2020 IEEE International Conference on Bioinformatics and Biomedicine (BIBM) 978-1-7281-6215-7/20/$31.00 ©2020 IEEE DOI: 10.1109/BIBM49941.2020.9313465

2020 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)

The Challenge of Metrics in Automated Dietary
Monitoring as Analysis Transitions from Small Data
to Big Data

Surya Sharma
Electrical and Computer Engineering
Clemson University
Clemson, USA
eating @suryasharma.com

Abstract—Many works in the field of automated dietary
monitoring (ADM) have analyzed small data sets consisting
of <10 subjects and <20 meals. This is often the first step
in researching new sensors or body positions for detecting
consumption. Metrics tend to focus on within-meal accuracy by
quantifying physiological event detection (bites, chews, swallows).
As analysis shifts to larger datasets containing many days of data
from everyday life and researchers build methods that can be
used in everyday life, it becomes equally important to quantify
the accuracy of how many meals are detected. In small data sets
most meals can be detected at least partially. In larger datasets,
some meals are missed and false positives occur. In this work
we discuss the pros and cons of time-based metrics and episode-
level metrics. We demonstrate how class imbalance affects some
of the commonly used time metrics, and discuss why episode level
metrics need to be reported as the field transitions from small
data sets to big data sets.

Index Terms—automated dietary monitoring, eating detecting,
metrics, gesture recognition, m-health, wearables, obesity

I. INTRODUCTION

Automated dietary monitoring (ADM) is a field concerned
with monitoring eating and energy intake using wearable or
environmental sensors. Information from these sensors can
be used by nutritionists and clinicians to better understand
the dietary intake of their patients or subjects. Many re-
searchers have demonstrated wearable sensors that can detect
periods of eating. For example, researchers have demon-
strated eye-glasses fitted with cameras [1], motion sensors [2],
or EMG sensors [3]. Others have shown necklaces [4],
smartwatches [5], chest belts [6], earphones [7], and other
proof-of-concepts [8], [9]. While these methods may work
towards the same goal, published works in ADM have reported
as many as 22 separate metrics and 45 separate outcomes [10],
which makes a direct comparison of such works challenging.

One reason for this disparity is that researchers are often
collecting their own data sets to evaluate a new idea. We be-
lieve that an unintended consequence of this is that evaluation
methods are affected by the size of the data sets collected. We
also believe that because many ADM researchers work in the
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fields of computer science and electrical engineering, ADM
is often evaluated using metrics that have traditionally been
used in classification and segmentation problems. For example,
a recent survey found that decision trees (N=16), hidden
Markov models (HMM, N=10), random forests (N=19), and
support vector machines (SVM, N=21) were commonly used
classifiers [11], while some work has used feature selection
and Neural Networks (NN) [1], [12] or end-to-end deep
learning [13]-[15]. Such classifiers often report metric in terms
of samples classified, or values from a confusion matrix [16].

While some authors report outcomes on detecting eating
episodes (aka activities, moments, events, periods, meals or
snacks), a survey of N=40 works in ADM by Bell et al. showed
that most researchers report metrics that are influenced by
the amount of time spent in eating or evaluate the number
of windows correctly classified [10]. Very few works in the
literature discuss episode level recall or the prevalence of
falsely detected meals, which is a well known issue plaguing
the field.

We believe that as the field transitions to big data, there
is a need to discuss what metrics should be published, and
why. In this work we discuss the pros and cons of time and
episode level metrics. We show how some metrics are affected
by the imbalance of eating and non-eating time in data sets,
and how this affects comparisons between works. We discuss
the importance of episode level metrics as the field transitions
towards big data sets and deployment. This work is informed
by our experience creating and analyzing the Clemson all-
day data set (CAD), the largest wrist tracking based eating
activity data set currently known to us. The data set contains
4,680 total hours of data (with 250 hours eating) collected
from 351 participants over 354 days. CAD is 10x - 50x larger
than previous work [17], and affords us the unique opportunity
to present our insights.

