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Abstract—The prevalence of obesity is a growing, worldwide ear, arm, and back worn sensors have been investigated for
health concern. Self-monitoring of eating consumption is widely recognizing eating activities [12]. While these configuras
recognized as a necessity for weight loss. In this paper we describemay find applications in a laboratory or clinic, they are not
a novel method for automated monitoring of eating. Our method . L ' -
uses a single sensor that is worn on the wrist, similar in form suitable for day-to-day living. In summary, nong of.the BRI .
to a watch. Wrist orientation was captured at a rate of 60 Hz Methods automates the process of self-monitoring of eating
for an entire day while four subjects conducted their natural consumption in an easy-to-use manner.
daily routine. In our first experiment, we manually segmented Our group has previously described methods using a micro-
the wrist motion data according to task logs kept by the subjects, electro-mechanical system (MEMS) sensor to track wrist mo-

and developed an algorithm to classify the tasks, achieving an tion i der t th b f bit ten duri
accuracy of 91%. In our second experiment, we automatically lon In order o measure the number of bites eaten during a

segmented the wrist motion data in order to detect eating sessions Mmeal [13]. We have discovered that while eating, the wrist
achieving a detection accuracy of 82%. Our methods will enable motion of a person undergoes a characteristic rolling motio

new opportunities in the study of dietetics, weight loss and that is indicative of the person taking a bite of food [14].
m?ﬂzgxemf;:ﬁgggﬁ,?’ a?:ccr)]er?ilttignmogrlitgrrlltg?ib  sensor bogy HOWever, our device requires the user to press a button #o tur
motion tracking, eatingty 9 ' ' Y the device on before eating and turn the device off aftengati

In this paper, we explore methods to overcome this limitatio
by differentiating eating sessions from other activitiesing
the same MEMS sensor.

This work is motivated by the growing prevalence of obesity With their low power and small size, MEMS sensors can be
in the world. In 2007-2008, the National Health and Nutritio comfortably worn on the human body and operated for hours at
Examination Survey showed that 68.3% of Americans wegetime. Researchers have investigated their use for reziogni
overweight and 33.9% of Americans were obese [1]. Th®ommon daily activities such as walking, running, sitting
World Health Organization reported that 1.5 billion adultand resting [15] [16] [17] [18], accidental falls [19], sp®r
(age 20+) were overweight and 500 million adults were obeaetivities [20], assembly tasks [21], and tremors assediat
worldwide [2]. Obesity is strongly associated with severalith Parkinson’s disease [22]. Sensors can be placed on
major health risk factors, such as diabetes, heart diskage, different parts of the body, such as the chest [15], shoulder
blood pressure, stroke and higher rates of certain can8grs [19], waist [18] [19], thigh [19], ankle [20], hip [17] and vet
In the United States, the annual medical expense of obedity]. The sensor type varies as well. The most common type is
has been estimated at $147 billion in 2008 compared to $7&&celerometers [15] [18] [19] [20] [21] [23], while ECGs [[16
billion in 1998 [4]. [17], light sensors [19], microphones [19] [21] and temper@

Weight control can be assisted by self-monitoring of intakeensors [17] have also been used.
consumption, which has been consistently related to seftdes None of these works has considered the problem of de-
weight loss [5]. The most well known tool for monitoring foodtecting eating activities during normal daily life. To our
intake is an eating diary; however, this tool places the dardknowledge, the methods we describe herein are the first to
on the user to manually record all foods eaten. In additiolook at this difficult problem. In addition, many of the preus
people have a tendency to forget or underreport the calovierks on activity recognition require a large set of sengbrg
consumption [6] [7]. Some researchers have investigatied) us[19] [23], that together with the wiring, are difficult to wea
a scale embedded in a dining table [8] [9]. However, thisutside the laboratory. Experiments are typically perfdm
method can only monitor consumption when people eat iat a laboratory setting where subjects are asked to repeat
the instrumented table. Another method is to use a PDdktivities of interest, interspersed with other motions][[IL6]
or a cell phone to take photos before and after the eatifiy] [20]. In contrast, we instrumented our subjects with a
and use image processing to estimate the amount of fogidgle sensor and instructed them to conduct normal desvit
intake [10] [11]. However, because foods must be carefulfigr an entire day. While the results presented in this paper
separated and positioned for imaging, these methods hdve ax@ preliminary and on a limited number of subjects, we
yet been studied in natural daily living. Combinations ofkie believe our methods will ultimately enable new opportuasti

I. INTRODUCTION



Fig. 1. InertiaCube3 prototype
Fig. 2. Data collection using a single orientation sensothenwrist

for weight management and weight loss paradigms.

