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The Impact of Walking and Resting on Wrist Motion for Automated

Detection of Meals

SURYA SHARMA, PHILLIP JASPER, ERIC MUTH, and ADAM HOOVER, Clemson University

This article considers detecting eating in free-living humans by tracking wrist motion. We are specifically interested in

the effect of secondary activities that people conduct while simultaneously eating, such as walking, watching television, or

working. These secondary activities cause wrist motions that obfuscate those associated with eating, increasing the difficulty

of detecting periods of eating. We collected a large dataset of 4,680 hours of wrist motion from 351 participants during free

living. Participants reported secondary activities in 72% of meals. Analysis of wrist motion data revealed that the wrist

was resting 12.8% of the time during self-reported meals compared to only 6.8% of the time in a cafeteria dataset, whereas

walking motion was found 5.5% of the time during meals in free living compared to 0% in a cafeteria. Augmenting an eating

detection classifier to include walking and resting detection improved accuracy from 74% to 77% on our free-living dataset

(t[353] = 7.86, p < 0.001). Although eating detection could be improved using more sophisticated machine learning methods

or sensor modalities, all approaches would be affected by secondary activities, as they affect the labeling of data itself. Our

work suggests that future work should collect detailed ground truth on secondary activities being conducted during eating,

as these activities could hold insights into when an eating activity starts or stops in the absence of video-based ground truth.
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1 INTRODUCTION

This work is motivated by the problem of detecting eating activities all day during free living. Eating activi-
ties refer to meals, snacks, and other contiguous periods of consumption. Detection of eating activities can be
achieved by various sensing modalities, such as a microphone near the ear or throat [5], jawbone movements
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Table 1. Change in Precision and Recall of Meal Detection When

Transitioning from a Controlled Environment to Free Living

Previous Work
Controlled Free Living

Precision Recall Precision Recall
Thomaz et al. [28] 67 89 65 (–2) 79 (–10)

Mirtchouk et al. [17] 88 87 45 (–43) 85 (–2)
Chun et al. [8] 95 82 78 (–17) 73 (–9)

Zhang and Amft [33] 94 90 79 (–15) 77 (–13)

[8], throat movements [2], apnea detection [10], wrist motion [19, 23], or a combination of them [4, 22]. This
work considers wrist motion that is tracked using a watch-like device that contains accelerometers, gyroscopes,
and magnetometers. Our methods search for motion patterns of the wrist on the dominant hand that happen
during eating, and use those patterns to segment and identify periods of time that look like eating activities. For
example, consumption generally involves using the hand to pick up food and deliver it to the mouth, sometimes
called a hand-to-mouth gesture [14], or more simply, a bite [18]. This motion tends to occur in clusters for what
is commonly called a meal or snack. The specific problem considered in this article is that people can conduct
secondary activities while eating, such as watching television, talking with other people, walking to retrieve
more food, or resting for a few minutes before resuming consumption. These secondary activities impact the
wrist motion pattern of bites in ways that are unknown. The overlap of these activities creates challenges for
methods designed to detect and classify periods of time as eating activities.

Recent work in automated eating activity recognition has shown that classifier accuracy decreases when tran-
sitioning from the laboratory to free living (Table 1). However, there is ongoing debate as to its cause. Thomaz
et al. [28] showed that in a laboratory setting, activities like chatting, using the phone, and brushing hair with
a comb can be confused with eating. Zhang et al. [34] learned that most meals are consumed when a human is
stationary, and thus excluded periods of walking showed that walking often looks like eating gestures in free
living [34]. Bi et al. [6] discussed how walking while eating caused misclassification in their eating activity ap-
proach. We hypothesize that another important factor may be secondary activities conducted concurrently with
eating. Laboratory tests have advantages in that the data can be collected under direct observation, which makes
the annotation of ground truth behaviors more simple, and because a scripted list of activities can be given as
instructions to participants. However, while being directly observed, participants are unlikely to conduct sec-
ondary activities while eating unless specifically instructed to do so. In contrast, collecting data from free-living
participants is more complicated [8, 17, 28] because tools that can be used in the laboratory like a video cam-
era cannot be easily implemented in a free-living setting, and when they are used, they bring concerns about
the privacy of the participants and people they interact with [29]. Bedri et al. [5] discussed how it is difficult
to collect data that is precise, generalizable, and real. The authors state how data collected in the laboratory is
precise but not real, whereas that collected in free living is imprecise due to the lack of proper instrumentation
that can provide accurate ground truth. Participants may also exhibit behaviors in free living that were not cap-
tured in the laboratory, as they are often limited by tracking devices utilized in the laboratory or when under
observation. Alharbi et. al [1] provided examples of how participants wearing cameras during the collection
of eating activity data experience social and surveillance discomfort, whereas Mirtchouk et al. [17] noted that
their classifier performed poorly on 1 participant out of 11 (9%), as that participant had extended conversations
and multi-tasked (did homework) while eating a meal. Another recent study performed statistical tests on data
collected from participants in a laboratory versus data collected from participants in a free-living facility and
reported numerous differences, including changes in the number of bites, the time spent eating, and the time
and number of pauses between ingestion events [12].

ACM Transactions on Computing for Healthcare, Vol. 1, No. 4, Article 24. Publication date: September 2020.



