3) may depend on position, or impact
parameter x within the surface unit cell.

Averaging over the vertical bath gives

P( p̄x, p̄z) = 1

l

∫ l

0
dx

1√
2π〈δp2

zz〉
×

〈
δ( p̄x − pxf) exp

(
− ( p̄z − 〈pzf〉 − δpzx)

2

2〈δp2
zz〉

)〉
x

. (2.4)

Because the averaging over the Langevin bath for parallel
motion in equation (2.4) introduces correlations in the vertical
direction, this second average becomes somewhat more
complicated. One way to carry out the averaging is by first
introducing a dummy variable W so that

P( p̄x, p̄z) =
∫ ∞

−∞
dW

1

l

∫ l

0
dx

1√
2π〈δp2

zz〉
× exp

(
− ( p̄z − 〈pzf〉 − W )2

2〈δp2
zz〉

)

× 〈δ( p̄x − pxf)δ(δpzx − W )〉x . (2.5)

Then denoting the following variances

Hxx = 〈δp2
xx 〉x , (2.6)

Hzx = 〈δpzxδpxx 〉x , (2.7)

Hzz = 〈δp2
zx〉x , (2.8)

it is straightforward to show that for example

〈δ( p̄x − pxf)δ(δpzx − Wx)〉x = 1

2π
√

Hxx Hzz − H 2
zx

× exp({−Hzz( p̄x − 〈pxf〉)2 − 2Wx Hzx( p̄x − 〈pxf 〉)
+ Hxx W 2

x }{2(Hxx Hzz − H 2
zx)}−1). (2.9)

Integrating over the dummy variable W gives the
expression for the final momentum distribution as

P( p̄x, p̄z) = 1

l

∫ l

0
dx

1

2π
√

�2
exp({−Hxx( p̄z − 〈pzf〉)2

+ 2Hxz( p̄z − 〈pzf〉)( p̄x − 〈pxf〉)
+ (Hzz + 〈δp2

zz〉)( p̄x − 〈pxf〉)2}{2�2}−1), (2.10)

with
�2 = Hxx(Hzz + 〈δp2

zz〉) − H 2
zx . (2.11)

Typically, the second moments of classical thermal fluctuations
will be proportional to β−1 = kBTS, thus �2 ∝ T 2

S .
To understand the temperature dependence of the scattered
particle it remains for us to analyze this expression under
different conditions.
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2.2. Scattering in the absence of corrugation

If the surface is smooth with no static corrugation, one may
assume that the various momentum averages and variances
are independent of the impact parameter. The averaging over
the impact parameter is then trivial and the final momentum
distribution is

P( p̄x, p̄z; no corrugation)

= 1

2π
√

�2
exp({−Hxx( p̄z − 〈pzf〉)2

+ 2Hxz( p̄z − 〈pzf〉)( p̄x − 〈pxf〉)
+ (Hzz + 〈δp2

zz〉)( p̄x − 〈pxf〉)2}{2�2}−1). (2.12)

In this zero-corrugation limit the temperature dependence
of the probability is determined largely by the prefactor
1/

√
�2 ∝ 1/TS. Near the maximum of the final momentum

distribution, where the argument of the exponential vanishes
the prefactor dominates the temperature dependence. This
1/TS dependence is the expected result for two-dimensional
scattering from a corrugationless surface, and as shall also be
shown in section 2.3, corresponds to the full three-dimensional
scattering probability of equation (1.2) whose temperature
dependent prefactor varies as 1/T 3/2

S .

2.3. Scattering in the presence of corrugation

The analysis becomes slightly more involved in the presence of
corrugation. To simplify, and since typically conditions justify
this simplification, we assume that the thermal fluctuations are
all independent of the impact parameter. Only the final average
momenta are assumed to be affected by the corrugation.
Energy conservation implies that

〈pzf〉 = 2M Ei − M〈�EB〉
|pzi |

− | tan(θi)|〈pxf〉 (2.13)

where 〈�EB〉 is the average energy lost by the particle to the
surface during the collision. We also assume that this average
energy is independent of the corrugation.