The rest of the paper is organized as follows: In section Il
we describe our approach of classifying eating activity o p
segmented motion data and detecting eating sessions in real
time. In section Il we present experimental results todati
our proposed algorithms. Finally, we conclude our paper and
discuss future work in section IV.

Il. METHODS
A. Hardware and prototype

A wired InertiaCube3 sensor produced by InterSense Corpo-
ration (InterSense, Inc., 36 Crosby Drive, Suite 150, Bedifo
MA 01730, www.isense.com) was used to record the wrist
motion data. It is composed of an accelerometer, a gyroscope
and a magnetometer on each of the three axes which provide
an orientation heading in each of these three orientations:
roll, pitch, and yaw. Figure 1 shows the wired Inertiacube3
sensor and its size compared to a US quarter. The sensor was
connected to an external 9V battery as a power source and a
laptop with a running program to store collected data thihoug
an RS232 interface. Both the external battery and the laptoprig. 3. Data collection using a single orientation sensoth@wrist
were carried by the subject in a backpack. The adjustable wir
connecting the two parts was long enough to make sure the

subject’s normal behaviors were not being affected. orientation at a rate of 60Hz. Due to the fact that the battery
] in the laptop could only last for about four hours, the progra
B. Data collection generated continuous beeping for 3 minutes when the battery

Subjects were asked to wear the sensor and carry theel of the laptop dropped to 10%. The subject was asked
backpack to record their wrist motion data when they got up close the program and replace the battery (an extra was
in the morning, and to stop recording the data when they weprbvided in the backpack) when he or she heard the beeping
to bed at night. As shown in Figure 2, the subject placed theminder. He or she was asked to restart the program aftérwar
sensor on the dominant eating hand, and then wrapped thecontinue recording.
band tightly around the forearm to ensure it would not slide During recording, subjects were asked to conduct daily
around the arm. The program running on the laptop in tletivities as naturally as possible. The subject was astied t
backpack (Figure 3) was set up to collect the orientatioa dakmove the device when engaging in activities which would
from the sensor in real time. damage the device, such as taking a shower or playing contact

Using the recording program on the laptop was straigtgports. The subject was asked to record activity behawviogs i
forward. Double clicking the program icon on the desktopritten log book. The subject was asked to record the stad ti
would automatically start it to record the pitch, yaw and roknd the name of the activity for each new task. For example,



Orientation
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TABLE |
ACTIVITY CATEGORY

Eating activity | Sedentary activity Ambulatory activity
Eating Using computer Cooking
Data Using phone Walking
Reading Driving
Writing Washing dishes
Napping Cleaning
vilef:nitenlt)e;a Talking Doing laundry
Watching TV Packing
Changing laptop battery Brushing
Filing nail Shopping
Ambulatory? NO Playing card game
Going to restroom
Being passenger in car
YES Playing video game

categories may happen at the same time, such as eating apples
and working on a computer. Second, different people can make
notes on the same activity in different ways. For instance,
some subjects may categorize “walk to car, stop to talk to a
friend” as one log entry, but some other subjects put it into t
categories. Because we are interested in eating actjvéigs
note with eating is categorized as “eating”. Any notes witho
eating mentioned were categorized to the best of our ability
08:02:04 eating; 13:24:58 walking. A task was defined as aSince eating is the most important activity to us, we do
piece of work or activity to be finished. The log informatiomot need to classify all these 23 tasks. We cluster these 23
written by the subject was used for segmenting the grougdtegories into three clusters:
truth tasks from the wrist motion data later. 1) Eating activity: eating activity is a task which related t

A total of 4 subjects participated in this experiment. Two eating food or drinking liquid.
were male and two were female. All the data was collected inpy sedentary activity: sedentary activity is a task (except

a completely free living condition, with no supervision. eating) which involves sitting down, not moving or not
exercising. All tasks in the middle column of Table |
belong to this category.