The Impact of Walking and Resting on Wrist Motion for Automated Detection of Meals • 24:3

Table 2. Complexity and Size of Datasets in Previous Works

Authors Hours Participants Ratio
Dong et al. [11] 449 43 20:1

Thomaz et al. [28] 32 7 14:1
Bedri et al. [5] 45 15 8:1
Bedri et al. [5] 12 10 3:1

Mirtchouk et al. [17] 245 11 12:1
Zhang and Amft [33] 122 10 17:1

Farooq et al. [13] 10 40 16:1
This work 4,680 351 18:1

Behavior variability may also be broadened by increasing the size of the dataset used for testing, which in
turn may decrease classifier accuracy. Previous works in eating activity recognition tested 4 to 43 participants
(Table 2). It is questionable if this limited size of participants exhibits the total variability expected in eating
behaviors across a larger population. In addition, the ratio of non-eating data to eating data in previous work
ranges from 3:1 to 20:1. An average person spends 1.17 hours in a day on eating activities [30], a non-eating to
eating ratio of approximately 20:1. This ratio is important, as it affects metrics like precision and the F1 score.

1.1 Contribution

The contribution of this work is as follows. We provide a dataset one to two orders of magnitude larger (351
participants) than all works cited previously (4–43 participants). All of the data was collected during free living.
We collected information on secondary activities during eating and quantify how often they occur. We developed
a classifier to detect two common secondary activities, walking and resting, and show that eating activities can
be detected more accurately using this new classifier compared to a previous classifier [11]. We recommend that
any future classifiers intended to detect eating episodes in free living be trained on data that contains secondary
activities so that the classifier has a better chance of operating reliably during free living.

2 OVERVIEW

We first demonstrate how wrist motion patterns associated with eating can be obfuscated by wrist motions
associated with secondary activities. Figure 1 shows 60 seconds of wrist motion data from a person eating a
banana. Top to bottom are accelerometer x, y, and z, and gyroscope yaw, pitch, and roll. Modulations in the
signals are caused by wrist motions moving food to the mouth and then moving the wrist back to a neutral
position, whereas periods of no motion indicate when the wrist was at rest. This type of motion is typical during
consumption. Figure 2 shows 60 seconds of wrist motion data from a person walking down a hallway and then
entering a room and searching around inside it. Swinging the arms during walking causes sensor patterns that
have regular oscillations and look clearly different than the sensor patterns during eating.

One can imagine several scenarios in which a person might walk or rest during a meal or snack. For example,
a person might walk around a kitchen to prepare a second serving of food before sitting down and resuming
consumption. A person might rest for several minutes while watching TV before resuming consumption. Figure 3
shows an example of this type of behavior toward the end of a meal in which a person rested for 15 seconds,
engaged in consumption for 35 seconds, briefly rested, and then walked for 15 seconds before indicating the end
of the meal. These secondary activities occurred intermittently within the period of eating, but depending on
their frequency and duration, they can greatly increase the difficulty of detecting the period of eating. Figure 4
shows 1 minute of wrist motion data from a person eating a banana while walking. In this case, the secondary
activity is occurring concurrently during eating, which obfuscates all of the wrist motions associated with eating.
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Fig. 1. Example of 1 minute of wrist data (linear ac-

celerations x, y, z and gyroscope yaw, pitch, roll)

from a person eating a banana with rest between

bites.

Fig. 2. Example of 1 minute of wrist data from a

person walking regularly for 30 seconds, followed

by a short stop, then looking around a room.

Fig. 3. Wrist data from the end of a meal, show-

ing intermittent eating, walking, and resting. In

this segment, the participant rested for a period of

15 seconds, consumed food for 35 seconds, rested

briefly, then walked for 15 seconds before ending

the meal.

Fig. 4. Example of 1 minute of wrist data (linear

accelerations from a person eating a banana

while walking). The secondary activity of walking

obfuscates the wrist motion signals indicative of

food consumption.

Classification of free-living meals containing secondary activities could be performed by modeling mixtures
of activities as different classes. However, a secondary activity may not be conducted continuously for the entire
duration of the eating activity. We therefore take an approach where subsegments of a self-reported meal are
analyzed and classified independently. We specifically consider two secondary activities: walking and resting.
We present two experiments. In our first experiment, we develop detectors for periods of walking and for periods
of resting. We test these detectors on two datasets for which video ground truth of activities is available. The first
dataset was collected for a pedometer experiment and is known via visual confirmation of video to contain 100%
walking. The second dataset was collected in a cafeteria. Through visual confirmation of video, human raters
labeled 5.8% of the time during meals as rest. In our second experiment, we use the walking and resting detectors
to measure how frequently these secondary activities occur during periods of eating in free living. No video-based
ground truth is available for the second experiment, so we rely upon the results of the first experiment to provide
confidence in the measures found in the second experiment. Finally, we show how walking and resting detectors
can be added to a previously existing eating activity detection algorithm [11] to improve its performance.

3 WALKING AND RESTING DETECTION

The purpose of this experiment is to develop classifiers for detecting walking and resting by tracking wrist
motion. We test them on two datasets containing acceleration and gyroscope data from wrist-mounted
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Fig. 5. The Shimmer3 sensor mounted on the wrist. This sensor was used for data collection in the pedometer [16] and

free-living eating activity datasets (this work). The custom IMU sensor in the cafeteria dataset [25] is mounted in the same

manner.

sensors that have video-based ground truth of participant activities. Both of the datasets were collected us-
ing wrist-mounted sensors in the same configuration. The goal is to provide confidence that they work reliably
enough to detect walking and resting on additional datasets also containing acceleration and gyroscope data for
which video-based ground truth is not available.

3.1 Datasets

A dataset containing wrist activity data (from accelerometers, gyroscopes, and magnetometers) during walking
was collected by Mattfeld et al. [16] for pedometer algorithm evaluation. A total of 30 participants were recorded.
Each participant was instrumented with three Shimmer3 sensors (wrist, hip, and foot) and was followed by an
experimenter using a smartphone to record synchronized video of their lower body. Figure 5 shows an example
of the Shimmer3 mounted on the wrist. The Shimmer3 houses MEMS accelerometers, gyroscopes, and magne-
tomters. Participants walked an outside path, inside a building, and inside a room, collectively taking more than
60,000 steps. For this work, we use the data collected from the wrist while the participant walked an outside
path. The dataset is publicly available at http://www.cecas.clemson.edu/∼ahoover/pedometer.