II. THE EFFECT OF DATA SET SIZE

Data sets are often first created to test new sensor modalities
or ideas. In our group early experiments tested if wrist motion
data could be used to detect bites of food, and then eating [5],
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TABLE I
CHANGE IN PRECISION AND RECALL OF MEAL DETECTION WHEN
TRANSITIONING FROM CONTROLLED ENVIRONMENTS OR SMALL DATA
SETS TO FREE-LIVING OR LARGE DATA SETS

. Controlled/Small Free Living/Large
Previous Work Precision | Recall | Precision . Rec%lll
Thomaz [30] 67 89 65 (-2) 79 (-10)
Mirtchouk [31] 88 87 45 (-43) 85 (-2)
Chun [22] 95 82 78 (-17) 73 (-9)
Zhang [32] 94 90 79 (-15) | 77 (-13)
Kyritsis [14] 86 94 46 (-40) | 63 (-31)

[18], [19]. Other groups have tested other sensor modalities
like sensors near the ear [20], [21], the neck [22], [23], or
sensors mounted on eye glasses [2], [24]-[26]. These early ex-
periments allow researchers to quickly prototype devices and
test hypotheses. Data is often collected by the researchers in
laboratory or semi-controlled settings, using video recordings
for ground truth annotations. Researchers often use themselves
as subjects, or academics and students in the area. Through
these experiments and data sets, researchers are able to show
evidence that a sensor modality is successful in detecting
eating.

Once the feasibility of such a device has been estab-
lished, researchers may attempt large scale data collections
to determine the effectiveness of their ideas in a less con-
trolled environment. Instrument validation is important to the
clinical community and requires the accuracy of a tool be
independently tested. Validation data sets are collected from
participants wearing the sensors all day long in free-living
conditions. Authors may use video cameras or self-reports for
annotation. For example, Bedri et al. collected in-the-wild data
at the Aware home at Georgia Institute of Technology, a sensor
instrumented home specially built to support data collection
[7], [27]. Similarly, Doulah et al. collected data for a field-like
study by inviting participants to live in an observational facility
during the day where they were free to conduct their daily
business or leave for errands, as long as they returned to eat
[28]. Other groups have used self-reports as researchers have
shown that cameras influence human behavior, and participants
wearing cameras “cannot be themselves” [29]. For example,
Zhang et al. collected data for their experiments using EMG
eyeglasses with the help of a diary where participants logged
eating activities at 1 minute intervals [24], [26]. For collecting
data for CAD, we used a button that participants press at the
start and end of meals [17].

In the field of ADM there is evidence that experiments on
small data sets do not generalize to the broad variability of
behavior seen in individuals in everyday life. Table I reports
how work has repeatedly shown that methods that work well
on small or controlled data sets do not work as well on larger
data sets [22], [30]-[32]. Similarly, Doulah et al. showed
that eating micro-structure is different in the lab compared to
eating in-the-wild [28]. Our work showed that meals in free-
living conditions contain much larger amounts of secondary
activities, such as walking, talking and resting, compared to
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Fig. 1. A 10 minute meal from CAD [17] where the subject ate continuously.
Such meals may not be indicative of meals in free-living [17]. Dashed vertical
lines represent self-reported start and stop times. Colored blocks represent
activity during one minute of time, E = eating, O = other, W = walking and
R=resting.
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Fig. 2. Another 11 minute meal from CAD [17] where the subject stopped
eating food for brief periods of time. Such meals are more common and
indicative of meals in free-living [17].

meals consumed in an experimental setting [17].

To fully capture behavioral variations in the population,
our group has created two large data sets - the Clemson
cafeteria data set [33], [34], and the Clemson all-day data
set (CAD) [17], [35]. The cafeteria data set contains 518
courses of food consumed in a public cafeteria by 271 subjects.
Hand movement gestures in this data set have been annotated
through video data from ceiling mounted cameras. The all-
day data set contains 4,680 hours (354 days) of wrist tracking
data containing 250 hours of eating (1,063 meals). Both these
data sets are orders of magnitude larger than previous data
sets. We recruited participants from the broader community
in the cities around Clemson, SC, balancing for gender, age
and ethnicity. Annotation of meals in CAD was captured
through self-reported start and end times of meals, provided
by participants using a button on the wrist mounted device.
Analysis of CAD has shown that participants in free-living
conduct a wide variety of secondary activities during eating,
such as doing laundry, putting away groceries, walking a dog,
playing with a niece, and attending a fair [17]. This was only
possible as participants were asked to self-report periods of
eating using a button on the accompanying wrist watch, and
were not hindered by video cameras.

