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Abstract—This paper considers the problems of recognizing
eating gestures by tracking wrist motion. Hidden Markov models
(HMMs) were developed to capture variations in motion pat-
terns of subgroups of participants. Specifically, we examined if
foreknowledge of the gender, age, and utensil used for eating
could improve recognition accuracy. Improvement in accuracy
was measured by comparing to a baseline HMM that was trained
on all participants. Data was collected for 276 participants
eating a single meal within a cafeteria setting. A total of 44,873
gestures were manually labeled using video synchronized with the
wrist motion tracking device. Results show that gender HMMs
performed slightly better than the baseline, indicating that there
is not much difference in wrist motion patterns during eating
between females and males. Age HMMs provided a 4.3% increase
in accuracy and utensil HMMs provided a 6.2% increase in
accuracy. The results suggest that contextual variables can be
used for improving gesture recognition.

I. INTRODUCTION

Mobile health (mHealth) technologies can help people

monitor body status and track behaviours to empower self-

management of health conditions [1]. The problem considered

in this work is the monitoring of energy intake, a measure of

the amount of food and drink ingested [2]. The motivating

health problem is obesity. In the U.S., 17% of children and

more than 30% of adults are considered obese [1]. Self-

monitoring of energy intake has been found to significantly

correlate with weight loss [3]. Additional evidence shows that

for obese adults, self-monitoring of energy intake improves

the outcome for maintaining weight loss [4]. Conventional

methods for self-monitoring include manual entry of self-

reported intake into food diaries and 24-hour recalls [5],

[6]. However, these methods are prone to under-reporting

and under-estimation and are tedius to use resulting in non-

compliance over the long term.
Wearable sensors offer the opportunity for automatic mon-

itoring of energy intake [7], [8]. Several positions on the

human body can be instrumented to detect activities asso-

ciated with eating [7]. The ear can be instrumented with a

microphone to detect sounds associated with chewing [9]–

[13]. The jaw can be instrumented with a strain sensor to

detect jaw motions associated with chewing [14]–[16]. The

throat can be instrumented with a microphone to detect sounds

associated with swallowing [8], [15], [17]–[19]. The arms can

be instrumented with motion sensors to detect patterns of limb

motion associated with activities during eating, such as the

use of cutlery and hand-to-mouth gestures [20]–[22]. In a

simpler configuration, the wrist alone can be instrumented with

motion sensors to detect patterns of wrist motion associated

with eating [9], [23]–[26].

Our research group has been investigating methods based

upon wrist motion tracking [24], [25]. In [24] we describe

a pattern of motion indicative of hand-to-mouth gestures and

an algorithm to detect and count their occurrences, which we

call bite counting. In [25] we describe methods using hidden

Markov models (HMMs) to detect five different types of

gestures (food bite, drink bite, utensiling, rest, and other), and

an algorithm that improves their recognition through gesture-

to-gesture sequential modeling. In this work, we investigate

whether contextual variables can improve the recognition of

these gesture types. Specifically, we consider if foreknowledge

of the gender of the subject, the age of the subject, and the type

of utensil being used can improve recognition accuracy. We

investigate this hypothesis by building HMMs trained for each

of these contextual variables, and comparing their recognition

accuracy against a baseline HMM having no foreknowledge.

II. METHODS

A. Data

Data was collected for 276 subjects eating a single meal

in the Harcombe Dining Hall at Clemson University [27].

Participants were free to choose any foods and beverages

available. In total, 380 different food and beverage types

were chosen, for example stir fry vegetables, pasta, shoestring

French fries, salad bar, water, soda, etc. Four different utensils

were used: fork, spoon, chopsticks and hand. Tables I-II list

the gender and age distributions of participants that were tested

as contextual variables in this work.