A second dataset was collected in a cafeteria setting [21, 25]. A total of 271 participants were recruited from
Clemson University and its neighboring areas. Volunteers were asked to pick a date and a meal (lunch or dinner)
to consume in the university cafeteria in the company of three other volunteers. Each participant consumed a
single meal during data collection. Participants sat at an instrumented table that had video cameras installed
above it in the ceiling to record each participant and their food while they ate. Each participant wore a custom
device on the wrist housing MEMS accelerometers and gyroscopes. Ground truth of bites and other eating-related
gestures like resting and manipulating food was provided by trained reviewers watching the synchronized video.
Full details and the dataset are publicly available at http://www.cecas.clemson.edu/∼ahoover/cafeteria.

3.2 Preprocessing and Segmentation

All datasets used in this work were recorded at 15 Hz. To reduce sampling noise, we filter raw acceleration and
gyroscope signals Rt = {ax , ay , az , ωϕ , ωθ , ωψ } at time index t to smoothed signals St = {Sx,t , Sy,t , Sz,t , Sϕ,t , Sθ,t ,
Sψ ,t } using a standard Gaussian filter [9] operated independently on each axis. The filter operates on a window
of past data 1 second long using a Gaussian σ of 10 seconds. For classification and evaluation, we segmented the
data into fixed 1-minute windows, starting 10 seconds before the first step (pedometer dataset) or bite (cafeteria
dataset), and ending 10 seconds after the last step or bite. Segments smaller than 1 minute were discarded.

3.3 Detection of Secondary Activities

3.3.1 Walking. A zero-crossing-based algorithm is employed to detect walking. For a given segment, a datum
is identified as a zero-crossing z (t ) = 1 if any axis in the gyroscope signal (Sдyro,t ∈ {Sϕ,t , Sθ,t , Sψ ,t }) crossed zero
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(from negative to positive or vice versa). To suppress spurious detection of zero crossings from noise, the signal
must also surpass ±5 deg/sec in the direction of the zero crossing. The threshold of ±5 deg/sec was decided
heuristically to avoid spurious detection of zero crossings caused by noise in the signal during rest but is small
enough to detect the oscillations of the wrist caused by walking.

z (t ) =

{
1 if sдn(Sдyro,t−1) � sдn(Sдyro,t )
0 otherwise

(1)

The feature f1,w provides the rate of zero crossings for a segmentw of lengthW and is calculated using Equation
(2). It defines the percentage of data in the segment identified as zero crossings and ranges from 0 to 1. Larger
values (large amounts of zero crossings) tend to occur during walking compared to other activities. A segment
is considered walking if f1,w is greater than threshold T1.

f1,w =
1

W

∫
W

z (t ) (2)

3.3.2 Resting. Resting can be detected by looking for low variance in accelerometer and gyroscope signals. By
using variance in the signal, we are able to detect rest regardless of the orientation of the device. For robustness,
our classifier uses two steps. Each datum is first classified as rest r (t ) = 1 or motion r (t ) = 0. To do this, the
standard deviation σt is calculated over a window of M = 1 second for each of the six signals Sx,t , Sy,t , Sz,t , Sϕ,t ,
Sθ,t , Sψ ,t . If the sums of standard deviations for the acceleration (σA,t = σx,t + σy,t + σz,t ) and gyroscope (σω,t

= σϕ,t + σθ,t + σψ ,t ) signals are less than TA and Tω respectively, the datum is considered to be at rest:

r (t ) =

{
1 if σA,M < TA and σω,M < Tω

0 otherwise.
(3)

A segment is then classified as rest if the percentage of data detected rest in the segment is greater than the
threshold T2. The feature f2,w (Equation (4)) ranges from 0 to 1. Larger values tend to occur during resting
compared to other activities.

f2,w =
1

W

∫
W

r (t ) (4)

3.4 Parameter Tuning

Parameters for the walking and resting detectors were tuned using histogram analysis of the pedometer and
cafeteria datasets. Figure 6 shows the values of f1,w for data from each participant in the datasets. We setT1 = 0.15
in the middle of the two histograms to label all walking segments as walking, and all cafeteria meals as not
walking, since the cafeteria dataset did not contain any periods of walking.

For the rest detector, TA and Tω were set by calculating the maximum value of standard deviation in the
acceleration and gyroscope signals in segments visually identified as rest. To identify threshold for the amount
of rest in a segment (T2), we plotted a histogram of the amount of rest in cafeteria meals (Figure 7). T2 was set
to 0.65 based on this histogram. There were some meals in the cafeteria where the amount of rest was greater
than 65%; however, video evidence showed the participant was eating with the non-instrumented hand, with the
instrumented hand largely at rest.

4 FREE-LIVING EATING ACTIVITIES

In this section, we discuss free-living eating activities and their classification. We describe the collection of a large
new dataset and then augment a previously described eating activity classifier [11] with the proposed walking
and resting detectors to learn how secondary activities can impact detection performance.
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Fig. 6. Histogram showing amount of zero-

crossings per participant in the pedometer and

cafeteria datasets.

Fig. 7. Histogram showing the amount of rest

per meal in the cafeteria dataset.

4.1 Free-Living Eating Activity Dataset

We programmed 30 Shimmer3 devices (see Figure 5) for the data collection, with a goal to collect data from
approximately 20 participants each week. The Shimmer3 was programmed to record accelerometer, gyroscope,
magnetometer, orientation, and button press data at 15 Hz. A team of eight research assistants helped with data
collection, and a 3-day protocol was designed. Participants would first interview with a researcher on day 1,
collect data during their free-living day on day 2, and return to the laboratory on day 3 to return the Shimmer3
and download the data. Each research assistant was trained on the use of the Shimmer3 devices and provided
with an instruction manual. The manual contained details on the data collection protocol, and instructions on
how to configure, recharge, and maintain the Shimmer3 devices.

