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ABSTRACT
Advances in body sensing and mobile health technology have
created new opportunities for empowering people to take a
more active role in managing their health. Measurements of
dietary intake are commonly used for the study and treat-
ment of obesity. However, the most widely used tools rely
upon self-report and require considerable manual effort, lead-
ing to underreporting of consumption, non-compliance, and
discontinued use over the long term. We are investigat-
ing the use of wrist-worn accelerometers and gyroscopes to
automatically recognize eating gestures. In order to im-
prove recognition accuracy, we studied the sequential de-
pendency of actions during eating. Using a set of four ac-
tions (rest, utensiling, bite, drink), we developed a hidden
Markov model (HMM) and compared its recognition perfor-
mance against a non-sequential classifier (KNN). Tested on a
dataset of 20 meals, the KNN achieved 71.7% accuracy while
the HMM achieved 84.3% accuracy, showing that knowledge
of the sequential nature of activities during eating improves
recognition accuracy.

Categories and Subject Descriptors
I.5 [Computing Methodologies]: Pattern recognition

General Terms
Algorithms, Experimentation, Performance

Keywords
Hidden Markov models, gesture recognition, mobile health

1. INTRODUCTION
Advances in body sensing and mobile health technology

have created new opportunities for empowering people to
take a more active role in managing their health [11]. Obe-
sity, which now afflicts one in three adults and one in six
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children in the United States [9, 14], has been recognized as
a major health problem that could particularly benefit from
this approach [8, 12, 24]. Self-monitoring of body weight,
physical activity, and dietary intake have been consistently
found to be associated with successful weight loss and main-
tenance [4]. Self-monitoring of dietary intake has specifically
been described as “the single most important ingredient to
successful dietary change efforts” [13]. However, currently
used tools, including food diaries and 24 hour recalls, re-
quire users to manually estimate and record energy intake,
making them prone to error and difficult to use for long
periods of time [23].

Previous work done by our research group studied the
tracking of wrist motion as it relates to eating [5, 6]. A
method was developed to detect a pattern of wrist motion
associated with the action of taking a bite, defined as placing
food or liquid into the mouth [7]. The method was shown
to be accurate across a wide variety of foods, counting bites
with a true positive rate of 86% and a positive predictive
value of 82% [7]. Additional research showed that bites,
automatically counted using this method, correlated with
self-reported caloric intake at the meal level at 0.53 [19].
This paper describes work that builds upon this approach.
The original method treated all bites the same, regardless
of context, and used a single pattern for detection. The
proposed idea in this work is to study temporal sequencing
as it relates to eating activities. Specifically, we seek to
determine if the recognition of previous activities can be
used to improve the recognition of subsequent activities.

Figure 1 demonstrates the idea, comparing our approach
to speech recognition. The recognition of each piece of signal
can be undertaken independently, in order to determine the
word. However, if the recognition results from the previous
pieces of signal are known, this can constrain and improve
the subsequent recognition of the next piece of signal. In
this example, the recognition of the piece of signal labeled
“?” can be improved by using the recognition results of the
previous pieces of signal (“Hello”“how”“are”). In this exam-
ple, it may be highly expected that the next piece of signal
encodes the word “you”. We are pursuing the same idea
with respect to recognizing eating activities. Our signal is
obtained using accelerometers and gyroscopes to track wrist
motion. The recognition of a piece of signal can be done in-
dependently, or can be augmented using recognition results
from previous pieces of the signal. Figure 2 shows an ex-
ample. If the actions “inactive” and “manipulate food” have
previously been recognized, then it may be highly expected
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Figure 1: Speech recognition.

780 785 790 795 800
1

1.1

1.2

1.3

V
ol

ta
ge

Time (sec)

Inactive
Manipulating

food "?"

Figure 2: Eating activity recognition.

that the next action is “take a bite”.