To estimate the integration over the impact parameter, we
use a steepest descent approximation. Writing the exponent of
equation (2.10) as exp(− f (x)) we have that

�2 ∂ f (x)

∂x
= ∂〈pxf〉

∂x
[( p̄z − 〈pzf〉)(Hxx | tan(θi)| − Hxz)

+ ( p̄x − 〈pxf〉)(Hxz | tan(θi)| − Hzz − 〈δp2
zz〉)]. (2.14)

The stationary points require that ∂ f (x)/∂x = 0 and occur
either when ∂〈pxf〉/∂x = 0 or when the term in the square
bracket vanishes. If the term in the bracket vanishes, we
denote the corresponding stationary point as x1 and find that
the second derivative at the stationary point is positive

�2 ∂2 f (x)

∂x2 x=x1

=
(

∂〈pxf〉
∂x

)2

x=x1

× [〈δp2
zz〉 + 〈(| tan(θi)|δpxx − δpzx)

2〉x ]. (2.15)

The stationary phase approximation will be valid if the
magnitude of the second derivative is sufficiently large, that

is the term on the right-hand side must be larger than the
variance �2. Since the impact parameters which lead to
rainbow scattering are points at which ∂〈pxf〉/∂x = 0 it is clear
that the main contributions to the integral will come from the
‘inner’ regions of the distribution where there are no rainbows.
It is also clear that if the corrugation is too weak, then the final
average momentum will hardly vary with the impact parameter
and the steepest descent estimate is not valid. For very weak
corrugation, one can assume that f is independent of the
impact parameter and one reverts to the regime of section 2.2.

If the steepest descent estimate is valid, then one can
now readily perform the Gaussian integration over the impact
parameter to find that

P( p̄x, p̄z)

� 1

l

1√
2π[〈δp2

zz〉 + 〈(| tan(θi )|δpxx − δpzx)2〉x ]|( ∂〈pxf 〉
∂x )x=x1 |

× exp

(
− ( p̄x − 〈pxf 〉)2

2(Hxx | tan(θi)| − Hxz)2
(〈δp2

zz〉 + Hzz

− 2Hxz | tan(θi)| + Hxx | tan2(θi)|)
)

. (2.16)

Assuming as before that the second moments of the
fluctuations are proportional to β−1 = kBTS, we find that in this
region the maximum of the distribution is found when p̄x =
〈pxf〉 which also implies that p̄z = 〈pzf〉 and its dependence
on the temperature goes as β1/2. This is a significant
reduction in the strength of the temperature dependence as
compared to the direct proportionality to β noted for the zero-
corrugation case discussed above just after equation (2.10)
and demonstrates that the corrugation weakens the surface
temperature dependence of the scattered distribution. If the
corrugation is sufficiently strong, it may be considered as
overcoming the thermal fluctuations in one degree of freedom
and therefore one remains with only a β1/2 temperature
dependence.

For rainbow scattering, that is if the derivative of the
final averaged horizontal momentum with respect to the impact
parameter vanishes, we denote the stationary point as x2 if
the second derivative ∂2〈pxf〉/∂x2 is positive, and x3 if it is
negative (but the full second derivative remains positive). In
this second scenario, the second derivative of the function is

�2 ∂2 f (x)

∂x2 x=x2 ,x3

=
(

∂2〈pxf 〉
∂x2

)
x=x2 ,x3

× [( p̄z − 〈pzf〉)(Hxx | tan(θi)| − Hxz)

+ ( p̄x − 〈pxf〉)(Hxz | tan(θi)| − Hzz − 〈δp2
zz〉)]. (2.17)

If the second derivative of the momentum with respect to the
impact parameter is positive, this constrains the valid values of
the final momenta such that

( p̄z − 〈pzf〉)(Hxx | tan(θi)| − Hxz) + ( p̄x − 〈pxf 〉)
× (Hxz| tan(θi)| − Hzz − 〈δp2

zz〉) � 0. (2.18)

If the second derivative is negative then the term in
the square brackets of equation (2.17) must be negative,
i.e. equation (2.18) must be negative. The corresponding
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scattering probabilities are expressed as

P( p̄x, p̄z) � 1

2π

1

l
exp(− f (x2,3))

×
{

∂2〈pxf 〉
∂x2

2,3

[( p̄z − 〈pzf〉)(Hxx | tan(θi)| − Hxz)

+ ( p̄x − 〈pxf〉)(Hxz | tan(θi)| − Hzz − 〈δp2
zz〉)]

}−1/2

.