The Clemson University Institutional Review Board approved the collection of this dataset. Participants were
recruited from the student body, faculty, staff, and residents of the surrounding area using mailing lists, fliers,
emails, and word of mouth. Temporary laboratory spaces were set up in buildings in the university and nearby
cities for up to 2 weeks to assist with data collection. The recruitment strategy focused on balancing the age,
gender, and ethnicity in the participant pool, as well as the day the data was collected on (weekday vs weekend).
Each participant was provided informed consent and an incentive of $25 to collect wrist motion tracking data for
1 day during free living. An initial pilot of eight participants was conducted, and the data collection was revised
based on participant feedback. Based on the feedback, we created a video explaining the data collection for the
participants to watch. This video contained specific examples of what an eating episode is. We added a process
where participants demonstrated the ability to correctly use the Shimmer3 as intended before data collection. We
also designed a business card with summary instructions and a contact phone number to call if the participant
needed any help.

Each participant was first screened using a questionnaire for past history of eating disorders. Any participant
with a history of eating disorder was excluded from the study. Participants were then provided with dates and
times for appointments and data collection. On the first day of the interaction, participants met with a research
assistant who explained the 3-day study and provided informed consent. The research assistant collected mea-
surements such as height, weight, BMI, body fat percentage, and hip and weight circumference. Each participant
was assigned an anonymous participant ID number that was used to link the Shimmer3 data to this data, and it
was also used on day 3 to download the data from the device. Participants were provided with their Shimmer3
device and watched a 4-minute video that defined eating activities and demonstrated how the Shimmer3 should
be used the following day for data collection.
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Fig. 8. Wrist motion activity during a day. Automatically detected peaks used to segment the data for classification are

indicated with arrows. Self-reported eating activities are marked with dashed lines.

The video states the following: ‘[A]n eating activity occurs when consuming food or a beverage is the main
activity. For example, if you prepare a cup of coffee or a bowl of cereal and dedicate time to finish that cup of
coffee or a bowl of cereal, that is an eating activity. Going to a restaurant and ordering a meal that is finished
is considered an eating activity. Grabbing a handful of pretzels or another snack with the intention of finishing
them in one go is considered an eating activity. On the other hand, if you prepare coffee in the morning and drink
it while preparing food for the day or helping family members during the day, do not mark it as an eating activity.
Similarly, casually grazing on snacks while working on other activities is not considered an eating activity to
be marked. Lastly, sipping on a beverage while focusing on other activities over a long period of time is not
considered an eating activity.” On closing, the video recommends that participants record an activity if they
doubt whether it is an eating activity or not.

Participants were asked to wear the device upon waking up the next day and start recording data. They were
asked to tap a button on the Shimmer3 at the beginning and end of an eating activity. The video then guided
the participants through a simulated meal. Each participant was asked to wear the Shimmer3, turn the device
on, and press the button to provide self-reported meal start and stop times while a research assistant observed
to verify correct operation. Before leaving, participants were provided with a business card that contained their
participant ID, an emergency contact phone number, and summary instructions on device operation.

Subsequent to data collection on the second day, participants met with a research assistant for an exit interview
on day 3. The research assistant downloaded motion tracking and button press data from the Shimmer device.
Button press timestamps were reviewed with participants to help identify erroneous button presses and to pair
start and stop times of eating. The research assistant also collected secondary information on eating activities
such as location (e.g., home or restaurant), type (e.g., lunch or dinner), if the eating activity consisted of multiple
servings of food (yes or no), if the participant was eating in company (yes or no), what was consumed (open
response), and if any secondary activities were being performed while eating (open response). Research assistants
visualized the collected data (as shown in Figure 8) and confirmed with participants that the meal activities were
seen in the expected times and were of expected lengths. Participants and research assistants were not allowed to
erase or change any wrist motion data. Research assistants verified that all expected data files (interview, labels,
and wrist motion data) were present by comparing against a provided checklist. All collected data was uploaded
to a central repository using file synchronization software (Box [7]).

A total of 408 participants were recorded (61% female, BMI 25.8 ± 5.8
kд

m2 , age 28 ± 12 years). Data was collected
on all 7 days of the week, and took a total of 7 months to complete due to pauses in data collection caused by
holidays and other events. Of these, 351 (86%) completed a recording that was usable. Demographic details of
the 351 participants are reported in Table 3. Recordings were unusable for the following reasons: 19 device
failures, 4 people forgot to turn it on, 11 people took it off partway through the day, 2 people carried it in
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Table 3. Demographics and BMI for

Participants in the Free-Living Eating

Activity Data Collection

n

351

Age

mean (±SD) 28 ±12 years

Gender

Female 214 (61%)
Male 137 (39%)

Ethnicity

Black 69 (20%)
White 205 (58%)
Other 77 (22%)

BMI

mean (±SD) 25.7 ±5.73
kд

m2

a pocket instead of wearing it, 2 devices were lost or damaged, and 13 people failed to follow instructions.
Eight participants failed to turn off their device after taking it off at night, thus showing multiple hours of
rest. Data from these participants was manually clipped after visually detecting rest at night to save storage
memory requirements. One participant recorded for 3 days and another participant recorded for 2 days, yielding
a total of 354 days of usable data. Of the usable data, 18 days did not contain labels or secondary information
data due to file sync issues when uploading data to the central repository or error by a research assistant. We
paired available button press information to identify labels in these cases and labeled all context information
as unknown. In three meals, participants forgot to press the button at the end of a meal. The authors guessed
meal end times from the visualized wrist motion signals for these three meals. The total duration recorded
was 4,680 hours, containing 265 total hours of self-reported eating across 1,133 separate eating activities (meals,
snacks). The average duration recorded per participant was 13.2 hours. The dataset is publicly available at http://
www.cecas.clemson.edu/∼ahoover/eat-detect.

