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Abstract
Heartrate variability (HRV) is traditionally ana-

lyzed while a subject is in a controlled environment,
such as at rest in a clinic, where it can be used as
a medical indicator. This paper concerns analyzing
HRV outside of controlled environments, such as on an
actively moving person. We describe automated meth-
ods for inter-heartbeat interval (IBI) error detection
and correction. We collected 124,998 IBIs from 18
subjects, undergoing a variety of active motions, for
use in evaluating our methods. Two human graders
manually labeled each IBI, evaluating 10IBIs as hav-
ing an error, which is a far greater error percentage
than has been examined in any previous study. Our
automated method had a 96% agreement rate with the
two human graders when they themselves agreed, with
a 49% rate of matching specific error corrections and
a 0.01% false alarm rate.

1 Introduction

The electrical activity of the heart, as measured by the
electrocardiogram (ECG), can be used to construct an
event series that indicates the time between individ-
ual heartbeats. Heartrate variability (HRV) analysis
studies cyclical variations in a heartbeat series related
to autonomic nervous system activity [13]. However,
the process of discretizing the raw electrical signal and
detecting individual heartbeat intervals is prone to er-
rors. Even a small amount of mis-detected heartbeats
is known to have a damaging impact upon any sub-
sequent HRV analysis [10, 2]. This paper considers
the problem of automatically detecting and correcting
errors in real-time, to provide a cleaner series for sub-
sequent HRV analysis.

In a clinical setting, ECG artifacts can be mini-
mized by restricting subject motion, for example to
bedrest, or by averaging signals from multiple ECG
leads. Those errors that do appear are generally fixed
by a human expert reviewing the data before proceed-
ing to (off-line) HRV analysis. Our work is moti-

vated by the potential for real-time HRV analysis in
an unstructured environment. For example, a soldier
could be equipped with an HRV monitor while on ac-
tive duty [9]. Adaptive automation systems, such as
a cruise control in an automobile, could be driven by
an on-line HRV monitor [3]. During exercise, a per-
son could monitor their own HRV in addition to the
traditional heartrate. These types of systems must be
able to work without a human expert in the loop. They
must be able to work in real-time, to provide a useful
feedback signal. They must be able to work in an en-
vironment where the subject is ambulatory, so that ar-
tifacts caused by muscle noise are the norm rather than
the exception. In our data set (described later), we wit-
nessed a 10% error rate in individual heartbeat detec-
tions, because of our active subjects. In prior studies,
the error rate is generally found to be much less than
1%, because the data is captured on sedate subjects or
in a controlled environment.

Most of the literature concerned with ECG errors
looks at the problem of reducing noise within the ECG
signal, or at building a better heartbeat interval detector
[5, 7]. However, some amount of heartbeats are always
going to be mis-detected, especially as the subject be-
comes active. This motivates the use of additional er-
ror detection after individual heartbeat detection. We
use a small window of heart interbeat intervals (IBIs)
to look for mis-detections. The context of IBIs imme-
diately surrounding the one under consideration pro-
vides an indication as to the validity of the IBI. We
call this process IBI error detection and correction.

Cheung [4] was perhaps the first to recognize the
problem. He developed an algorithm to detect and cor-
rect errors by comparing an IBI with both its prede-
cessor and its successor. Deviations beyond a certain
percentage were considered errors. However, Cheung
recognized that combinations of these errors or multi-
ple errors found in series defeated his method, so that
the method could only be applied to data containing
limited errors.

Malik et. al. [8] explored comparing an IBI to
the average IBI in an entire recording, and to the last
accepted (assumed to not have an error) IBI. Evalua-
tion was done on 24 hour recordings taken of subjects
who had just undergone acute myocardial infarction,
and normal subjects. Results were evaluated based
upon distribution comparisons, rather than on manu-
ally graded IBIs. Therefore the percentage of IBIs con-
taining errors is unknown, as is the actual success rate
of detecting and correcting the errors.

Berntson et. al. [1] extended IBI error detection to
include validation of the flagged error. The usual com-
parison of an IBI to its predecessor is used to detect



a potential error. Subsequently, the following IBI is
compared to the supposed error to determine whether
the detected problem was an actual error or a false
alarm. A total of 15,360 IBIs were manually clas-
sified, with 33 being in error (about 0.002were also
added to further test their methods, but these errors did
not represent what could be expected from active real
subjects.