Digital cameras were mounted on the ceiling to video record

participants while they ate. A custom device was designed to

record the wrist motion of subjects at 15 Hz during eating,

using accelerometers to measure acceleration of x, y and z axis

(AccX, AccY, AccZ), and gyroscopes to measure rotational

velocity around yaw, pitch and roll [28]. In previous work

our group defined a set of five gesture types (rest, utensiling,

2015 IEEE First Conference on Connected Health: Applications, Systems and Engineering Technologies

978-1-5090-0943-5/16 $25.00 © 2016 IEEE

DOI 10.1109/CHASE.2016.9

248

2016 IEEE First Conference on Connected Health: Applications, Systems and Engineering Technologies

978-1-5090-0943-5/16 $25.00 © 2016 IEEE

DOI 10.1109/CHASE.2016.9

248



Figure 1. A custom program for gesture labeling.

bite, drink, and other) based on subject intent that could be

visually determined by observing the video [29]. A custom

tool was developed for labeling periods of time as gestures.

Figure 1 shows a screenshot of this tool. Top to bottom shows

the 6 axes of motion (AccX, AccY, AccZ, yaw, pitch and

roll) with a seventh line at the bottom indicating tray weight

as measured from a table embedded scale (not used in this

work). Boxes overlaid over this seventh line indicate periods

of time labeled as gestures (for example, red = bite). Unlabeled

segments with duration longer than 4 seconds are considered

as type other, unlabeled segments shorter than 4 seconds are

considered transitions between gestures and are ignored [29].

Gender #Participants

Male 96

Female 119

Table I: Gender distribution of participants.

Age #Participants

18-30 152

31-40 18

41-50 26

51-75 19

Table II: Age distribution of participants.

Prior to processing, each of the 6 axes of data is smoothed

using a Gaussian weighted window as shown in equation 1,

where Rt and St are the raw data and smoothed data at time t,

respectively. We use N = 15 and σ2 = 10 for best performance

[28].

St =

0∑
i=−N

Rt+i

exp
(

−t2

2σ2

)
N∑

x=0
exp

(
− (x−N)2

2σ2

) (1)

Due to the work-intensive nature of this labeling process,

in previous work a subset of data from 25 participants was

used [29]. At the time of this writing, a team of 22 raters

has contributed to labeling the full data set and has so far

completed 215 participants in approximately 500 man-hours

of work.

B. Baseline HMMs

To evaluate the performance of our method, we imple-

mented a baseline classifier which was designed in our previ-

ous research [29], [30]. This classifier models a gesture as a

sequence of sub-gestures with each sub-gesture represented by

a state within the HMM. For example, the action of taking a

bite may consist of raising food towards the mouth, ingestion,

and the return of the wrist to a rest position. This sequence of

actions is modeled through a state sequence where each state

models part of the motion pattern.

Features are calculated using a 0.5 second sliding window

with 50% overlap for each sub-gesture. Figure 2 illustrates the

process, where the shaded area is the 50% overlap between the

first and second window positions. Within each window we

calculate the following features: average, standard deviation

and slope for each of the six motion axes (AccX, AccY,

AccZ, yaw, pitch and roll). Equations 2-4 provide the formal

definitions where w is the window size (for our data, 0.5 sec

= 8 samples).
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Figure 2. Example yaw motion of sub-gestures for bite.

slope = (xend − xbegin)/w (2)

mean =
w∑

i=1

xi/w (3)

std =

w∑
i=1

(xi − x̄)2

w − 1 (4)

In total this provides 18 features comprising an observable fea-

ture vector [o1, o2, o3, ..., o18]. The number of feature vectors

for a gesture depends upon its length in time; for example,

the bite depicted in Figure 2 lasted 2 seconds and therefore

provides a sequence of 7 observation vectors. Each vector

is standardized as zero-mean and unit-variance as shown in

Equation 5, where O is the original feature vector, Ō is the

mean of the feature vector, and σ is its standard deviation.

O′ =
O − Ō
σ

(5)

Emission probabilities were modeled by Gaussian mixture

models (GMMs) as in Equation 6, where E is the emission

probability distribution, O is the d-dimensional feature vector

and M is the number of Gaussians in the model.