4.2 Preprocessing

The eating detection algorithm uses features based on linear acceleration. Estimates of linear acceleration are
provided by sensor fusion algorithms that track device orientation; however, these algorithms are developed for
applications where the acceleration is moderate (±2д) [15, 24]. For the Shimmer3, the estimates are provided by
the embedded Invensense MPU-9150 chip [27]. Previous work has shown that wrist acceleration is much lower
than other more common applications (±0.2д) and disproportionately affected by residual errors that remain
in linear acceleration estimates [24]. To mitigate these errors, we apply a high-pass filter by subtracting the
average linear acceleration value over a sliding 1-minute window from each datum, as suggested in the work of
Sharma and Hoover [24].

The resulting linear acceleration and angular velocity signals Rt = {lx , ly , lz , ωϕ , ωθ , ωψ } at time index t are
filtered using a standard Gaussian kernel with the same parameters as those described in Section 3.2. The result
is smoothed signals St = {Sx,t , Sy,t , Sz,t , Sϕ,t , Sθ,t , Sψ ,t }.
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4.3 Segmentation

Previous work by Dong et al. [11] showed that wrist motion activity peaks before and after meals with peaks
being in temporal proximity to self-reported meal start and end times [11]. It is assumed that these peaks are
caused by actions before an eating activity commonly related to meal preparation, and those after eating related
to the cleaning up of left over food, utensils, or the area where food was consumed. Figure 8 shows an example
of the same pattern seen in our new data collection. Wrist motion activity (magnitude of acceleration) is plotted
on the Y axis versus time on the X axis.

Data is segmented as periods between peaks. We use the same method for peak detection described in the
work of Dong et al. [11], which uses a hysteresis approach to find local maxima in the sum of linear acceleration.
Peaks detected by this algorithm are marked by arrows in Figure 8.

4.4 Classification Features

Peak-to-peak segments are classified as walking, resting, eating, or other. Six features are calculated for each
peak-to-peak segment. Two features characterize resting and walking, whereas four features characterize eating
and were first introduced by Dong et al. [11]. The first feature f1, the rate of zero crossings, and f2, the amount
of rest in a segment, are described in Section 3.

The third feature f3 is called manipulation and measures the ratio of wrist rotation to linear motion:

f3,w =
1

W

W∑ |Sϕ,t | + |Sθ,t | + |Sψ ,t |
|Sx,t | + |Sy,t | + |Sz,t |

, (5)

where f3,w is the value of the manipulation feature for the segment with time span W (number of samples), Sx,t ,
Sy,t , Sz,t are the smoothed linear acceleration values for the respective axes, and Sϕ,t , Sθ,t , Sψ ,t are the smoothed
angular velocities (yaw, pitch, roll) from the gyroscope. The fourth feature, linear acceleration, is calculated as

f4,w =
1

W

W∑
|Sx,t | + |Sy,t | + |Sz,t |. (6)

Wrist roll motion is calculated as

f5,w =
1

W

W∑
|Sϕ,t −

1

W

W∑
Sϕ,t |. (7)

Regularity of wrist roll motion is calculated as

f6,w =
1

W

∫
W

1 ∀ t ϵ [ |Sϕ,t | > 10◦ . . . t + 8sec ]. (8)

This feature represents the percentage of time the wrist was rolling, and takes a value between 0 and 1. This
time is calculated as the amount of time the wrist roll was at least 10 deg/sec, plus the next 8 seconds after the
wrist roll reduces to less than 10 deg/sec. The values 8 sec and 10 deg/sec were tuned in the work of Dong et al.
[11].

4.5 Classification

We use a two-stage classifier. In the first stage, thresholds determine if a segment is walking or resting. In the
second stage, remaining segments are classified using a Bayesian classifier as eating or other. A segment is
considered as walking if f1,w ≥ T1. Similarly, a segment is considered to be resting if f2,w ≥ T2. The nature of
peak-to-peak segmentation allows this method to only label segments as walking or resting if they are sufficiently
long and largely walking or resting.

Segments not considered walking or resting are then labeled as eating or other by a naive Bayesian classifier
that assumes independence of features. This classifier assigns a class ci ϵ C to a segment given feature values fj
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as shown in Equation (9).

ci = arg max
c

P (ci )
∏

j

P ( fj |ci ) (9)

We have only two classes for the Bayesian classifier: eating (c3) and other (c4). We tested different values
of prior probabilities P (c3) and P (c4), and found the best balance between eating and non-eating detection at
P (c3) = P (c4) = 0.5. A normal distribution was used to calculate the probabilities of segment belonging to these
classes given their feature values as shown in Equation (10):

P ( fj |ci ) =
1√

2πσ 2
i, j

exp �
�
−

( fj − μi, j )
2

2σ 2
i, j

�
�

(10)

where μi, j is the mean of feature j in class i and σ 2
i, j is the variance. Collectively, the two-stage classifier can be

stated as Equation (11).

ci =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1 i f f1,W ≥ T1

2 i f f2,W ≥ T2

arдmax
c

P (ci )
6∏

j=3
P ( fj |ci ) otherwise

, (11)

4.6 Parameter Tuning

Eating activity classification uses normal distributions trained from the free-living datasets. We use standard
leave one out cross validation for training and testing. For feature values of the other class, data labeled other
was split into 5-minute segments and feature values were calculated. For the eating class, feature values were
calculated for time periods between the self-reported meal start and end times.

