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Abstract—Accelerometers have gained popularity in biomedi-
cal and m-health applications such as actigraphy or automated
dietary monitoring due to their ease of use and their ability to
characterize motion. These sensors report raw acceleration from
which gravity and linear acceleration must be separated, with
commercial packages reporting raw acceleration, linear acceler-
ation or both. New researchers to the field may often be confused
when to use raw acceleration or linear acceleration, especially
given the susceptibility of linear acceleration to noise, and the lack
of published distributions of these signals. This paper provides
a short tutorial on obtaining linear acceleration estimates. Using
these methods we analyze a large dataset containing 4,680 hours
of wrist tracking data, the largest such dataset known to us. We
learn the range of wrist motion accelerations, and quantify the
expected noise in the linear acceleration signal. We explain the
sources of this noise, and a filtering technique to mitigate it. For
the first time, we report the range of wrist acceleration values
observed during free-living, and quantify the expected range of
noise in this wrist acceleration. We show that while previous work
has reported average accelerations at the feet and body ranging
from 0 - 15g during spots-like activities like walking, running or
jumping, wrist acceleration in free-living subjects during daily
activities is often much lower, and ranges from 0 - 0.2g. We
show that noise in linear acceleration can range from 0 - 0.06g,
an overlap of 70%. This suggests that in applications where the
wrist acceleration is in this range of noise, linear acceleration
may not provide useful features, and researchers should only
rely on raw acceleration instead.

I. INTRODUCTION

New applications in m-health are emerging for body-worn
sensors in which the linear acceleration signal can provide
useful features, such as Parkinsonian tremor detection [1] or
automated diet monitoring [2]. Linear acceleration can provide
rough estimates of direction and velocity in a motion, however
accelerometer signals are known to contain large amounts of
noise [3], [4]. This noise is compounded when these sensors
are used, as accelerometers do not provide linear acceleration
directly. Instead, linear acceleration has to be separated from
gravity which is also contained in raw accelerometer output.
Previous work has often avoided estimating linear acceleration
and instead used raw acceleration for features [5]. Other work
has assumed that the effect of gravity can be modeled as
a low frequency signal, thus implemented bandpass or high
pass filters to separate raw acceleration into gravity and linear
acceleration [6]. However, human movement at the wrist is

Fig. 1. Photo showing the Shimmer3 wrist mounted platform.

erratic, and will never correspond to a DC or an AC signal [3],
and thus, more recently, linear acceleration is estimated from
raw acceleration by tracking sensor orientation and subtracting
1g in the direction of earth [1]. This estimate of orientation and
linear acceleration is often tracked using proprietary closed
source solutions provided by sensor manufacturers, or through
open source algorithms such as a complimentary filter [4].

Early work using triaxial accelerometers noted that these
devices show low sensitivity to sedentary activities and are
unable to register static exercise [3]. It is well known that this
calculation is prone to error [7], researchers have assumed
the this error is negligible, or not explored further due to
missing information in closed-source implementations [8].
Another reason for the lack of information is that the noise
in linear acceleration does not affect common applications,
such as sports monitoring [9] or step counting [10] where the
acceleration being tracked is large.

In this paper, we provide a short tutorial on estimating
gravity and linear acceleration from raw accelerometer data.
This paper’s primary contribution is the quantification of linear
acceleration and it’s noise from 4,680 hours of wrist activity
data collected from 351 subjects over 354 days. This is the
largest wrist motion activity dataset ever collected known to
us. Data was collected using the wrist watch sized Shimmer3
[11] device shown in figure 1. We show that the range of
wrist linear acceleration during free-living is much lower than
accelerations reported for other body parts and activities [3],
[12], [13]. By learning the range and causes for noise in linear
acceleration estimates, we recommend a using a gaussian
filter and a mean filter on linear acceleration estimates to
mitigate noise while retaining wrist motion signals relative to
the subjects body.



II. METHODS

In this section we first describe the collection of a wrist
activity dataset. We then provide a short tutorial on estimating
linear acceleration from raw accelerometer data. We discuss
the sources of noise that affect linear acceleration, and a
method to estimate linear acceleration noise for visualization.
This method is based on the assumption that at periods of
rest (zero velocity and zero acceleration), acceleration reported
by a system (sensor or algorithm) must be noise. Therefore,
noise in linear acceleration can be identified as the values
reported by a system during periods of rest. By calculating
the statistical variance in samples of angular velocity, periods
of rest can be identified as those with low variance in velocity
over a small time window. Finally, we describe a mean filter
to mitigate this noise, and discuss when linear acceleration is
not an appropriate signal for feature selection.