E =
M∑
i=1

ciN(O;μi,Σi) where
∑

ci = 1. (6)

Each Gaussian N is defined by three parameters ci, μi, and Σi

representing the weight, mean vector and covariance matrix of

the ith Gaussian, respectively:

N(O;μi,Σi) =
1

(2π)d/2|Σ|1/2
exp(−1

2
(O − μ)TΣ−1(O − μ))

(7)

The expectation maximization algorithm was used to calculate

GMMs having diagonal matrices [31], [32]. HMMs were built

for each gesture type (rest, utensiling, bite, drink and other)

using an HMM toolbox [33]. The architecture for each HMM

is left-to-right with skip as shown in Figure 3. Each HMM used

13 states with 5 Gaussians which was determined in previous

work to be sufficient to capture the variation in motion patterns

[29].

������� ������� ������� �������

Figure 3. HMM architecture of left-to-right with skip.

During the recognition process, each HMM outputs a log

probability of a sequence of observations. The recognition

problem can be viewed as evaluating how well each HMM

matches the observable sequence of a gesture, where a higher

probability indicates a better match. Therefore, the HMM

which provides the maximum log probability determines the

classification of the gesture. Figure 4 demonstrates the process.

where the observable sequence O is a series of feature vectors

in one single gesture, and the highest log probability output

by the five HMMs determines the classification.

rest HMM

other HMM

bite HMM

utensiling 

HMM

drink HMM
observable sequences

in one gesture (O)

Viterbi

Algorithm

Viterbi

Algorithm

Viterbi

Algorithm

Viterbi

Algorithm

Viterbi

Algorithm

log(P(O|rest HMM))

log(P(O|utensiling HMM))

log(P(O|bite HMM))

log(P(O|drink HMM))

log(P(O|other HMM))

gesture classification

argmax{logP}

Figure 4. Baseline HMM gesture recognition.

C. Context Dependent HMMs

Three contextual variables were studied in this work to

determine if they provide increased recognition accuracy com-

pared to the baseline classifier. Each was tested independently.

1) Gender HMMs: HMMs were trained independently for

females and males using the same steps described for the

baseline classifier. This yielded 10 total HMMs (2 genders ×
5 gesture types). During the recognition process, it is assumed

that the gender of the participant is known a priori and thus can

be used to determine which set of HMMs to use to recognize

gestures. Figure 5 shows the process. After selecting gender,

the remainder of the process works as outlined in Figure 4.
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Female HMMs

 rest 

HMM

 bite 

HMM

 drink 

HMM

 other 

HMM

Male HMMs

 rest 

HMM
 
utensiling

HMM

 bite 

HMM

 drink 

HMM

 other 

HMM

segmented data in one gesture

gender ?
female male

utensiling

HMM 

Figure 5. Gender HMMs gesture recognition.

2) Age HMMs: HMMs were trained independently for each

age category listed in table II. This yielded 20 total HMMS (4

age groups × 5 gesture types). During the recognition process,

it is assumed that the age of the participant is known a priori

and thus can be used to determine which set of HMMs to

use to recognize gestures. This selection process is similar to

the one outlined in Figure 5. After selecting age group, the

remainder of the process works as outlined in Figure 4.

3) Utensil HMMs: Four utensil types were available in our

data set: fork, spoon, hands and chopsticks. However, utensil

use is not necessarily unique throughout an entire meal. For

example, a participant may use a fork for some bites and hands

for other bites. Therefore, we defined a fifth category as mixed

utensil use. If no single utensil type was used for more than

65% of bite gestures by a participant, then their utensil type

was considered mixed. Table III lists the totals.

Utensil #Participants

fork 103

spoon 36

hands 85

chopsticks 4

mixed 90

Table III: Utensil distribution of participants.

This yielded 25 total HMMS (5 utensil types × 5 gesture

types). During the recognition process, it is assumed that the

utensil type of the participant is known a priori and thus can

be used to determine which set of HMMs to use to recognize

gestures. This selection process is similar to the one outlined

in Figure 5. After selecting utensil type, the remainder of the

process works as outlined in Figure 4.

4) Evaluation Metric: The accuracy of each classifier was

evaluated as the total percentage of gestures that were labeled

correctly in all data. Accuracy by gesture type is also reported.