4.7 Evaluation Metrics

We use two metrics to evaluate our methods: an activity level recall and a per-second metric. The activity level
recall evaluates how many self-reported eating activities intersected with a machine detected meal and answers
the question “Can eating activities be detected?” The per-second metrics evaluate how many seconds of eat-
ing were correctly classified, answering the question “Can we detect the time period during which someone is
eating?”

Many metrics, such as precision, the F1 score, Cohen’s kappa, and Mathews correlation, are known to be
affected by class imbalance [26, 31, 32]. Eating occurs far less frequently than not eating, so the detection of
periods of eating is by default an imbalanced problem [11], and these metrics result in different values for different
datasets. We therefore evaluate our classifier using weighted accuracy [11, 17] to accommodate the imbalance
in occurrence of eating vs other:

WACC =
TP × 20 +TN

P × 20 + N
, (12)

where WACC is the weighted accuracy, P (positives) represents the total number of seconds in self-reported
meals, N (negatives) represents the total seconds detected non-eating, TP (true positives) represents the number
of seconds classified as eating inside self-reported meal times, and TN (true negatives) represents the number of
seconds classified as other outside self-reported meal times.

In the preceding equation, P (positives) includes secondary activities that may have occurred during a self-
reported meal. When these secondary activities are detected correctly as non-eating, they are considered false
negatives. Consider the two example meals shown in Figure 9. Although walking and resting are correctly de-
tected, Equation (12) penalizes the classifier for not classifying segments as eating that were in fact not eating.
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Fig. 9. Wrist motion data examples. Peaks are marked with arrows, and self-reported meal boundaries are marked as dashes.

Machine-detected labels are indicated between segments, with O indicating other. P contains all data in a self-reported

segment, whereas P′ excludes segments identified as walking or resting.

Table 4. Amount of Walking Per Subject in the Pedometer Dataset

and Per Meal in the Cafeteria Dataset

Dataset Walking Labeled Walking Detected

Pedometer (per subject) 100% 100%
Cafeteria (per meal) 0% 0.3%

We adjust for this by using P ′ instead of P:

WACC ′ =
TP × 20 +TN

P ′ × 20 + N
, (13)

where P ′ is the number of seconds in self-reported meals with walking and resting removed—for instance, P ′ =
P – (Walking + Resting) (Figure 9), and WACC′ is the adjusted weighted accuracy.

5 RESULTS

In this section, we first provide evidence on the prevalence of secondary activities in free-living meals. We then
show the performance of the walking and resting detectors on the pedometer (walking) and cafeteria (eating)
datasets for which ground truth video is available. Having confidence on the performance of these detectors,
we show how much walking and resting is seen during free-living eating (Table 6). We discuss the performance
of the classification algorithm, and how adjusting for secondary activities like walking and resting affects its
accuracy.

5.1 Walking and Resting

We evaluated the walking and resting classifiers on 1-minute segments in the pedometer and cafeteria datasets.
These datasets contain 4.7 hours of walking (pedometer) and 96 hours (cafeteria) of data collected from 30 (pe-
dometer) and 271 (cafeteria) participants. In the pedometer data, all 1-minute segments (100%) were correctly
classified as walking. In the cafeteria data, 0.3% of 1-minute segments were classified as walking (there was no
walking in this dataset). This has been reported in Table 4. The rest detector detected no 1-minute segments as
rest in the pedometer datasetbut detected 7% of the 1-minute segments in the cafeteria dataset as rest. On aver-
age, human raters labeled 6.8% of time in cafeteria meals as resting. Both detectors have a slight false-positive
rate. This is shown in Table 5. We conclude that the classifiers are reliable enough to be used on the free-living
dataset in our second experiment.
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Table 5. Amount of Resting Per Subject in the Pedometer Dataset

and Per Meal in the Cafeteria Dataset

Dataset Resting Labeled Resting Detected

Pedometer (per subject) 0% 0%
Cafeteria (per meal) 6.8% 7.0%

Table 6. Walking and Resting Occurred Much More Often in Free-Living Meals Compared to the Cafeteria

Dataset Eating Hours Meals Walking Detected/Meal Resting Detected/Meal

Cafeteria 96 518 0.3% 7%
Free living 249 1,133 5.5% 12.8%

Table 7. Secondary Activity Groups for the Dataset and the Number of Meals in Each Group

Activity Just eating Talking Watching Working Walking In a car Unknown
Meals 317 (28%) 281 (25%) 223 (20%) 210 (19%) 20 (2%) 19 (2%) 63 (6%)

We evaluated the 1,133 self-reported meals in the free-living dataset using our walking and resting detectors
to assist with cleaning the dataset before analysis. Of the 1,133 self-reported eating activities, 21 (1.6%, 3.5 hours)
were classified as walking and 38 (3.4%, 12 hours) were classified as resting by the walking and resting detectors.
After examining each of these meals individually, we concluded that secondary activities dominated the wrist
motions so much that consumption could not be seen. We removed the labels of eating from these periods of
time and instead marked them as periods of non-eating. We also marked 9 meals shorter than 1 minute and
2 meals where the Shimmer3 failed to record valid data for more than half of the self-reported duration of the
meal as non-eating. A total of 70 of 1,133 meals (6.2%, 16 hours) were marked as non-eating.

In the free-living dataset, we found that participants walked 5.5% of the time during self-reported meals
(Table 6). Walking virtually never happens in controlled laboratory experiments involving eating. If a classi-
fier was trained on laboratory data and then deployed to free living, it could be expected that the presence of
walking would be new and likely to reduce the accuracy of detecting eating activities. We detected participants
resting an average of 12.8% of the time during free-living meals, whereas in cafeteria meals, resting was detected
7% of the time (average). It is likely that participants take longer to eat as they rest more during free living
than in a controlled setting. This might happen because they are conducting passive secondary activities such as
watching television. This again could help explain why a classifier trained on laboratory data might have lower
accuracy when tested on free-living data.