2. METHODS

2.1 Data
The data used for this study was recorded in the Har-

combe Dining Hall at Clemson University [18]. The facility
seats up to 800 guests and provides a wide range of foods
and beverages. Our group instrumented a space inside the
dining hall to record data from four participants simulta-
neously. Four digital video cameras in the ceiling (approx-
imately 5 meters height) were used to record each partici-
pant’s mouth, torso, and tray during meal consumption. A
custom wrist-worn device containing MEMS acelerometers
and gyroscopes [20, 21, 22] was used to record the wrist mo-
tion of each participant at 15 Hz. A scale was located under
each participant’s tray to monitor food weight during eat-
ing. Data was collected from 273 eaters. For the work in
this paper, 20 of these meals were chosen randomly.
Accelerometer data (AccX, AccY, AccZ) and gyroscope

data (Yaw, Pitch, Roll) were smoothed using a Gaussian-
weighted window defined by equation 1. Here Rt is the raw
data and St is the smoothed data at time t. For the sensors
we used, the best results were obtained using N = 15 (1

second) and with σ2 = 10.

St =

0∑
i=−N

Rt+i

exp
(

−t2

2σ2

)

N∑
x=0

exp
(

−(x−N)2

2σ2

) (1)

2.2 Language
The problem of eating activity recognition requires the

definition of a set of “words” that describe the individual
activities. We base our definitions on discernible user intent.
The subject’s intent is determined by observing the hand
wearing the device. The duration of an action lasts from
when the intent can first be observed, to when that intent
has ended. For this work we define four actions related to
eating: rest, utensiling, bite, and drink. All other actions
for which intent was not defined, including both eating and
non-eating activities (e.g. gesturing while talking, cleaning
with a napkin, waving at a friend, etc.) are referred to as
other. We developed a definition for each word consisting
of four parts: 1) a description of the activity, 2) the start
time of the activity, 3) the end time of the activity, and 4)
particular events that should be included or excluded from
the word label. The following lists the definitions we used:

• Bite

1. The subject puts food into their mouth.

2. Begins when a hand or utensil starts moving to-
wards the mouth.

3. Ends when the hand or utensil finishes moving
away from the mouth

4. If a bite is interrupted, the word starts after the
interruption, when motion towards the mouth re-
sumes. Bites need not begin and end at the plate.
Motion towards and away from the mouth should
define the boundaries; with food intake taking
place in between.

• Rest

1. The subject’s dominant hand has little or no mo-
tion.

2. Begins when subject’s hand stop moving.

3. Ends when subject’s hand begins moving again
(and moves for at least one second)

4. A rest may include brief periods of motion (less
than one second) such as posture adjustments.
Rests should not include motions with other in-
tent, whether eating related or not (such as ges-
turing while talking, cleaning with a napkin, or
waving to a friend).

• Utensiling

1. The subject uses a utensil or their hand to manip-
ulate, stir, mix or prepare food(s) for consump-
tion.

2. Starts when utensil or hand moves towards food
with intent to manipulate.

3. Ends when manipulating has finished.

4. Examples include moving food around the plate,
dipping foods in sauces, and cutting foods.
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Figure 3: Labeling software.

• Drink

1. The subject puts beverage into their mouth.

2. Starts when a hand begins moving a beverage to-
wards the mouth.

3. Ends when the hand has finished moving away
from the mouth.

4. If multiple sips are taken, each individual sip de-
fines a different drink.

2.2.1 Ground truth
A custom tool was developed for reviewing the recorded

data to label segments with the word defintions. These hand
labels were used as ground truth to evaluate classifier perfor-
mance. The tool was coded using Microoft Visual C. Video
and sensor information are synchronized and displayed as
shown in figure 3. Time navigation is done using the key-
board to move forwards, backwards, play and pause. La-
beling was done manually by looking at the intent of the
instrumented hand of the eater in the video. A word could
be labeled by enclosing it within a box using specific keys
in the keyboard. A completed label is marked by a color
box and a legend on top of the box to discriminate between
labels as shown in the bottom of figure 3.