(2.19)

This in turn implies that these steepest descent points lead to
contributions to the scattering probability of equation (2.19)
that are exponentially small, since the conditions imposed
by equation (2.18) imply that the exponent f (x2,3) may not
vanish. Similarly to the case of equation (2.16) the temperature
dependence of the prefactor varies as 1/

√
TS, again indicating

that the strength of the temperature dependence for the
corrugated surface is decreased relative to that of a surface with
no corrugation.

2.4. A numerical example

To understand in somewhat more detail the effect of the
corrugation it is useful to consider a simplified model of the
scattering. We will assume as before that all variances are
independent of the impact parameter. It has been shown
elsewhere, that if there is only vertical friction and the potential
takes the form

V (x, z) = V̄ (z) + V̄ ′(z)h sin

(
2πx

l

)
(2.20)

where V̄ (z) is the vertical interaction potential (typically a
Morse potential) and h is the corrugation height then

〈pxf〉 = pxi − pzi K cos

(
2πx0

l

)
+ �px,1 (2.21)

where pzi is the incident (negative) momentum in the vertical
direction, K is the ‘rainbow angle shift parameter’, which is
dimensionless, proportional to the corrugation height h (and
thus typically much smaller than unity) and independent of
the temperature [22, 23]. x0 is the value of the horizontal
coordinate as the particle reaches the turning point in the
vertical direction and �px,1 is a friction induced momentum
shift, which is temperature independent. Within first order
classical perturbation theory the Jacobian from the horizontal
coordinate x to x0 is unity, so that one may simply replace
the integration in equation (2.4) with an integration over x0

and there is no further need to carry the subscript 0. The
final averaged momentum in the vertical direction is obtained
from energy conservation (see equation (2.13)) and is thus also
dependent on the impact parameter.

To further simplify, we will assume that only the ‘direct’
variances are important, that is we can neglect Hzz and Hxz .
The final momentum distribution now takes the form

P( p̄x, p̄z) = 1

l

∫ l

0
dx

1

2π
√

Hxx 〈δp2
zz〉

× exp

(
− Hxx( p̄z − 〈pzf〉)2 + 〈δp2

zz〉( p̄x − 〈pxf〉)2

2Hxx 〈δp2
zz〉

)
.

(2.22)

In the absence of corrugation, the averaging over the impact
parameter is trivial, the distribution maximizes when p̄z =
〈pzf〉 and p̄x = 〈pxf 〉. The dependence of the maximum on
the (inverse) temperature goes as β .

In the presence of corrugation, one may write down the
distribution (by substituting the variable cos(2πr) with the
variable u) as

P(ρx , ρz) =
∫ K

−K
du

1

2π2
√

K 2 − u2
√

σ 2
xx σ

2
zz

× exp

({
−σ 2

xx

(
ρz − 1 + �ε

2

+ | tan(θi)|�ηx + | tan(θi)|u
)2

+ σ 2
zz(ρx

− | tan(θi)| + u + �ηx)
2

}
{2σ 2

xx σ
2
zz}−1

)
, (2.23)

using the following reduced variables

r = x

l
, ρz = p̄z

|pzi |
, ρx = p̄x

|pzi |
,

�ε = 2M〈�EB〉
p2

zi

, σ 2
xx = Hxx

|pzi |2
,

σ 2
zz = 〈δp2

zz〉
|pzi |2

, �ηx = �px,1

|pzi |
.