5.2 Secondary Activities in Free-Living Eating

Open responses on the secondary activities for each meal were coded into seven groups: just eating, talking,
watching, working, walking, in a car, and unknown. Of the 1,133 self-reported meals, we labeled 317 (28%) as
just eating (no secondary activity was performed), 281 (25%) as talking (participants were talking to someone
else), 223 (20%) meals as watching (participants were watching television, in a movie theater, or listening to
a lecture), 210 as working (participants state they were working, reading, or using a device), 19 as in a car
(participants were driving or riding in a car), 20 as walking (participants were walking while eating), and
63 meals as unknown (activity information was not collected during an interview or was lost). These numbers
are reported in Table 7. A short list of some of the activities is shown in Table 8. Of note are activities during
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Table 8. Some of the Activities Reported During a Meal

Putting away groceries Playing with niece Walking dog
Watching media on computer Sitting in meeting House chores
Checking email and internet Working on papers Reading book
Talking and playing pool Sitting in car Talking in car
Talking to team in class Getting ready Doing work
Talking to friend in a fair Playing trivia Working
Talking and texting Watching TV Reading

Table 9. Confusion Matrix Showing Time Classified by the Eating

Activity Classifier in Hours

eating previously unseen in the literature like putting away groceries, playing with a niece, walking a dog,
or house chores. This list demonstrates the breadth of complexity of the free-living dataset in representing
free-living behavior.

5.3 Eating Activity Classification

Of the 1,063 remaining meals, 946 triggered a positive detection (89%) and 117 meals were missed. A total of
4,966 false positives were triggered (5 false positives for every true positive). Although this number seems high,
it is important to note that the classes are imbalanced, as humans eat only 5% of the time. A 20:1 class imbalance
causes challenges in balancing false positives and false negatives, in that if false positives occur equally with
false negatives, the method could have a low false-positive rate while completely missing all actual meals. For
example, suppose that there were only 3 false-positive meals per day and 3 false-negatives meals; assuming only
3 meals were consumed that day, they would all have been missed. With a high imbalance in data, accuracy must
be balanced.

Although the method of Dong et al. [11] performs with a weighted accuracy of 74% on our free-living dataset,
our new method that detects secondary activities like walking and resting improves weighted accuracy to 77%.
Table 9 shows the confusion matrix for the new method (in hours). Weighted accuracy had a mean of 75% per
participant and a median of 78%. Approximately 72% of the participants had weighted accuracy of 70% or higher.
Paired samples t-test results show that the change in accuracy per participant due to walking and rest detection
is significant (t[353] = 7.86, p < 0.001), largely due to a 23% reduction in the number of false negatives.

To evaluate the impact of secondary activities on the classification of meals, we split all meals into two cate-
gories of secondary activity: yes or no. Secondary activities included anything that could affect wrist motion for
significant periods of time such as working or driving. Talking occurs frequently during free-living meals and
may involve some wrist motions caused by gesturing, but we hypothesize that these wrist motions are relatively
infrequent compared to those used for consumption. Therefore, meals with descriptions of secondary activities
that included only talking were grouped with meals with no secondary activities. Table 10 shows the results.
Meals with no secondary activity were detected more frequently (91% vs 87%), and the total duration of eating
conducted with no secondary activity was detected better than the total duration with secondary activities (83%
vs 78%).
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Table 10. Effect of Secondary Activities on Meal Detection

Secondary Activity
No. of Duration Meals

Meals Detected Detected

No 565 83% 91%
Yes 498 78% 87%

Table 11. Average Time Difference Between Logged Meal Start and End

Times, and Nearest Peaks in Minutes

Dataset Start Time Difference (min) End Time Difference (min)

Dong et al. [11] −0.6 1.5
Free living (this work) –4.5 ± 14 7.3 ± 11

The presence of secondary activities also affects the presence of wrist activity peaks before and after a meal
[11]. Peaks are used to segment the data before classification, and thus an important part of the method to detect
eating activities. Although Dong et al. [11] reported average differences of –0.6 minutes and 1.5 minutes between
peaks and the start and end of self-reported meals, respectively, we see average differences of –4.5 ± 14 and
7 ± 11 minutes (Table 11) between self-reported start and stop times and the detected peaks. The reason for this
change is likely the presence of intermittent secondary activities during free-living meals, enabled by the low
weight of the Shimmer3 (24g) compared to the iPhone used by Dong et al. [11] that weighs 140g.

5.4 The Anatomy of a Free-living Meal

We visualized the effect of secondary activities on meals with the help of a 1-minute classifier. Figure 10(a) shows
a 10-minute meal recognized as all eating. This is similar to what could be expected in controlled experiments
where participants consume food without conducting secondary activities. Figure 10(b) shows an 11-minute meal
in which the majority of the time is recognized as eating, but a few minutes are recognized as other. It is likely
that the participant engaged in brief secondary activities. Figure 10(c) shows a 19-minute meal in which less than
half the duration is recognized as eating. It is likely that the participant engaged in passive secondary activities
such as watching television, as is evident from the long periods of rest. Figure 10(d) shows a 30-minute meal in
which only 3 minutes are recognized as eating. It is likely that the participant engaged in multiple secondary
activities, including passive (as is evident from the long periods of rest) and active (as is evident from the long
periods of other). Figure 10(e) shows a 34-minute meal in which long periods of time were recognized as walking.
It is likely that the participant was multi-tasking, such as walking around and doing chores while simultaneously
eating. It is important to note that all of these are conjecture and that we do not have minute-level ground truth
of secondary activities.