A. Shimmer3 Dataset

The motivation for this work was previous work on an
algorithm to detect meals by tracking wrist motion all day [2].
For this work, data was collected using a Shimmer3 [11], a
wristwatch sized device housing accelerometer, gyroscope and
magnetometer sensors. The Clemson University Institutional
Review Board approved this data collection, and subjects
provided informed consent. Subjects were asked to wear the
device on waking up, and start recording wrist activity data
all day, taking the device off only if it risked full immersion
in water, such as during swimming or showering. They were
instructed to stop recording data when they went to bed at
night. The collection resulted in 4,680 hours of wrist motion
data from 351 participants. For each participant, the data
file contains accelerometer, gyroscope and magnetometer data
at 15Hz, along with orientation estimates in the form of
quaternions. The sampling rate of 15Hz has been show to be
satisfactory for applications such as gesture recognition [14].
The algorithm to detect food intake was developed based on
linear acceleration, the estimation of which has been described
below.

B. Estimating Linear Acceleration

Microelectromechanical system (MEMS) accelerometers
are constructed using spring-like objects that bend in a direc-
tion opposite to their motion [15], allowing them to sense the
combined effect of acceleration and the gravity vector in their
own frame of reference (relativistic acceleration). Previous
work often modeled gravity as a low frequency signal, and
thus used high pass or band pass filters to isolate linear
acceleration [6]. In this work, we obtain linear acceleration
al from relativistic (raw) acceleration ar by subtracting the
gravity vector in the device frame gd, as shown in Equation
1.

al = ar − gd (1)

This gravity vector gd can be obtained if the orientation of
a device is known. Assuming the orientation is available in the

form of a rotation matrix R of order 3× 3, the gravity vector
in the earth frame ge = [0 0 1]g can be rotated to the gravity
in the device frame gd:

gd = Rge (2)

C. Estimating Orientation (Pose)
When at rest, raw acceleration is equal to the gravity

vector, and thus orientation (pose) can be obtained directly.
However during motion, gravity needs to be separated from
linear acceleration. Another method of tracking orientation is
using dead reckoning, where gyroscope data only is integrated
over time. However, the noise in gyroscope data causes drifts
in these orientation estimates, making them unusable. Today,
orientation is often tracked using a family of algorithms
commonly known as AHRS (Attitude and Heading Reference
Systems). Device manufacturers implement these algorithms
in proprietary software such as Apple’s Core Motion library
[16], or Invensense’s MotionProcessor API [17], while some
open source sensor fusion implementations also exist [18].
Madgwick et. al recently introduced a complementary filter
that fuses magnetic, angular rate and gravity (MARG) to esti-
mate orientation [4]. This algorithm is preferred by researchers
due to the availability of open source code implementations
programmed in C, C# and Matlab. We hypothesize that pro-
prietary implementations by Apple and Invensense implement
variations of this algorithm, modified to work better with
factory calibrated settings.

Madgwick’s algorithm uses gradient descent to provide
orientation estimates in the form of quaternions. While ro-
tation matrices are convenient and easily inferred by humans,
quaternions are preferred in software as they are more compact
and computationally efficient. Like a complementary filter,
the algorithm defines the state of the system by a quaternion
Q = q0, q1, q2, q3 that represents the orientation. When new
sensor input is available, an estimate of the new orientation Qa
is made using information from the accelerometer and magne-
tometer data. Another estimate of the orientation Qω is made
by integrating the gyroscope angular velocity. The orientation
at time t, Qt is then estimated from the quaternion at time t-1,
Qt−1, and the estimates Qa and Qω . Full details of this algo-
rithm are provided in [4], while the source code is available
at https://x-io.co.uk/open-source-imu-and-ahrs-algorithms/.

The quaternion representing orientation can be converted to
a rotation matrix using the equation below:

R =

1− 2(q22 + q23) 2(q1q2 − q0q3) 2(q0q2 + q1q3)
2(q1q2 + q0q3) 1− 2(q21 + q23) 2(q2q3 − q0q1)
2(q1q3 − q0q2) 2(q0q1 + q2q3) 1− 2(q21 + q22)


Following this conversion, gravity can be obtained using

equation 2, and then linear acceleration can be obtained using
equation 1.