III. RESULTS

The total data set consists of 44,873 manually labeled

gestures. All classifiers were trained and tested using leave-

one-out cross validation; for each participant, the HMMs were

trained on the data for all other participants and then tested

on the one left out. Due to the Monte Carlo nature of HMM

training, each classifier was run 10 times and the average is

reported. An example of a classifier output is shown in Figure

6. The upper row of gestures are ground truth and the bottom

row are the classification results from the utensil HMMs. In

this figure, it can be seen that the utensil HMMs misclassified

one gesture of other as utensiling. This is likely because both

utensiling and other gestures cover a wide range of possible

motion patterns.

Figure 6. Example output and evaluation. The top row of boxes is ground
truth labels of gestures and the bottom is classifier labels of gestures. Aqua
= drink, red = bite, orange = utensiling, grey = other and black = rest.

Table IV presents the overall accuracy of the different

classifiers. The accuracy of the baseline HMM is 77.8%. Our

gender HMMs show slightly higher accuracy than baseline

HMMs. We conclude that there is not much difference in wrist

motion patterns during eating between females and males. Our

age HMMs provided 4.3% accuracy higher than the baseline.

This is further explored in table V, where it can be seen that

accuracy is much lower for the age group 18-30 compared

to all the older age groups. This suggests a larger variability

in motion patterns in younger people. Finally, our utensil

HMMs provided 6.2% higher accuracy than the baseline. This

indicates that eating gestures with the same utensil share more

similar gesture patterns across participants. Table VI explores

this further, listing the accuracy for each utensil type. It can be

seen that gestures while eating with chopsticks are recognized

with very high accuracy, while hand and mixed utensil eating

provides the greatest challenge to recognition.

Table VII shows the recognition result of each gesture by

the different classifiers. The improvement provided by each
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Classifier Accuracy

(HMMs) (%)

Baseline, generic HMM 77.8

Context, gender included 78.7

Context, age included 82.1

Context, utensil included 84.0

Table IV: Overall recognition accuracy.

Age group Accuracy (%)

[18, 30] 79.0
[31, 40] 90.3

[41, 50] 89.3

[51, 75] 88.7

Table V: Recognition accuracy of age HMMs.

Utensil Accuracy (%)

Fork 83.5

Spoon 87.5

Hand 82.2

Chopsticks 99.2

Mix-utensils 82.2

Table VI: Recognition accuracy of utensil HMMs.

Classifier Rest Utensiling Bite Drink Other

(HMMs) (%) (%) (%) (%) (%)

Baseline 80.0 79.9 81.4 94.3 54.5

Gender 80.7 81.2 83.0 94.5 54.9

Age 82.5 83.3 87.3 95.6 77.2

Utensil 82.9 85.2 87.8 98.8 68.1

Table VII: Recognition accuracy for five gestures.

contextual variable for each gesture type ranged from 0.2%-

22.7%.

IV. CONCLUSION

This paper considers the problem of recognizing eating ges-

tures by tracking wrist motion. We developed hidden Markov

models to capture variations in motion patterns of subgroups

of participants. Specifically, we examined if foreknowledge of

the gender, age, and utensil used for eating could improve

recognition accuracy. Improvement in accuracy was measured

by comparing to a baseline HMM that was trained on all par-

ticipants. Results show that gender HMMs performed slightly

better than baseline, indicating that there is not much differ-

ence in wrist motion patterns during eating between females

and males. Our age HMMs provided 4.3% accuracy higher

than the baseline. The youngest group that ranges between

18 and 30 was found to have the lowest accuracy among four

age groups, suggesting a larger variability in motion patterns in

younger people. Our utensil HMMs provided 6.2% accuracy

higher than the baseline. This suggests that eating gestures

with the same utensil share some similarity across participants.

In previous work, our group demonstrated that the recogni-

tion of individual gestures could be improved through gesture-

to-gesture sequential modeling [29]. For example, a common

sequence is utensil-bite-rest. In the future we plan to combine

the contextual approach described in this paper with sequen-

tial modeling. We also plan to explore additional contextual

variables, such as groups of common food types.
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