(2.24)

To further simplify, we note that for weak dissipation
�ε,�ηx 	 1 so they can be ignored and for simplicity we
choose σ 2

xx = σ 2
zz = σ 2. Taking the incident angle as π/4 and

noting that by symmetry, the maximum of the final momentum
distribution lies on the line ρx = ρz ≡ ρ implies that it suffices
to discuss

P

(
ρx = ρz ≡ ρ; θi = π

4

)

=
∫ K

−K
du

1

2π2σ 2
√

K 2 − u2
exp

(
− (ρ − 1 + u)2

σ 2

)
. (2.25)

Now the temperature dependence becomes quite clear. If
the width σ is much smaller than K then the distribution goes
as

P

(
ρ; θi = π

4
, σ 	 K

)
∼ 1

2π3/2σ
√

K 2 − (1 − ρ)2
(2.26)

while if the width σ is much larger than K then

P

(
ρ; θi = π

4
, σ � K

)
∼ K

πσ 2
exp

(
− (ρ − 1)2

σ 2

)
. (2.27)

The transition between the two regimes is readily noticeable in
the plots shown in figure 1.

3. Three-dimensional considerations

The full three-dimensional case is qualitatively the same as the
in-plane two-dimensional case. The added horizontal degree
of freedom implies that in the absence of corrugation, or
equivalently when the temperature is sufficiently high such
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Figure 1. Temperature dependence for the maximal intensity of the final momentum distribution for two-dimensional dynamics. The top left
panel shows the probability distribution (equation (2.25)) multiplied by (the square root of the variance) σ as a function of the symmetric
(reduced) momentum (ρ) and temperature (σ ) when the corrugation (K ) is much larger than the noise (σ ). The top right panel shows the
variance σ 2 multiplied by the probability distribution when the temperature is high, that is when σ is larger then K . Note the approximate
constancy of the two figures respectively about the maximal ridge. The bottom left panel shows the actual probability distribution in the strong
corrugation regime, while the bottom right-hand panel is in the weak corrugation regime. Note the rainbow structure in the strong corrugation
regime and the single peaked Gaussian structure in the weak corrugation regime. In all plots K = 0.2. For further details, see the text.

that the broadening wipes out the effects of the corrugation,
the maximum of the final momentum distribution will go as
β3/2. When the corrugation is important then the scaling goes
as β1/2. The derivation is outlined below.

We consider scattering in three dimensions of a particle
of mass M with initial momenta p ji , j = x, y, z in the
vertical z and horizontal x and y directions. The surface
is characterized by the lattice lengths lx and ly. The final
momentum distribution is by definition

P( p̄x, p̄y, p̄z) = 1

lx ly

∫ lx

0
dx

∫ ly

0
dy 〈δ( p̄x − pxf)

× δ( p̄y − pyf)δ( p̄z − pzf)〉x,y,z . (3.1)

The averaging is over thermal baths in the vertical and
horizontal directions. Following the derivation in the two-
dimensional case, and from the same general considerations
we assume that the final momenta in the horizontal directions
may be described as the sum of an averaged and a fluctuational
term

p jf = 〈p jf〉 + δp j j, j = x, y (3.2)

where δp j j are assumed to be Gaussian stochastic fluctuations
created by the respective horizontal bath. For simplicity we
assume that the two horizontal baths are uncorrelated, although
this assumption is not essential. By definition, the fluctuations
have zero mean. As before, the vertical motion is also coupled
to the horizontal baths so that the final vertical momentum has
the form

pzf = 〈pzf〉 + δpzz + δpzx + δpzy (3.3)

where in addition to the stochastic fluctuations contributed
by the vertical bath (assumed independent of the horizontal
baths) we have stochastic Gaussian fluctuations induced by
the horizontal baths in the form of δpzx and δpzy . Here
too, we assume that these horizontal induced fluctuations are
uncorrelated.