3) Ambulatory activity: ambulatory activity is a task which

il

Ambulatory Eating Sedentary
Activity Activity Activity

Fig. 4. Diagram of offline detection

C. Offline eating classification

For our first experiment, we consider the problem of classi-
fying the eating activity using both the collected motioniada : ) ) 7 :
and time information in the log book. An outline of the proges 'S rel_ated to walking, moving or EXercising. All tasks in
for the offline eating classification is shown in Figure 4. the right column of Table | belong-tc? this f:ategory. ]

Since different subjects might wear the sensor at differehfi€Se clusters were chosen because it is typically easier to
angles, it is difficult to define the task if we use the absoluffiStinguish sedentary and ambulatory activities. Onceehe
value of the orientation data. Therefore, we calculate th&ve been separated, eating activities can be recognizad as
derivative data, which is comparable. Since we have record@Pset of sedentary activities.
the data at 60Hz, the simplest way to calculate the derwativ To classify the segmented tasks, we calculate five features
data is in Equation 1 wheré, is the derivative data at time for each task:

ando, is the orientation data at time 1) Variance of yaw velocity (YVAR)
2) Variance of pitch velocity (PVAR)
dy = (0 — 04_1) x 60 1) 3) Variance of roll velocity (RVAR)

) Bites per minute (BPM) using bite detection method.
The method to detect bite counts using the derivative
data is described in our previous work [13].
Occurrences when the bite detection method does not

The second step is to segment the derivative data into tasks4
based on the log file. In the log file, subjects recorded the
start time for each new task. We use the start time of curren )
task as one boundary and the start time of the next task as the detect a bite over a span of at least one minute
other boundary for the current task to segment the derwvativ (NOT_EAT)
data. For each segmented data, we categorize it based on the - ' ) »
content in the log file into one of 23 categories, as shown in Using these features, each task is classified as follows:
Table I. 1) A task is classified as an ambulatory activity if any of

Although we were able to map most user defined tasks into  the following conditions are met:

Table |, a few tasks were difficult to categorize. First, two a) Y_VAR + P.VAR + R_VAR > T1
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Fig. 5. Diagram of real time detection

Fig. 6. State machine of potential eating session detection

b) Y_VAR > T2

c) PVAR > T3 .

d) R VAR > T4 segmented into 2 parts, one fram10 to t—5 and one front—

2) At k_' lassified i tvity if all of th 5 to t. Each of these two parts is classified using the methods
) foII:v?/ing;chr?j;ilc:ﬁs e?rz zrir?et?a NG activity I all Ot & tlined in section 11-C. Based on these classifications, th

) Y VAR < T5 and Y VAR > T6 point at timet — 5 is categorized as one of 4 categories:
a < an > . .
- — 1 1: th t f
b) P VAR < T7 and PVAR > T8 ) category is point may be a start boundary for an

eating task.
€) RVAR < T9 and RVAR > T10 2) category 2: this point may be an end boundary for an
d) BPM > T11 ting task
NOT_EAT < T12 eaung fask. - .
€) = 3) category 3: this point cannot be inside an eating task.

3) Otherwise a task is classified as a sedentary activity 4) category 4: this point may be inside or outside an eating
Here,{T1, T2, ... T13 is a set of thresholds. In our default task.

setting, these values a{@500, 5000, 1000, 5000, 3000, 200, Figure 6 illustrates a state machine that shows our method.
900, 150, 5000, 600, 2,}3 If the variance of the task’s |nitially we are in the state “not eating”. After that, we wid
velocity data is large, it is considered as an ambulatorly. tashe transition condition (category of the time stamp) every
If this criterion is not met, the task is considered as eith@r minute. If the transition condition is category 1, the stat
an eating task or a sedentary task. The eating activity hagnsits to “possibly eating”, at the same time, we updage th
the following characteristics: the variance of pitch, yamda potential start time of an eating session. While in the state
rO” Should be W|th|n a Certain I’ange. In addition, the @tin“possitﬂy_eaﬂng", if the transition condition is Categd, we
aCtiVity should have reached certain bite counts per miante update the start t|m8, if the transition condition is Catgg'ﬂ
should not include a long period where no bite is detectegle go back to state “not eating”; if the transition conditisn
These characteristics are used to separate eating tasks fl‘,%tegory 2, we have detected a potential eating session. We
sedentary tasks. output the start time and the end time of the potential eating
session and go back to state “not eating”.