Sapoznikov et. al. [12] explored the idea of filter-
ing an IBI series using a polynomial smoothing func-
tion. A large degree-of-freedom polynomial was fit to
a window of IBI data, and then subtracted from the IBI
series, in order to eliminate errors that resemble spikes.
Subsequently, an error is detected by comparing an IBI
with an updated mean IBI from the window, and the
last accepted (assumed to not have an error) IBI. Visual
evaluation was performed by two experts on data from
3 subjects during 6 hour sleep periods. Because the
IBIs were not manually graded, the overall percentage
of errors in the data is unknown. However, it can be
assumed to be small because the subjects were sleep-
ing.

Compared to all the previously discussed methods,
we extend the handling of IBI error detection and cor-
rection in several important aspects. First, we make
no assumptions about the motions of the subject. The
subject may be at rest, normally moving (e.g. in an
office environment), or fully active (e.g. in exercise
or combat). Second, we assume that the process must
run on-line and in real-time. Therefore it cannot rely
upon statistics of entire recordings, but must calculate
any needed statistics on the fly as it runs. Third, we
extend the previously discussed methods of IBI error
detection, correction, and validation to a more compre-
hensive rule set. This rule set covers combinations of
error types, as well as sequences of multiple errors. Fi-
nally, we quantitatively evaluate our methods on over
100,000 manually graded IBIs, containing a far larger
percentage of errors than in previously reported stud-
ies.

2 Methods

Figure 1 shows an overview of our methods. In this
view we may consider IBIs a commodity that are pro-
duced by an IBI detector, cleaned by our “engine”, and
consumed by an IBI analysis method. The IBI detec-
tor is assumed to be running independent of our en-
gine. Heartbeats occur asynchronously, so of course
the input to our engine is asynchronous. It is assumed
that an IBI value is given to our engine as soon as the
heartbeat ending the interval is detected. Inside the
engine, a buffer of recent IBI values is maintained. Er-
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Figure 1: Process view of IBI detection, error analysis,
and IBI analysis.

ror detection and correction is performed somewhere
in the middle of this buffer (discussed in detail below),
so that there are always a set of preceding IBIs that
have already been validated, and a set of succeeding
IBIs waiting to be validated. All these surrounding
IBIs serve to provide context for the IBI under con-
sideration. As time proceeds, IBIs move from right to
left in the buffer. The engine provides a synchronous
output, essentially an oversampled but time-delta con-
sistent estimate of the IBI series, in addition to the
corrected asynchronous IBI series. Both outputs are
delayed approximately 6 seconds past the original IBI
detector (discussed more below).

Section 2.1 describes our methods for automated
IBI error detection and correction, which we call the
analysis engine. Section 2.2 describes the data set,
consisting of 124,998 IBIs, used to evaluate our meth-
ods. Our engine uses several parameters that can be
adjusted to obtain optimal performance. Section 2.3
describes the parameters and the methods we used to
choose the best set.

2.1 Engine

Figure 2 shows a detailed view of the heart of the en-
gine, which is a buffer of IBI values. The engine main-
tains a pointer to the position in the buffer of the IBI
under consideration. IBIs ahead of the IBI under con-
sideration (left of it in the figure) have already been
tested for errors, and possibly replaced with corrected
values. IBIs behind the IBI under consideration have
been detected but are awaiting consideration, and are
referred to as incoming values. The buffer must be
of sufficient size to allow all the necessary informa-
tion contained in the sequence of IBIs to be used in



Figure 2: A snapshot of the buffer used for correction context.

the decision making process. However, we desire to
keep the buffer as small as possible, to minimize the
delay between IBI detection and cleaned IBI output.
Note that output occurs at the “current reference IBI”
in Figure 2. The additional corrected IBIs in the buffer
are maintained only to provide better information on
how to analyze the IBI under consideration.

To arrive at a buffer size, we consider the buffer in
two parts. The input size of the buffer must be large
enough to accommodate the maximum number of IBIs
involved in a correction. For our rule set (described
below), this number is three. The maximum expected
value for an IBI is 1500ms (they are of course much
shorter under most circumstances). It is also necessary
to have at least one IBI received after the currently
evaluated IBI in order to decide on the appropriate-
ness of an attempted correction. Therefore our method
buffers a minimum of
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six seconds of

incoming data in order to provide the minimum con-
text for evaluating corrections. The second part of the
buffer, on the output side, maintains a “past history” of
corrected IBI values. Statistics of these data are used
during the analysis of the IBI under consideration. A
longer past history does not increase the lag of the sys-
tem, therefore the actual length of the past history is a
parameter we train in order to determine optimal per-
formance.