Deriving the final momentum distribution follows the
same lines as in the two-dimensional case. One first
averages over the vertical bath, then introduces two dummy
variables Wx and Wy using identities similar to that given in
equation (2.9) to find that the final momentum distribution is

6
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P( p̄x, p̄y, p̄z) = 1

lx ly

∫ lx

0
dx

∫ ly

0
dy

1

2π
√

2π

1√
�2

× exp

(
− Hxx Hyy( p̄z − 〈pzf〉)2

2�2

)

× exp({Hzy Hxx( p̄y − 〈pyf〉)( p̄z − 〈pzf〉)
+ Hzx Hyy( p̄x − 〈pxf 〉)( p̄z − 〈pzf〉)}{�2}−1)

× exp

(
− Hzx Hzy( p̄x − 〈pxf〉)( p̄y − 〈pyf〉)

�2

)

× exp({−( p̄x − 〈pxf 〉)2(Hyy〈δp2
zz〉 + Hyy Hzyy

+ Hyy Hzxx − H 2
zy)}{2�2}−1)

× exp({−( p̄y − 〈pyf〉)2[(Hxx〈δp2
zz〉 + Hxx Hzxx

+ Hxx Hzyy − H 2
zx)]}{2�2}−1), (3.4)

and we used the following notation for the variances

H j j = 〈δp2
j j〉 j , j = x, y, z (3.5)

Hz j = 〈δpz jδp j j〉 j , j = x, y (3.6)

Hz j j = 〈δp2
z j〉 j , j = x, y (3.7)

and

�2 = Hxx Hyy〈δp2
zz〉 + Hxx(Hyy Hzyy − H 2

zy)

+ Hyy(Hxx Hzxx − H 2
zx). (3.8)

If all the bath fluctuations and energy losses are
independent of the surface corrugation or, equivalently,
the surface temperature is sufficiently high such that the
fluctuations ‘wash out’ the effect of the corrugation, then one
can effectively assume that the exponents become independent
of the corrugation, as also noted in the previous section
for the two-dimensional case. It is then evident that the
maximum of the final momentum distribution will go as
1/

√
�2. Since the variance in this three-dimensional case

goes as β−3 one will have recovered the ‘free particle’ β3/2

temperature dependence.
Conversely, if the corrugation is large, or equivalently

the variances are sufficiently small, then one cannot ignore
the corrugation dependence of the exponent. However, one
can carry out the integration over the impact parameters as
before using a steepest descent estimate. Corrugation appears
as a temperature independent contribution to the averaged final
momentum in the horizontal directions, and through energy
conservation in the final averaged momentum in the vertical
direction

{〈pzf〉2 + 〈δp2
zz〉 + Hzxx + Hzyy + 2Hzx + 2Hzy

+ 〈pxf 〉2 + Hxx + 〈pyf〉2 + Hyy}{2M}−1 = Ei − 〈�EB〉.
(3.9)

To facilitate the integration over the impact parameters, we
change variables from x, y to 〈pxf〉, 〈pyf〉. The Jacobian of the
transformation is

J (〈pxf〉, 〈pyf〉; x, y) = ∂〈pxf〉
∂x

∂〈pyf〉
∂y

− ∂〈pxf〉
∂y

∂〈pyf〉
∂x

.

(3.10)

The classical rainbow lines are the result of the vanishing of the
Jacobian. We then estimate the integral using steepest descent.
From the energy conservation relation we have that

∂〈pzf〉
∂〈pxf〉

= −〈pxf〉
〈pzf〉

,
∂〈pzf〉
∂〈pyf〉

= −〈pyf〉
〈pzf〉

. (3.11)

Denoting the Gaussian exponent in the expression for the final
momenta distribution of equation (3.4) as − f (〈pxf〉, 〈pyf〉) one
readily finds that the first derivatives of the exponent are

�2 ∂ f (〈pxf〉, 〈pyf〉)
∂〈pxf〉

= A

( 〈pxf〉
〈pzf〉

+ Hzx

Hxx

)
− �2

Hxx
( p̄x − 〈pxf 〉), (3.12)

�2 ∂ f (〈pxf〉, 〈pyf〉)
∂〈pyf〉

= A

( 〈pyf〉
〈pzf〉

+ Hzy

Hyy

)
− �2

Hyy
( p̄y − 〈pyf〉), (3.13)

with

A = Hxx Hyy( p̄z − 〈pzf〉) − Hzy Hxx( p̄y − 〈pyf〉)
− Hzx Hyy( p̄x − 〈pxf〉). (3.14)