For every potential eating session, we examine the duration

Our second experiment considers the problem of detectifighe duration is too short or too long, it is not to be conséte
eating activity without knowing the start time of each task ias an eating activity.
the log file. This method has the potential to detect the gatin We also extract the features and run the same algorithm
activity in real time as we collect the data. The outline of oullustrated in section 1I-C to classify the potential edatin
method is shown in Figure 5. In our algorithm, we only useession. If all criteria are met, an eating session is datect
the roll orientation data.

We calculate the roll velocity data from the orientationajat
same as in section II-C. To identify eating activity in raede, As described in Section 1I-B, a total of 4 subjects were
we use a sliding window to extract the motion feature. Thecorded, each for an entire day. We had no restriction on
window size is set to 10 minutes and we update the motitwow subjects should do their activities and how long they
feature every 1 minute. For each 10 minute window, the datasiBould do each task. For any eating task, subjects could eat

D. Real time eating detection

Ill. RESULTS



. o : TABLE V
their own food and liquid, and use any utensils they preéerre REAL TIME CLASSIFICATION RESULT (MINUTES)

(hand, spoon, fork, or chopsticks). Each recording sessam
completely unsupervised.

L. Ground Truth PC Detect
Table Il shows some statistics of all the tasks for these Subject | Start ime | End time | Start ime | End time
subjects. The total time recorded for these four subjects S1 11 17 9 17
ranged from 9.4 hours to 13.4 hours. The total number of S1 195 205 194 205
) ST 393 400 393 399
tasks for each subject was between 23 and 39. Table Il also ST 537 547 537 £49
shows the shortest task duration, longest task durati@mage ST 654 673 653 674
task duration, and standard deviation of task duration for S1 685 700
each subject. In addition, the most frequent task for diffier 22 57283 :318 8 96
subjects varied. S5 565 £73
We also include the statistics of eating tasks for these 4 S2 100 112
subjects in Table Ill. The total eating time of each subject S2 192 201
; ) . S2 538 548
was from 0.7 hour to 1 hour. This was consistent with the 53 85 94 85 94
“American Time Use Survey” from the United States Bureau S3 166 178 166 179
of Labor Statistics [24] which reported an average of 1.18 S3 257 269 258 272
hours on eating and drinking per weekday. The total number 22 2(1)2 gig g(lﬁ gfg
of eating tasks was within a range from 4 to 6 times. Table IlI 53 362 370
also shows the shortest eating session, longest eatingrsess S4 14 27
average eating session, and standard deviation of eatisgpse S4 270 277 270 276
for each subiect S4 462 484 466 475
ject. S4 518 527 515 528

Table IV shows the results of task classification using
the information on the log file. There were 125 total tasks
across all 4 subjects; 16% of the tasks were eating activity,
43% of the tasks were sedentary activity, and the rest wereAlthough there were a total of 20 eating sessions recorded
ambulatory activity. The classification accuracy is cated by the subjects, 3 of them lasted for less than 3 minutes

using Equation 2. In our experiment, the classifcation ey SO they were not included in Table V. We excluded these
was 91%. tasks because they were so short that our feature set did not

adequately describe them. For the remaining 17 eating,tasks

3 of them were not detected. There were 6 false detections.
I (2) Thus the sensitivity was 82% and the positive predictivei®al
total number of classifications was 70%. In addition, for the 14 eating sessions detected, 10
Table V shows the results of real time eating activitff them were detected with start and end boundaries which

recognition without knowing any information in the log file match the log file within 2 minutes. For the other 4 sessions,
In the table, the second and the third column show the groutit¢ boundary errors are (0, 5), (1, 3), (4, 9), (3, 1) minutes
truth time of each eating task. The second column shows tigspectively. We hypothesize that these boundary err@s ar
start time of the eating task and the third column shows thkely due to timing misalignments between the user logs and
end time of the corresponding eating task. The fourth colun¥yfist motion data, as well as judgment calls by the subjects
and the fifth column show the computer detected bounda®§ t0 when they actually started and stopped eating.