Figures 1 and 2 show examples of two meals from CAD.
The graphs plot wrist motion (Y axis) vs time (X axis). Self-
reported start and end times are indicated by vertical dashed
lines, while colored boxes show machine detected labels for
one minute of data. The meals show how individuals may stop
eating, rest or walk for a brief period of time, and resume
eating during what is often called a “meal”. Should this time
be considered as eating or not eating? Evaluating classifiers
without a concrete answer to this question creates a challenge.
A classifier may detect the time spent walking or resting as
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TABLE II
PRECISION AND F; SCORE DROP AS THE SIZE OF THE NON-EATING CLASS IN A DATA SET INCREASES. WE USE A TOY EXAMPLE WHERE THE SIZE OF THE
EATING CLASS REMAINS FIXED, WHILE THE SIZE OF THE NON-EATING CLASS INCREASES. WE ASSUME THAT THE INCREASE IN TN AND FP IS A LINEAR
FUNCTION OF THE SIZE OF THE NON-EATING CLASS.

Ratio | Eating | Non-eating | TP | FN | FP TN Precision | Fy score | Recall | Weight | ACCyw
hrs hrs hrs | hrs | hrs hrs % % % %
1:2 100 200 9 | 10 50 150 0.64 0.75 0.9 2 0.83
1:4 100 400 90 10 | 100 | 300 0.47 0.62 0.9 4 0.83
1:5 100 500 90 10 | 125 | 375 0.42 0.57 0.9 5 0.83
1:10 100 1000 90 10 | 250 | 750 0.26 0.40 0.9 10 0.83
1:15 100 1500 90 10 | 375 | 1125 0.19 0.31 0.9 15 0.83
1:20 100 2000 90 | 10 | 500 | 1500 0.15 0.26 0.9 20 0.83
TABLE III
F1 SCORE AND RECALL ARE UNDEFINED IF A PARTICIPANT DOES NOT CONSUME FOOD DURING THE DAY, WHILE AC'C'yy 1S NOT.
Ratio | Eating | Non-eating | TP | FN | FP TN Precision | Fy score | Recall | Weight | ACCw
hrs hrs hrs | hrs | hrs hrs % % % %
— 0 2000 0 0 500 | 1500 0 — — 5 0.6
TABLE IV

PRECISION AND F; SHOW A DOWNWARD TREND AS DATA SET SIZES INCREASE. TABLE SORTED BY HOURS OF EATING DATA IN DATA SET USED. WE
SHOW SELECTED WORK FROM THE FIELD OF DETECTING EATING USING WRIST MOTION TRACKING DATA.

Row Work Eating Hours | Total Hours | Precision | Recall | F1-Score Dataset
1 Kiyritsis 2020 [14] 1.6 35 86 94 90 FreeFIC held-out [14]
2 Thomaz 2015 [30] 2 32 67 89 76 Wild-7 [30]
3 Kiyritsis 2020 [14] 5 77 88 92 90 FreeFIC [14]
4 Mirtchouk 2017 [31] 12 144 25 83 38 ACE-E [31]
5 Thomaz 2015 [30] 16 422 65 79 71 Wild-Long [30]
6 Kyritsis 2020 [14] 20 250 46 63 53 ACE-E+FL [31]
7 Mirtchouk 2017 [31] 20 254 31 87 46 ACE-E/FL [31]
8 Sharma 2020 [17] 250 4680 14 76 23 CAD [17]

non-eating, but be penalized during evaluation because the
time was contained within a self-reported “meal”.

The next sections discuss the lessons we learned while
cleaning and analyzing CAD in terms of metrics, and the ad-
vantages and disadvantages of time and episode level metrics.

III. TIME METRICS

Time metrics are calculated by first labeling each datum
of the data set as eating or non-eating. A classifier then tries
to replicate these labels, yielding TP = true positives, FP =
false positives, TN = true negatives and FN = false negatives.
From these, metrics such as precision, recall, F; score, bal-
anced accuracy ACCp, Weighted accuracy ACCy, can be
calculated. These metrics evaluate the detection performance
of the classifiers. Some work has reported Cohen’s Kappa x
and Jaccard index but there is ongoing debate on if and when
these metrics should be used [36].

Time metrics are useful for evaluating data collected in
the laboratory or data that has video evidence. These metrics
evaluate what amount of time in a data set was detected as
eating. We believe their adoption is the result of similarities
between the problem of eating detection (segmentation of time
periods during the day), and problems in image segmentation
and detection. These metrics are very useful when evaluating
the performance of fine-grained annotated data, which is
common in small data sets.
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Researchers have used many sensor modalities to measure
different physiological events associated with eating, such
as bites, chews or swallows. Direct comparison between
these methods is not practical. By quantifying the duration
of consumption, time metrics make it easier to compare
the performance of different sensor modalities and different
approaches to detecting eating.