Since IBI data arrive asynchronously, in practice we
are unable to guarantee a fixed amount of time in the
buffer, so we simply try to keep the time in the buffer
as close to six seconds as possible. For example, Fig-
ure 2 shows 6.76 seconds of incoming data, includ-
ing the IBI under consideration. The reason our buffer
maintains a fixed amount of time instead of working
on a fixed number of IBI values is primarily to fa-
cilitate the resampling of IBI values into synchronous
data for HRV analysis. Specifically, spectral analysis
through the use of the Fourier transform requires syn-
chronously sampled data to provide meaningful results
[6].

The first task of the engine is to determine whether
or not the IBI under consideration is an error. The

engine uses an adaptive threshold to compare the IBI
under consideration against the current reference IBI.
The threshold is calculated anew for each IBI under
consideration according to Equation 1.

� ������� ���� �"! # �%$ # ��& � !' $ � ( (1)

In the equation,
�

is the threshold,
'

is the number of
values maintained in the past buffer, # � represents the
values in the past buffer, and ( is a multiplier. During
operation of the engine,

'
and ( are fixed; the spe-

cific values used during our experiments are discussed
in Section 2.3. In plain language, the mean succes-
sive difference of the trusted values in the past buffer is
multiplied by a constant to generate a threshold. That
threshold is limited to a predefined range of possible
values, also fixed at runtime and also trained for as de-
scribed in Section 2.3. If the buffer is not yet full, a
reasonable estimate for

�
is used until the buffer is full

and meaningful statistics can be calculated. During the
experiments described in this paper, a default value of
100ms was used.

The portion of the engine that detects errors can
be temporarily suspended if too many errors occur in
a particular neighborhood. This capability is needed
to minimize the potential for the engine to generate a
sequence of data that appears to be valid but in fact
has locked into an error pattern that deviates from the
true IBI series. In practice, an observation of human
graders correcting IBI data indicated that more than 2
or 3 consecutive corrections are rarely, if ever, used.
If corrections are occurring at a higher frequency, the
area is almost certainly uncorrectable. In order to es-
tablish this behavior, a counter is incremented each
time a correction is applied and decremented each time
an IBI is marked as valid. If the counter exceeds a
value of 3, the next IBI is not examined for potential
errors and the counter is again decremented.

The second task of the engine is to correct an IBI
under consideration marked as an error. Our meth-
ods use a set of rules. The rules are designed to em-
ulate how a human expert would manually grade the



Correction Description
Hardware trigger Replace value outside of al-

lowed hardware range
Split Missed heartbeat; divide

IBI into two equal values
Split 3 Two missed hearbeats; split

IBI into three equal values
Combine False trigger; add two IBIs

together
Combine 2 / Split 2 Replace two IBI values with

their average
Combine 2 / Split 3 Get three new IBI values as

average of two
Combine 3 / Split 3 Replace three IBI values

with their average
Physiological trigger Replace value outside of al-

lowed physiological range
Uncorrectable Could not apply any rule,

but IBI appears faulty

Table 1: Possible corrections applied by program.

IBI data. Each rule represents a possible error type.
The rules, in the order they are applied, are listed in
Table 1. For each rule, the correction is applied, and
the result is evaluated against the context of surround-
ing IBIs in the buffer. The order in which possibilities
are inspected is significant, as the first classification
that is accepted terminates the search process. In order
to be deemed an acceptable correction, the corrected
value must lie within some threshold of both the cur-
rent reference IBI and the IBI value following the set
of IBIs used for the correction. This threshold is gen-
erated in a manner identical to the threshold for de-
tection described in Equation 1. The actual values for
the multiplier, threshold minimum, and threshold max-
imum used for correction acceptance may differ from
the values used for detection. Like the values used in
the detection process, these were trained for optimal
performance as described in Section 2.3.

2.2 Data

Evaluation of our methods was based on IBI data gath-
ered from 18 healthy Clemson University students be-
tween the ages of 18 and 24. The subjects performed
a series of active motions that have a high probability
of inducing errors. Participants completed 2 sets of the
following tasks, each task lasting 2 minutes: punching
arms, jumping jacks, running in place, and crunches.
Between each task was a 1 minute rest period. Prior to
all these tasks was a 10 minute baseline, during which

the subject sat at rest, and a second 10 minute base-
line, in which a person engaged in reading and light sit-
ting activities. Following all the tasks was an 8 minute
cooldown period, where again the subject sat at rest.