2.2.2 Other words
After ground truthing there will be periods of unlabeled

time between words due to the transitioning from one word
to another (e.g. utensiling to bite). We refer to these as
“gaps”. Because our sampling rate is 15Hz, some of these
gaps could be as small as 67ms. We do not consider these
gaps to be the same as larger sections of unlabeled data that
correspond to other activities. We therefore devised a strat-
egy to remove them from consideration. Figure 4 shows the
distribution of unlabeled sections of data from the 20 meals
for periods of up to 15 sec. The figure shows a knee in the
curve at 4 sec (dashed line) which we used to indicate where
the true distribution for other unlabeled activities overlaps
the gap distribution. Based on this analysis, we discarded
unlabeled sections of data that were less than 4 seconds, and
labeled sections longer than 4 seconds using the word other.
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Figure 4: Histogram of unlabeled sections.

Table 1: Total words and time after removing gaps.

Word Total Count Total Time (min)
Rest 552 69.0
Utensiling 541 64.5
Bite 854 47.4
Drink 125 16.2
Other 225 29.8

Total 2297 226.8

Table 1 shows the final count of all 5 words, and total time
for each word, for the 20 meals. A total of 86.9% of the
data was labeled using our 4 word language and 13.1% was
considered other activities.

2.2.3 Inter-rater reliability
In order to determine the stability of our definitions and

ground truthing process, three meals were chosen randomly
and labeled independently by five raters. A “meta” ground
truth was created for each meal by taking the majority vote
of the five raters for every unit time (67 msec, from the
15Hz rate of recording). Figure 5 shows the process graph-
ically. The meta GT is calculated independently for every
time unit. If all individual rater labels are different then the
meta GT is left unlabeled. The complete labelings of each
rater and the meta GT are shown for all 3 meals in figure 6.
Visually it can be seen that raters agreed fairly consistently.

To evaluate agreement quantitatively, individual rater la-
belings were compared against the meta GT. The compar-
ison was done by evaluating if each unit of time of a rater’
sequence is labeled identically to that of the meta GT. All
individual unit times which are labeled the same represent
the total time of agreement. The process was repeated for
all raters within a meal and the average of total agreement
time was computed. The results from each meal were com-
bined to show that the average inter-rater agreement across
the three meals was 90.7%. Table 2 shows the confusion ma-
trix.Diagonal entries indicate how often the raters labeled a
unit of time with the same label as the meta GT, and can be
interpreted as total agreement. Off-diagonal entries indicate
how often the raters labeled a unit of time differently from
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Figure 6: Meta ground truth from multiple raters.
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Figure 5: Creating meta ground truth from 5 inde-
pendent raters.

Table 2: Inter-rater confusion matrix (units are %
time during 3 meals). Diagonal elements are agree-
ment; off-diagonal elements are confusion.

Words Rest Utensiling Bite Drink Other
Rest 13.1 0.2 0.1 0.2 2.9
Utensiling 20.0 0.5 0.0 2.4
Bite 8.2 0.0 1.0
Drink 4.0 0.5
Other 38.9

the meta GT, and can be considered confusion. As the table
shows, the largest amount of confusion was with the word
other, which is to be expected given it is a catch-all term for
all undefined activities.

2.3 Classification

2.3.1 Hidden Markov model
Hidden Markov models (HMMs) are particularly well-suited

for classification problems having temporal data dependence
[3, 15]. We designed an ergodic HMM to model the sequen-
tial nature of eating activity words as shown in figure 7.
Specifically, the HMM is composed of five states which are
rest, utensiling, bite, drink, and other. To train the HMM,
we used the data from the 20 meals to compute transition
and prior probabilities. Transition probabilities are calcu-
lated as shown in equation 2 as a ratio of the total num-
ber of transitions going from word si to word sj , where
i, j = 1, 2, 3, 4, 5. Prior probabilities are calculated as the
ratio of the total number of word si over the total number
of word samples in the data base as described in equation
3. The values we found for the transition probabilities and
prior probabilities are shown in tables 3 and 4, respectively.