However, time metrics can suffer from a number of prob-
lems. The first problem is that they are affected by the balance
of eating vs non-eating data in a data set. This makes it hard to
compare research in ADM conducted independently on small
data sets. We learned that as the size of the data in our non-
eating class increased, precision and thus F; score dropped,
even though the classifier detected as many episodes as it did
previously [17]. Table II demonstrates using a simple example.
It shows how commonly used metrics such as precision
and F; score drop as the amount of data representing non-
eating activities increases. Our example starts with a data
set containing 100 hours of eating and 200 hours of non-
eating, a ratio of 1:2. We imagine a classifier that produces
the confusion matrix values of TP = 90 h, FN = 10 h, TN =
150 h and FP = 50 h. The resulting values for various metrics
are shown in row 1 of table II. Assuming that the relationship
between non-eating hours of data and true negatives and false
positives is linear, we show how TN and FP change if the
amount of non-eating in a data set is increased from a ratio of
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TABLE V
TIME METRICS DO NOT CORRELATE WITH EPISODE METRICS. WE USE A TOY EXAMPLE SHOWING BREAKFAST AT 9 AM AND LUNCH AT 12 PM (GT
MEALS, CHECKERBOARD BOXES). EACH LONG BLOCK IS 15 MINUTES LONG, AND A SHORT BLOCK IS 7.5 MINUTES LONG. CLASSIFIER A DETECTS
100% OF THE BREAKFAST (TP, GRAY BLOCK) AT 9 AM, BUT MISSES ALL OF LUNCH. CLASSIFIER B DETECTS 50% OF BREAKFAST AND LUNCH.
CLASSIFIER C DETECTS 50% OF BREAKFAST AND LUNCH, AND TRIGGERS A 15 MINUTE FP (WHITE BLOCK) AT 10:00 AM. CLASSIFIER D DETECTS 50%
OF BREAKFAST AND LUNCH, BUT TRIGGERS TWO 7.5 MINUTE FPS AT 10:00 AND 11:00.

Source Labeling Time Metrics Episode Metrics
09:00 10:00 11:00 12:00 TPR % | Precision % | TPR % | Precision %
meals (GT) R B - B E -
classifier A o 50 100 50 100
classifier B m [ | 50 100 100 100
classifier C B | 50 50 100 66
classifier D 0O 0O =m 50 50 100 50

100
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Fig. 3. Precision reported in the literature (Table IV) drops as the data set

sizes increase. We use row number on the X axis instead of hours of eating
data as 250 hours in the last row skews the plot unreasonably.

1:2 to 1:20 (the amount of hours spent eating in an average
American day [37]). This table demonstrates the well-known
importance of using weighted accuracy on imbalanced data.

A similar drop in precision and F; score can be seen across
work in the literature as the size of data sets increases. Table
IV lists works that have studied wrist motion tracking to detect
eating. The table is sorted by the number of hours of eating
captured in the data set. Figure 3 plots precision (y-axis) vs
study (x-axis) and shows the trend line. It can be seen that
precision and F; decrease as the data set size increases. This
implies that performance differences may be an artifact of
dataset size rather than classifier performance. Researchers
may incorrectly conclude that a method works better or worse
than another when comparing work on data sets of different
sizes.

A second problem with time metrics is that some of them
are undefined for data which does not contain any eating. We
learned that this can be an issue when analyzing CAD, which
contains data from participants who did not report eating
during the day [17]. Table III shows how precision, F; score
and recall are undefined in this case. The ACC}y measure
is still useful assuming a standard weight (e.g. 20:1) can be
applied.

A third problem with time metrics is that it is debatable what
the ground truth class of eating should contain - all the time
from the first bite/chew/swallow to the last bite/chew/swallow,
or time periods for the bites/chews/swallows? A “meal” may
contain multiple consecutive minutes during which no con-
sumption is taking place. The subject may be watching media,
talking with family, or doing other things during thie time, but
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still consider that time part of the “meal”. How should this
time be evaluated?