Each subject repeated the set of tasks three times
using a different IBI detecting device each time. This
was done to test the variance in the percentage of IBI
errors produced by different devices. The devices were
the Polar S810 (Lake Success, NY), the Biolog 3991
(UFI Corp., Morro Bay, CA) with standard electrodes,
and the Biolog 3991 with fetrodes, a sensor patented
and sold by UFI.

The data were recorded for purposes of training our
method and evaluating its performance against two hu-
man evaluators. Although the data were analyzed from
stored recordings, it is important to note that the data
were processed by our methods as though they were
appearing during live, real-time operation. No advan-
tage was gained by operating on pre-recorded series of
data.

In all, 54 recordings containing 124,998 IBIs were
collected and evaluated by human graders. Two Clem-
son University graduates students were given training
on the correction of IBI data and asked to indepen-
dently inspect the data for errors. Their decisions were
combined into a single ground truth by accepting all
error detections the human graders agreed upon (even
if they did not necessarily agree upon the correction to
apply to the error). In total, the human graders agreed
that an IBI was either valid or in error on 119,346 IBIs.
Only those decisions for error detection that the hu-
man graders agreed upon were used to train our meth-
ods, and to evaluate the performance of our methods
on identifying actual error type.

2.3 Training

In order to achieve the best results, we used a por-
tion of the data set to train the adjustable parameters
introduced in Section 2.1 according to the train and
test paradigm. The parameters trained all deal with
the threshold generation process. As explained in Sec-
tion 2.1, the threshold for detecting an error is com-
puted anew for each IBI, and a second threshold is
computed for accepting the computed correction. Both
of these thresholds are limited to minimum and max-
imum values, which are constant while the engine is
running. Table 2 shows a summary of the seven vari-
ables controlling this process, along with the range of
values used for training.

Data from six of the 54 recordings were used for
training, providing 15,095 total IBI values. All these
IBIs were run through the engine with every possible



Parameter Possible values'
3, 5, 10, 15, 25

(*),+.-/+102- 1, 5, 10, 25, 50
min( ( ),+3-/+402- ) 10, 50, 70, 100, 150
max( (5),+.-/+402- ) 10, 50, 100, 150, 200
(*670303+�89- 1, 5, 10, 25, 50

min( ( 690303+�89- ) 10, 50, 70, 100, 150
max( (5690303+�89- ) 10, 50, 100, 150, 200

Table 2: Parameters trained for engine.

combination of parameter values listed in Table 2. For
each set of parameter values, we calculated the sum
of the IBI values that both humans and the computer
agreed were correct and those that all agreed were a
specific error. The maximum sum out of all possible��:

sets of parameter values was deemed the best result.
In deciding what range of values to search for

each parameter, we performed several combinatorial
searches similar to the one just described. We sought
a set of parameter ranges that had most of the largest
sums of IBI agreement in the middle of the 7D space,
instead of near the edges. The parameter ranges listed
in Table 2 are the final 7D space used to train our
method. The parameters in that particular 7D space
determined to give the best results were

' �;�
,(5),+.-/+402- �"�
�

, (=<.> � (*),+.-/+102- 	?�@�A�
, (CBED � (5),+.-/+402- 	F�G ���

, (5690303+�89- � G �
, (C<.> � (5690303+�89- 	H� �
�

, and(*B�D � (5690303+�89- 	I�J�K�A�
.

3 Results

In order to provide a ground truth for testing our meth-
ods, the human graders were first evaluated against
one another. As mentioned in Section 2.2, the human
graders agreed that an IBI was either correct or in er-
ror 119,346 out of 124,998 cases. We further broke
down the 119,346 agreed detection cases by the error
correction applied. Table 3 presents those results. The
percentage rate of agreement for each error type was
computed as

L BEM4N � OFPEQ N�NR5S (CBE> �I� RTS (*BE> G $ OUPVQ N�N (2)

where OUPVQ N�N is the number of values the hu-
man graders agreed upon for each correction type,R5S (CBE> � is the number of times the first human
grader used that correction type, and

R5S (*B�> G is the
number of times the second human grader used that
correction type.

Several important observations can be made from
the results of the human versus human comparison.
First, out of 124,998 original IBIs, the human graders
agreed on how to correct 119,346 total IBIs, or 95%
of the cases1. Out of these agreements, 113,291 IBIs
were agreed to be error-free, and 6,055 (5%) were
agreed to exhibit a specific error or be uncorrectable.
These numbers show a far higher percentage of er-
rors than have been previously reported in the litera-
ture, largely due to the active motions of our subjects.
Putting the disagreements together with those agreed
as having a specific error, we are faced with a data set
containing 10% errors. This suggests a strong need
for a reliable error detection and correction method if
HRV is to be successfully used in an automated fash-
ion on active subjects.