D. Noise in Linear Acceleration
We used the previously described method to estimate of

linear acceleration from our Shimmer3 dataset. While analyz-
ing this signal we noticed plateaus in the magnitude of linear

https://x-io.co.uk/open-source-imu-and-ahrs-algorithms/


Fig. 2. Magnitude of linear acceleration (Y-axis) vs time (X-axis). Noise can
be seen as long plateaus of constant linear acceleration P1, P2 and P3.

acceleration, shown in figure 2. For example, the plateaus seen
in figure 2 are of length 10 - 51 minutes, indicating that the
visualization of short gestures typical in gesture recognition
experiments would not reveal this noise. The range of values
(0 to 0.6 m/s2 (0.06g)), length of time, and flatness of change
indicates they are not due to real motion and are instead
noise artifacts. These plateaus and indications of noise are
not noticable when linear acceleration signals are visualized
separately for each axis, or if the duration visualized is short,
which is common in applications of accelerometers such as
activity or gesture recognition. Given that this noise exists
after the raw acceleration has been processed by an AHRS
algorithm, it is reasonable to believe that these errors are not
corrected by proprietary systems or the Madgwick filter.

E. Sources of Error

Figure 3 shows an overview of the sources of error when
calculating linear acceleration. Raw sensors (accelerometers,
gyroscopes, and magnetometers) can all be affected by bias
due to small offsets in coordinate systems or components
during manufacturing [19]. Magnetometer readings can be
distorted by local deviations in the magnetic field. Gyroscopes
can be used to calculate orientation but the values must
be integrated and thus suffer from drift in dead reckoning
estimates. An attitude heading reference system (AHRS) al-
gorithm calculates object pose relative to the earth [15]. This
pose R is then used to calculate gravity and linear acceleration
as shown previously in equation 2.

Errors in pose estimation are unavoidable [15] and even
small errors can contribute to significant errors in linear
acceleration. The earth gravity vector ge has a standard value
of 1 g = 9.81 m/s2 but can vary from 9.76 m/s2 to 9.83 m/s2

for different locations on earth [20], which can affect the
estimation of linear acceleration.

F. Rest Detector

When the device is moving, there is no known method
of seperating noise from the true value of acceleration. This
is shown in figure 4. Noise can only be separated from
acceleration signals when the device is at rest. When the device
is not moving, we know linear acceleration al should have a
true value of 0g. All acceleration sensed can thus be attributed
to noise. This is depicted in figure 5.

We used a variance based rest detector to mark datum
as rest or motion for visualization. Variance was calculated
for both accelerometer and gyroscope signals, thus checking
for rest in wrist linear motion and rotation. For each datum
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Fig. 3. Flowchart showing the process of estimating linear acceleration, the
sources of error contributing to noise, and a filter to obtain corrected linear
acceleration.
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Fig. 4. Graph showing an example of the composition of noise in linear
acceleration during motion.

at time index t, the standard deviation σt of each axis in
the acceleration {Ax, Ay, Az} and gyroscope {ωφ, ωψ, ωθ}
signals was calculated over a fixed window centered at time
index t. The sum of standard deviations of acceleration (σA,t
= σx,t+σy,t+σz,t) and gyroscope (σω,t = σφ,t+σθ,t+σψ,t)
are then calculated. Time index t is assigned a state st = 0
(rest) if σA,t < Ta, and σω,t < Tω , a state st = 1 (motion) is
assigned otherwise:

s(t) =

{
0 if σA,t < TA and σω,t < Tω

1 otherwise
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Fig. 5. Graph showing an example of the composition of noise in linear
acceleration during rest. As the expected acceleration is 0, any observed value
of linear acceleration can be attributed to noise.
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Fig. 6. Linear acceleration values for datum detected as rest (light blue) and
motion (dark red). The histogram is long tailed to the right, and has been
clipped on the x-axis at 0.1g. The values of linear acceleration at rest can be
interpreted as noise. The overlap in the range of noise and signal suggests
that a the mean filter should be implemented before this linear acceleration
is used for further applications.

The values Ta and Tω were tuned to 0.008g and 0.04 rad/sec
by calculating the maximum value of standard deviation during
segments visually identified as rest. The fixed window was
tuned to 1 second. This allows the rest detector to detect
periods of reasonable wrist rest, while avoiding being triggered
by short moments where the sensor is not moving.

G. Zero Mean Filter

Noise in linear acceleration can be mitigated using a zero
mean filter (ZMF). For each axis in the linear acceleration
signal at each datum Ai,t = {Ax,t, Ay,t, Az,t}, an average
linear acceleration Āi,t is calculated over a ten second window
centered at the datum. This average is then subtracted from
the value of linear acceleration to obtain corrected linear
acceleration A′i,t:

A′i,t = Ai,t − Āi,t (3)

It is important to note that this zero mean filter practically
acts like a high pass filter. While information on the motion
of the wrist relative to the body is retained, any information
on global movements, like slow motions of the body while
walking are filtered out.