Table 3: Transition probabilities.
�������From

To
Rest Utensiling Bite Drink Other

Rest 0.089 0.290 0.397 0.083 0.140
Utensiling 0.172 0.006 0.786 0.015 0.022

Bite 0.347 0.335 0.169 0.026 0.214
Drink 0.224 0.232 0.200 0.112 0.232
Other 0.382 0.276 0.182 0.156 0.004

Figure 7: HMM (prior and transition probabilities
given in tables).

Table 4: Prior probabilities.
Word Probability

Rest 0.240
Utensiling 0.236
Bite 0.372
Drink 0.054
Other 0.098

aij =
Total # of transitions from word si to word sj

Total # of transitions from word si
(2)

πi =
Total # of word si
Total # of words

(3)

Words can be modeled as continuous observations using
Gaussian mixture models through the EM algorithm [17].
The Gaussian mixture model for word si is given by equation
4, where csik , μsik , and Σsik , represent the mixture weight,
the mean, and the covariance matrix of the kth Gaussian,
respectively. We calculated these models using the HMM
toolbox in MATLAB1. The number of Gaussians M chosen
is discussed below in section 2.4 during feature selection.

Gsi = {csik , μsik ,Σsik} , where k = 1, ...,M (4)

2.3.2 K-nearest neighbor
For comparison with a technique that does not account for

temporal dependency, we classified the data using a KNN
classifier [16]. A KNN assumes that the data is in a feature
space, or metric space, which has a notion of distance. Each
vector in the training data is associated with a class label.
The process of classification places an unlabeled sample x
in the feature space among the previously labeled samples,

1http://www.cs.ubc.ca/ murphyk/Software/HMM/hmm.html
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and uses an exhaustive computation of distances between x
and all labeled samples. The classification searches for the
K closest labeled samples to x. The number of occurrences
of each label are calculated among the K closest samples.
The highest label occurrence is then assigned as the label
of the unlabeled sample x. A Euclidean distance (equation
5) is used for classification, where x is the test sample and
y is a training sample. In this work the optimal number of
neighbors K is estimated in the feature selection section (see
next).

DE(x, y) =

√√√√
d∑

j=1

(xj − yj)2 (5)

2.4 Feature and model parameter selection
The wrist-worn device provides six analog signals from

the accelerometer (AccX, AccY, AccZ) and gyroscope (Yaw,
Pitch, Roll) sensors which are used to compute features.
Features were calculated for each word using the manually
segmented data from the 20 meals. We were uncertain which
features would be most descriptive of the chosen words, and
so calculated a large number of features. A total of 29 fea-
tures were calculated for each of the 6 sensors, yielding 174
features. We also calculated correlations for all possible com-
binations of the 6 sensors. Lastly, the duration of a manually
segmented word was used as a feature. Collectively, this re-
sulted in a total of 190 features. This feature vector was
reduced to a reasonable count of those most useful for clas-
sification using a feature forward selection method. This is
an iterative process in which the data is trained and tested
on different subsets of the feature space, selecting the best
feature set at each iteration. The strategy then was to do a
forward feature selection using the entire available data as
training and test data to accomplish two purposes: 1) select
the model order for the sequential and non-sequential classi-
fier, and 2) build a feature vector with a smaller dimension.
For the HMM a forward feature selection was done by

training the data as continuous observations using Gaussian
mixture order models of M = 1 to M = 9. Figure 8 shows
the result after training for each model order up to a feature
vector candidate of dimension 30. It can be noticed that
after M = 3, higher orders model tend to produce similar
results, and although there are slight increases in accuracy
as M grows, this is likely a consequence of overfiting the
data with more Gaussians. We therefore selected a model
order of M = 3. It can also be seen that after a feature size
of 15, the accuracy tends to be fairly similar. We therefore
selected a 15 element feature vector. Table 5 shows the list
of features for the HMM.
This process was repeated for the KNN classifier. A for-

ward feature selection was done using the 190 features for
K = 1, 3, 5, 7, 9, 11, 13, 15 neighbors. The data was split in
two halves, i.e., 10 meals for training and 10 meals for test-
ing. Figure 9 shows the accuracy of feature vector candidates
up to 30 elements. From the graph it can be seen that after
K = 5 accuracy tends to be concentrated for higher values
of K, indicating that 5 neighbors are sufficient. It can also
be seen that after a feature vector of size 20, accuracy rises
abruptly, and we can see this rise appear sooner for higher
values of K. We believe this is a result of overfitting, and so
selected a feature vector of size 15. Table 6 shows the list of
features for the KNN test.
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Figure 8: HMM forward feature selection.