A fourth problem with time metrics is that they require
video to obtain fine-grained labeling of periods of eating. The
use of video cameras to annotate ground truth data increases
the effort to create a data set. Previous authors have had to
design custom tools and hardware specifically for annotation
- for example Doulah et al. use a custom foot pedal to
mark events during eating [2], [38], while other groups have
used custom software (ChronoViz [39], CafeteriaView [34],
PhoneView [40]). On the other hand, video cameras cannot be
used in conjunction with large data sets due to their limited
capacities and battery lives. Previous work has also shown
that cameras affect human behavior negatively [29], and thus
individuals participating in data collection may not behave as
they would in naturalistic conditions, complicating the efficacy
of these metrics further.

IV. EPISODE METRICS

Episode metrics quantify the number of meals/snacks de-
tected by a classifier. They are calculated by examining overlap
between periods of time labeled as eating in the ground truth
with periods of time detected by a classifier. At the episode
level, a TP indicates a detected meal, an FN indicates a
missed meal, and a FP indicates an extraneous detection. True
negatives (TNs) are undefined.

Time and episode metrics can tell a conflicting story on true
positives. Table V shows an example. We show two meals,
each 15 minutes long. Breakfast is consumed at 9:00 am
and lunch is consumed at 12:00 pm. We show two classifiers
(classifier A and classifier B). Classifier A detects the first meal
completely, and overlaps breakfast 100%, while classifier B
detects both meals, only overlapping 50% of both meals. This
results in a time metric TPR of 50%, and a precision of 100%
for both the classifiers. On the other hand, when evaluating
episode metrics, we see that classifier A has a TPR of 50%,
while classifier B has a TPR of 100%. This example shows
how time based TPR does not correlate to the TPR of eating
episodes. To an end user looking for good detection of meals,
classifier B is a better classifier.

Time and episode metrics can also tell a conflicting story
on false positives. Table V demonstrates via classifiers C and
D. Both classifiers C and D detect 50% of breakfast and lunch
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TABLE VI
EATING EPISODE METRICS ARE OFTEN NOT REPORTED IN WORK DETECTING EATING EPISODES USING WRIST TRACKING.

‘Work EA Subjects | TPR (%) | FP/TP Dataset
Thomaz 2015 [30] - 7 - - Wild-7 [30]
Thomaz 2015 [30] - 1 - - Wild-Long [30]
Kyritsis 2020 [14] 6 6 - - FreeFIC held-out [14]
Kyritsis 2020 [14] 17 6 - - FreeFIC [14]
Mirtchouk 2017 [31] 31 5 94 - ACE-E/FL [31]
Mirtchouk 2017 [31] 55 6 87 - ACE-E [31]
Kiyritsis 2020 [14] 86 11 - - ACE-E+FL [31]
Dong 2014 [40] 116 43 86 3.8 iPhone [40]
Sharma 2020 [17] 1,063 351 89 5.2 CAD [17]

like classifier B, but they also trigger false positive detections.
Classifier C triggers one false positive that is 15 minutes long
at 10 am, while classifier D triggers two false positives that
are 7.5 minutes long each at 10 am and 11 am. Both classifiers
C and D result in a time based TPR and precision of 50%,
however classifier C has a higher precision. This example
shows how time based precision does not correlate to the
precision in detecting eating episodes. Episode metrics show
to an end user (such as a nutritionist or clinician) that classifier
C is better than classifier D.

The above examples show that episode level metrics are
needed to convey the full story, and provide data that is useful
to users, especially as the field transitions to real-world use
and large data sets. Data sets with 1,000+ meals are more
likely to show false positives and variations in eating patterns
which can only be described by episode metrics.

If episode level metrics are the goal, the burden of data
collection and cleaning can be reduced, as it may be sufficient
to only collect annotations and labels in terms of time stamps -
“When did you eat” - rather than require fine-grained annota-
tions in the form of minute by minute logging or video camera
recordings. Further, the absence of cameras may encourage
more naturalistic behavior during eating.

While time metrics help evaluate classifier performance and
monitor in-meal behavior such as portion size and eating rate
[28], episode level metrics can help monitor between-meal
behaviors and daily patterns such as intermittent fasting [41]
which has been shown to help with weight loss, as it suggests
easy behavioral modifications such as time blocking or not
eating in a particular time window.