III. RESULTS

We analyzed linear accelerations during a free-living day
for 351 participants in the Shimmer3 dataset. Figure 6 shows
the distribution of acceleration values during rest and motion.
We learn that while some instances of high acceleration exist,
the distribution of wrist linear acceleration is long tailed to
the right. The distribution is concentrated in movements of
relatively low acceleration. 50% of the acceleration is <0.01g
(figure 6), 90% of the wrist acceleration is <0.04g, and 99.9%
of the acceleration is <0.2g.

TABLE I
LINEAR ACCELERATION AT THE WRIST DURING FREE-LIVING IS MUCH

LOWER THAN ACCELERATIONS AT OTHER BODY LOCATIONS DURING
SPORTS-LIKE ACTIVITIES.

Work Location Activity Acc.
Lundgren et. al [12] Foot Jumping 9g - 10g
Lundgren et. al [12] Foot Trampoline 10g - 15g

Lucas-Cuevas et. al [13] Foot Running 4g - 6g
Cappozzo [21] Upper Body Walking 0.8g †

Cappozzo [21] Lower Back Walking 0.4g †

Kavanagh et. al [22] Head Walking 0.2g †

Rowlands et. al [23] Wrist Walking 1.8g †

Rowlands et. al [23] Wrist Running 6g †

Rowlands et. al [23] Wrist Box Jumping 5g †

Stamatakis et. al [24] Finger Finger Tapping 0g - 8g
This Work Wrist Free-Living 0g - 0.2g

Fig. 7. Magnitude of corrected linear acceleration (Y-axis) vs time (X-axis).
Noise is mitigated by the zero mean filter. Plateaus P1, P2 and P3 seen in
figure 2 have been reduced to periods of zero linear acceleration.

For the state of rest, linear acceleration values range from
0.00 to 0.06g, which can be interpreted as noise. Figure 6
shows that the average value for noise is in the neighborhood
of linear acceleration when the wrist is in motion. More
importantly, we learn that 70% of wrist motion lies within
the range of noise, explaining why acceleration based features
do not perform well in some applications.

When the mean filter is implemented, figure 7 shows that
the noise is mitigated during long periods of rest, while
the signature of the signal during motion is still retained.
Plateaus tend to be minimized to near zero. The magnitude
of linear acceleration during periods of time when the object
was moving are somewhat reduced but overall trends are still
clearly visible.

IV. DISCUSSION

To our knowledge, this is the largest collected dataset that
measures the expected range of linear acceleration in human
wrist motion during normal daily free-living. Previous work
has shown accelerations ranging from 5g - 15g (table I). For
example, sports-like activities like jumping or running can
produce accelerations in the range of 9g - 15g, finger tapping
can produce accelerations in the range of 0g - 6g, while
walking and running can produce accelerations in the range
of 1.8g - 5g. This is in huge contrast to the linear acceleration
at the wrist during free-living, where the range is an order of
magnitude lower, between 0g - 0.2g.

This work also quantifies the difficulty imposed by noise
sources in linear acceleration calculations. Noise in linear
acceleration ranges from 0g to 0.06g, overlapping the range

†Average acceleration value.



of wrist accelerations by 70%. This large interaction between
noise and actual linear acceleration is what causes challenges
when accelerometers are used in some applications [3]. Con-
sider the application of detecting eating during free-living
[2], or detecting free-living activities like writing or using a
computer. In these applications, the expected wrist acceleration
is well within the range of noise, and thus linear acceleration
may not a good candidate for features. We recommend such
applications instead rely on features calculated from raw
acceleration or gravity, which can indicate orientation. On
the other hand, applications such as step counting [10], or
Parkinson’s tremor detection [24] often analyze acceleration
signals of higher amplitude. The noise in linear acceleration
(0g - 0.06g) is comparatively low compared to the amplitude
in these applications (5g - 15g), and thus does not affect
performance.

If linear acceleration is to be used, noise can be mitigated by
using the filter described in section II-G. This filter mitigates
noise while preserving the general trends that indicate motion.
The practical effect of this filter is that local motion (wrist
relative to the body) is maintained, while global motion (wrist
and body moving over a long period of time, for example
walking around a room) is filtered out. A side effect of this
method is that global motion is lost (e.g. distance walked by a
subject wearing an accelerometer), but local motion is retained
(e.g. wrist motion relative to the body).

In conclusion, we recommend researchers using linear ac-
celeration first verify if their application is affected by the
noise in linear acceleration. This can be done by visualizing
the magnitude of acceleration. If they observe long periods
of constant acceleration that is not physically feasible, we
recommend they consider using raw acceleration or gravity for
features instead. If they do use linear acceleration, a mean filter
can be added to mitigate noise and enhance information on the
wrist relative to the body, at the cost of losing information on
the movement of the entire body itself.
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