Table 5: HMM features.
No. HMM Features
1 Interquartile range of Roll
2 Difference mean of absolute value (MAV) of Roll
3 Standard deviation of Yaw
4 Root mean square (RMS) of AccZ
5 Skewness of AccY
6 Zero crossings (ZC) of Roll
7 Max time between ZC of AccY
8 Skewness of AccZ
9 Mean of Roll
10 Difference MAV of AccY
11 Median time between ZC of AccZ
12 Max time between ZC of Yaw
13 Correlation(AccX,Yaw)
14 Correlation(Pitch,Roll)
15 Difference MAV of Pitch

3. RESULTS
For the HMM, recognition of words was done for an ob-

servation sequence by obtaining the state sequences through
Viterbi decoding. The estimated state sequence was then
compared against the true state to determine the accuracy.
For the KNN, a simple Euclidean distance was computed
from a given test sample to each training sample. All the
data was evaluated using 10-fold cross validation, where 18
meals were used to train the classifiers for testing on the
other 2 meals. The KNN achieved an accuracy of 71.7%
while the HMM achieved an accuracy of 84.3%. Figure 10
shows the improvement of the HMM over the KNN for each
of the words. The overall improvement using sequential con-
text information is approximately 13%.

4. CONCLUSIONS
Amft and colleagues pioneered the idea of recognizing eat-

ing activities using body-worn sensors [1, 2, 10] and used
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Figure 9: KNN forward feature selection.

Table 6: KNN features.
No. KNN Features
1 Interquartile range of Yaw
2 Ratio RMS to MAV of AccZ
3 Difference MAV of Roll
4 Variance of Yaw
5 Ratio RMS to MAV of AccY
6 Variance of Roll
7 Difference MAV of Yaw
8 Ratio RMS to MAV of Roll
9 Ratio RMS to MAV of Pitch
10 Ratio RMS to MAV of Yaw
11 Difference MAV of AccY
12 Variance of Pitch
13 Difference MAV of Pitch
14 Ratio RMS to MAV of AccX
15 Standard deviation of Yaw

HMMs as classifiers. However, to our knowledge, our work
is the first to study the significance of temporal sequencing
of actions during eating. In this paper, four eating activities
were defined and an other category is considered to model
all activities which do not belong to our four main eating ac-
tivities. To this point the study has been developed at the
meal level, therefore sequential dependency of other daily
activities are not included. Inter-rater reliability was found
to be 90.7% showing that our definitions are fairly objec-
tive. Although four words is a fairly limited set, we found
that they comprised on average 86.9% of the time during a
meal. A confusion matrix shows that the greatest ambiguity
resides in the remaining 9.3% of other activities, suggesting
that additional words may be useful (e.g. cleaning hand
or mouth with napkin). The comparison of an HMM and
KNN classifier on our data showed an approximately 13%
improvement using the HMM, showing that the temporal
context of the preceding action improves recognition accu-
racy. Future work will seek to determine if a more complex
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Figure 10: Results.

HMM further increases accuracy, by modeling temporal con-
text across multiple word sequences and by increasing the
vocabulary. Our method could also prove useful for analyz-
ing an individual’s eating habits. For example, obesity has
been treated using behavioral change methods. Thus, it is
plausible that an HMM trained to an individual could show
habits that affect the individual’s eating behavior and help
the individual to correct bad habits. It is envisioned that
our work will provide a tool that estimates energy intake
automatically. Thus, by analyzing eating patterns, it could
be possible to determine the type of food that the individual
is consuming and adjust the prediction of energy intake.
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