Table VI shows episode metric performance of recent work
in the field of detecting eating episodes using wrist tracking.
We report the method (work), and the data set used by the
researchers. Works on smaller data sets tend not to report
episode level metrics. We hypothesize that this is because in
smaller data sets, all meals can be detected partially, and a low
number of false positives are triggered, making the reporting
of such metrics unwarranted. On the other hand, some works
with larger data sets report episode TPR indicating that not all
meals could be detected. Similarly, most works do not report
the metrics for false positive detections. While Mirtchouk et
al. note that their method resulted in false positives that were
short and had lengths similar to snacks, they do not report
these numbers numerically. We believe it is important to report
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these numbers as time metric based reporting of false positives
does not capture the full performance of a method.

Table VI also introduces a new metric: false positives per
true positive (FP/TP). Some previous work has reported false
positives per hour (FP/hr) [10], however we believe that FP/TP
provides a more intuitive understanding of the episode level
performance of a classifier. It indicates the expected number
of false alarms that a user could expect relative to the number
of true meals detected.

Episode level metrics have limitations. They cannot quantify
in-meal eating behavior fully. Methods built towards these
metrics are able to provide coarse details such as the start
and end of a meal, but not fine-grained details. Further, FPs in
episode metrics have a higher impact than FPs in time metrics.
A high ratio of FP/TP implies that the method found several
large periods of time as false alarms, rather than several short
periods of time resembling individual ingestion events.

V. CONCLUSION

In this paper we show how experiments on large data sets in
everyday life or free-living conditions tend to be different from
experiments on small or laboratory data sets. Our discussion
was informed by our experience collecting and analyzing the
Clemson all-day data set (CAD), which is 10x-50x larger than
other data sets in the field. We believe that small data sets,
while pushing the field forward, do not adequately capture
eating variability or generalize well to the broad behavior of
individuals in everyday life. This can be seen in figure 3 and
tables I, II and IV, all of which show how precision and
F; score drop as methods are evaluated on larger data sets
or individuals eating in unconstrained conditions. We believe
that big data sets will be needed to develop ADM devices for
the real-world, specifically to train their classifiers. This is in
addition to validating them, which may need an even bigger
data set.

VI. DISCUSSION

As research in ADM transitions from small data sets (10
subjects, 1-10 days [30], [42]) to big data sets (250+ subjects,
500+ courses [17], [33], [34]) and from laboratory experiments
to everyday life [22], [30]-[32], we believe that episode
metrics will be the default for large data sets as opposed
to time metrics. This is because time metrics require video
for ground truthing and annotation which is a complicated
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and time-consuming process. Annotation at this scale becomes
impractical as data set sizes increase, and researchers may
have to rely on self-reports or coarse annotation. Further, time
metrics are hard to explain (and less useful) to end users or
clinicians who do not come from engineering or computer
science disciplines. We have observed this in colloquial dis-
cussions, where individuals or users typically speak in terms of
meals per day and describe a meal by a single time, e.g. “I had
a snack at 4 pm and dinner at 6:30 pm”. Some previous work
has agreed with this and discussed reporting eating episodes
at coarse resolutions up to an hour [30].

Time metrics also do not work well in the presence of
secondary activities which are commonly seen when individ-
uals eat in-the-wild. At least 15%-20% of self-reported meals
are activities like resting or walking [17]. If these periods of
resting and walking are self-reported as eating, time metrics
will not provide appropriate evaluation.

It should be noted that it took us years to collect and
clean the Clemson all-day dataset [17], which contains 4,680
hours of data (354 days) and 1,063 self-reported meals, and
the Clemson cafeteria data set [33], [34]. Both these data
sets are orders of magnitude larger than previous data sets.
We recognize the barrier to entry big data creates - new
researchers would find it extremely hard to collect such large
data sets. Expecting all researchers to collect large data sets
would be a disservice to the field of ADM. In our own group,
our early experiments evaluated ideas for new sensors on a
small set of participants [5], [19], and only recently have
we collected and analyzed a larger data set [17], [34]. For
this reason through this paper we only provide a word of
caution, reminding researchers not to compare the performance
of methods on small data sets with those on large data sets,
as there is no evidence that methods that work well on small
data sets generalize well to large data sets. We hope that more
established researchers in ADM attempt to work towards larger
data sets and publish results demonstrating the effectiveness
of their methods in the larger population.

Finally, we recognize that this paper does not consider the
evaluation of energy intake [43], [44] or physiological event
detection [10], [45]. However, we believe that these topics
have been discussed well in the previous literature and were
beyond the scope of this paper.
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