Denoting the stationary point as 〈pxf 〉1, 〈pyf〉1 it is clear that the
steepest descent integration brings down to the denominator
the square root of the determinant of the second derivative
matrix of f with respect to 〈pxf〉 and 〈pyf〉. Some algebra then
leads to the result

�4

[
∂2 f (〈pxf 〉, 〈pyf〉)

∂〈pxf〉2

∂2 f (〈pxf〉, 〈pyf〉)
∂〈pyf〉2

−
(

∂2 f (〈pxf 〉, 〈pyf〉)
∂〈pxf 〉∂〈pyf〉

)2]

= 1

Hxx

[
�2 + AHyy

〈pzf〉
]

1

Hyy

[
�2 + AHxx

〈pzf〉
]

+ A

〈pzf〉
Hyy Hxx

[ 〈pyf〉
〈pzf〉

Hzx

Hxx
− 〈pxf 〉

〈pzf〉
Hzy

Hyy

]2

+ 1

Hxx

[
�2 + AHyy

〈pzf〉
]((

Hxx
〈pxf 〉
〈pzf〉

+ Hzx

)2

+ A

〈pzf〉
〈pxf 〉2

〈pzf〉2

Hxx

Hyy

)
+ 1

Hyy

[
�2 + AHxx

〈pzf〉
]

×
((

Hyy
〈pyf〉
〈pzf〉

+ Hzy

)2

+ A

〈pzf〉
〈pyf〉2

〈pzf〉2

Hyy

Hxx

)
, (3.15)

from which it is evident that the determinant has a β2

dependence on the (inverse) temperature. It thus follows that
after the steepest descent integration, the prefactor goes as β1/2.
Strong corrugation decreases the temperature dependence of
the maximum of the distribution.

4. Discussion

In atom–surface scattering experiments carried out in the
domain of classical physics it has been shown both
theoretically [16] and experimentally [24–26] that very
different temperature dependence is expected in the scattered
intensity spectra depending on whether the surface is smooth
or highly corrugated. In this paper we demonstrate this
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temperature dependence effect within the formalism of
classical perturbation theory with the vibrational dynamics of
the surface treated within a stochastic formalism.

The general expression for the scattering probability is
presented as an integral over the impact parameters within a
single unit cell. One then distinguishes between two regimes.
When the noise is small so that the corrugations dominate the
scattering (rainbow scattering) then one may well estimate the
averaging over the impact parameters by the steepest descent
method and the temperature dependence of the maximum
of the final momenta distribution will go as β1/2. If the
corrugation is much weaker than the noise, in the sense that the
noise term ‘wipes out’ all structure due to the corrugation, then
the effective dependence on the impact parameters is negligible
and the maximum of the distribution goes as β3/2. If one limits
the dynamics to two degrees of freedom, then the two limits go
as β1/2 when corrugation is important and as β when it may be
ignored.

To derive these results we have presented a rather general
stochastic theory of scattering from surfaces. Using the general
properties of this theory we were able to understand how
corrugation affects the temperature dependence of the intensity
of the scattered particles. Elsewhere, this same approach has
been used to formulate a theory of sticking to surfaces [27].
This formalism may be readily employed within a Langevin
description of the dynamics to obtain analytical formulas for
all aspects of the scattering.

The analysis presented in this paper was purely classical.
It is evident that the quantum temperature dependence will
differ from the classical. Only in classical mechanics does
one expect the variances to be linearly dependent on the
surface temperature. In quantum mechanics, at very low
temperatures, the variances become temperature independent
and so the intensity should become independent of the
temperature, with and without corrugation. In many respects
classical dynamics is more sensitive to surface corrugation than
quantum dynamics. This is not unique to the temperature
dependence, especially when scattering light atoms such as
He from surfaces, the separation between diffraction peaks
may become larger than the separation between the classical
rainbow peaks and the quantum dynamics will not observe the
rainbow structure at all. Such behavior has been observed in
the scattering of He from surfaces.
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