Another important observation from Table 3 is
which error correction types dominated the decisions
made by the human graders. Excluding normal IBIs,
the most common decision was to label an IBI or se-
quence of IBIs as uncorrectable. This was followed
by the combine and split correction and then by the
split correction. For erroneous IBIs that the human
graders agreed upon, these three corrections made up
89% of the total corrections. Several of the corrections
were used an insignificant portion of the time. Com-
bine 3, delete, replace, and replace N were all used
on less than 0.1% of the total data set, and combine
3 and delete were never agreed upon by the human
graders. These results suggest that an automated cor-
rection method does not need a large set of options to
determine how to correct an error.

Another important observation from Table 3 is that
the agreement rate between the human graders was rel-
atively low when deciding upon what correction to ap-
ply. While they were able to agree if an IBI was correct
96% of the time (correction type is “do nothing”), the
best rate of agreement for choosing a correction to ap-
ply was the split correction at 77%. There is a rapid
fall off in the rate of agreement after this, with only
2 of the other 12 possible corrections having a rate of
agreement over 50%. The low agreement rates imply
that the problem is difficult, and suggests that correc-
tive measures should err more on the side of caution;
if the correct data stream is not obvious, then the area
should be marked as uncorrectable.

The 119,346 IBIs for which the human graders
agreed upon a correction were used to analyze the per-
formance of our automated method. Table 4 shows

1We stressed to the human graders to make every possible at-
tempt to correct an IBI, before labeling it as uncorrectable, because
we wanted to correct as many as possible. This likely led to the low
95% agreement rate.



Correction Human 1 Human 2 Agree Percent
Type (# of IBIs) (# of IBIs) (# of IBIs) Agreement

Nothing 115843 115015 113291 96%
Combine 268 175 162 58%

Combine 3 0 0 0 –
Split 1488 1390 1256 77%

Split 3 253 266 195 60%
Delete 2 11 0 0%

Replace 54 63 4 4%
Uncorrectable 3510 5258 2790 47%

Combine and Split 2653 2099 1370 41%
Combine 3 / Split 2 319 165 102 27%
Combine 2 / Split 3 301 313 104 20%
Combine 3 / Split 3 275 223 69 16%

Replace N 32 20 3 6%

Table 3: Human vs human agreement rates by correction type.

our method’s performance at classification for these
data. In this table our method is labeled “computer”.
Overall, our method agreed with the human graders
in 114,761 out of 119,396 IBIs, or 96% of the cases.
Breaking that down, out of 113,291 IBIs where the
humans agreed the IBI was not in need of correc-
tion, our method applied some correction in

���K�XW G�Y � $�A���AW[Z G �\�]��W1^`_V�
cases, or

�AWa^V_`��bV���K�cW G�Y �d�e�Xf �X�hg
cases. Out of the remaining 6,055 IBIs where the
humans agreed on the error correction, our method
identified the same correction in 2,941 (49%) cases.
These numbers show a very low false alarm rate for
our method (0.01%) but that there is a great deal of
improvement possible in correcting errors.

Additional analysis of our results may be found in
[11].

4 Conclusions

This paper presents a method for the automatic cor-
rection of IBI data. This automated method was eval-
uated against a pair of human graders using 124,998
IBIs, about 5% of which the human graders did not
agree upon, and about 5% of which the human graders
agreed upon a specific error correction. The results
show a 96% overall agreement rate for IBIs on which
the human graders themselves agreed. The automated
method identified the same correction as the humans
on 49% of the erroneous IBIs, with a 0.01% false alarm
rate, on this challenging data set. These rates are cer-
tainly not high enough for use in sensitive clinical stud-
ies, but we believe they are a step in the right direction
for use in automated, high activity tasks.

This study adds to the body of literature on the au-
tomated correction of heart interbeat intervals. In par-
ticular, this is the only study we are aware of that at-
tempts to automatically correct heavily corrupted real
IBI data. Our methods work on the data as it is ac-
quired, so it is available for real-time feedback; this
could find use in research problems where an offline
correction process is not feasible. One improvement
that could be made to our methods would be to eval-
uate subsequences of IBIs as groups. Currently, al-
though our methods use neighboring IBIs for context,
each IBI is still evaluated individually. Evaluating
a neighborhood of IBIs might be particularly helpful
when processing an uncorrectable area. Further study
is required.
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