6 DISCUSSION

To the best of our knowledge, the Shimmer3 dataset collected for this work is the largest of its kind, consist-
ing of 4,680 hours of free living, containing 1,133 meals/snacks, from 351 participants. Analysis of self-reported
descriptions of activities during eating indicated that 72% of all meals were consumed while performing a sec-
ondary activity (25% talking, 47% other). By detecting two common secondary activities, walking and resting, we
were able to more accurately detect eating events, demonstrating the need to account for secondary activities in
free-living experiments on eating detection.

Some previous works (see Table 1) have seen a drop in performance when transitioning from the laboratory
to free living. We detected resting 7% of the time in cafeteria meals while detecting resting 12.8% of the time in
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Fig. 10. Five example meals from our free-living dataset, in increasing order of complexity. The bar on top of each figure

shows majority activity detected for 1-minute segments (walking (W), resting (R), eating (E), or other secondary activity

(O)). Meal start and end times are indicated by vertical dashed lines.

self-reported free-living meals. Similarly, there was no walking during cafeteria meals, whereas walking was de-
tected 5.5% of the time during self-reported free-living meals. We show that our new classifier that uses walking
and resting detectors improves the performance of detecting eating activities (weighted accuracy) by 3%. The
practical implication of this improvement is that eating episodes in free living look different from eating episodes
in a cafeteria. Besides the growing evidence that laboratory meals may not be representative of free-living meals,
the “in-between” environment of a cafeteria may also not be representative of free-living meals due to the dif-
ferences in secondary activity distributions. Another practical implication is that it is possible to detect subsets
of an eating episode that are secondary activities. Although we only modeled two types of secondary activity,
our experiment demonstrates that is possible to improve accuracy in this manner.

It may be possible to develop a taxonomy of classes using secondary activities such as eating+reading, eat-
ing+texting, eating+watching, and so on, and then develop a classifier for each of these classes. However, this
would need more data, even more than our current dataset contains. Secondary activities do not necessarily occur
steadily through an entire eating episode; instead, they occur for subsets of time within an eating episode. Given
this knowledge, we believe that a better approach to detecting eating activities might be to design a classifier
that models an eating episode as sequence of varying combinations of activities. This is a topic for future work.

In our work, of 408 participants recruited, only 351 participants (86%) provided useable data because the
participants failed to comply with instructions or the device failed. This provides some insight into how often a
wrist-worn device might be expected to fail or be used improperly.

The activities considered secondary in this article are specific to wrist-based sensing modalities. However,
secondary activities would likely impact experiments based on other modalities. For example, methods based on
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sound detection at the throat [3] could consider long periods of talking a secondary activity conducted during
what a person considers part of a meal. Driving and walking could affect many sensor modalities via background
noise and rhythmic motions. Meals eaten while conducting house chores or simultaneously preparing to leave
the home during the morning could also affect other modalities.

As reported in Table 11, the difference between peaks and meal boundaries was much larger in our new
dataset compared to that in the work of Dong et al. [11]. Some participants would rest for extended periods
of time after eating or worked on a computer. Since the segmentation method used is based on high-intensity
motion before and after a meal, it sometimes misses activities surrounded by rest. We hypothesize that this
segmentation method impacts the classification performance of the algorithm, and we plan to investigate other
segmentation methods in future work. This issue, and the analysis of free-living meals, also shows that metrics
that relate to time (e.g., weighted accuracy, or error in detected meal start or start times compared to self-reported
start and stop times) might not perform well for the free-living eating activity dataset, and researchers should
consider what metrics are appropriate for the specific task they are modeling, such as meal detection or meal
segmentation.

One limitation of this work is that only coarse descriptions of secondary activities during meals were captured
(e.g., “standing,” “talking to friends in a classroom,” “watching netflix”). Ground truth on when walking or resting
happened during a meal was not collected due to the difficulty of collecting such information during free living.
However, our tests on the cafeteria and pedometer datasets showed very high accuracy in detecting walking
and resting compared to video-based ground truth. We also specifically chose walking and resting as secondary
activities due to the distinctiveness of their motion patterns. Resting can be detected by a lack of sensor motion,
and walking can be detected by its rhythmic motion. Although the resting and walking detectors have not
been validated on free-living datasets, we believe that the combination of large datasets and readily discernible
differences in the motion patterns of these activities provides confidence in the translation of our walking and
resting detectors from the semi-controlled datasets to the free-living dataset. For future work, we believe that it
will be important to collect not only the types of secondary activities conducted during eating in free living but
also exactly when they happen.

Another limitation of this work is the use of a previously established eating activity classifier [20] and only
one modality of sensing—wrist motion. More sophisticated approaches may help improve the detection of eating;
however, we believe that the issue of secondary activities would affect all types of classifiers. This is supported
by previous work that detected eating using audio from a contact microphone. The authors learned that talking
while walking or moving excessively can be misclassified as eating [6]. In addition, eating may be affected by
other factors such as culture or personal behavior. Eating behavior may be socially driven or individualistic and
may also change over time. Our current dataset only contains 1 day of data from each participant, limiting the
analysis of these factors. In future work, we plan to use the lessons learned from this work to collect multiple
days of data from multiple participants so that these factors can be considered.

To conclude, by analyzing a very large free-living dataset, we learned that secondary activities during meals
are common and might not be captured in controlled or semi-controlled environments due to the lab coat effect
when participants know they are being observed or video recorded [1]. In the future, we recommend that re-
searchers design laboratory or semi-controlled studies keeping secondary activities in mind. We show that one
way to address the phenomena of secondary activities is to augment a classifier to recognize these activities. An
alternative may be to model eating as a multi-class activity rather than a single class while using classifiers like
a neural network or a support vector machine. These are topics for future work.
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