for each eating task. The fourth column shows the detected
start time of each eating task and the fifth column shows the
detected end time of the corresponding eating task. All of The prevalence of obesity is a growing, worldwide health
these numbers are in minutes. A row without any number §®ncern. Self-monitoring of eating consumption is widely
the fourth and fifth column indicates that there is an undetec recognized as a necessity for weight loss. However, there
eating task. A row without any number in the second colun@fe currently no automated methods for monitoring eating
and third column indicates that there is a false detection @@nsumption in natural daily living. In this paper we have
an eating task. A row with numbers in all columns indicategescribed preliminary experiments that use a single wrist-
that this is a detected eating task. The sensitivity is ¢aled Worn sensor to track wrist motion throughout the day, in
using Equation 3 and the positive predictive value (PPV) ®der to detect eating sessions. Four subjects were retorde

sum of correct classifications

sensitivity =

IV. CONCLUSIONS

calculated using Equation 4 for an average period of 11 hours, performing an average
of 31 self-classified tasks, of which an average of 5 were
o true detected eating. In our first experiment, we segmented the wrist motio
sensitivity = 3)

data according to the subjects’ logs, and demonstrated a 91%

accuracy in classifying the tasks. In our second experiment
true detected we automatically segmented the wrist motion data and demon-

= true detected + false detected ) strated an 82% accuracy in detecting eating sessions. While

true detected + undetected

PPV



TABLE I
STATISTICS OF ALL THE TASKS FOR THESE SUBJECTS

Subject 1 Subject 2| Subject 3| Subject 4

total time of all tasks (h) 134 9.8 10.1 9.4

total number of tasks 39 36 23 27

shortest task (min) 3 1.2 3.3 3.5

longest task (min) 93.3 90.7 97.5 78.7

average task (min) 20.6 16.3 26.3 20.9

standard deviation of task (min) 20.6 19.1 27.4 21.7

most frequent task Using computer| Driving Eating Using computer

TABLE Ill
STATISTICS OF EATING TASKS FOR THESE SUBJECTS

Subject 1| Subject 2| Subject 3| Subject 4
total time of eating (h) 0.8 0.7 1 0.8
total number of eating sessions | 5 5 6 4

shortest session (min) 5.8 1.2 3.3 7

longest session (min) 18.6 15.3 12.3 21.7

average session (min) 10.2 7.9 10 12.6

standard deviation of session (min) 5.2 6 3.6 6.5
TABLE IV

OFFLINE CLASSIFICATION RESULT

Classify: Eating| Classify: Sedentary] Classify: Ambulatory
GT: Eating 17 2 1
GT: Sedentary 4 49 1
GT: Ambulatory 2 1 48

the number of subjects tested was small, this is the first work Comparison”, inEuro. J. of Clinical Nutrition vol. 51, 1997, pp. 542-
to examine the problem of automatically monitoring eatir;g 547.

. . L . . [8] H. Kissileff, G. Klingsberg and T. Van ltallie, “Univead eating monitor
du”ng da"y “Vmg' In the future we plan to continue thi for continuous recording of solid or liquid consumption in fian Amer.

experiment on a much larger number of subjects. We also J. of Physiologyvol. 238 no. 1, 1980, pp. R14-R22.

intend to simplify the apparatus to something that can bexwdg! KT-r?hg{n%, S. LiuaH-_ ChtubeI- HSE’ C. _Che(r;_, I Linb, i Chen ﬁ’ntﬁiglar:g,
. . . “The diet-aware Ining table: Serving dietary benavmrsr a tabletop

completelly on the wrlst._ For these first experiments, we used surface.” in the proc. ofith Intl Conf. on Pervasive ComputingNCS

a laptop in a backpack in order to record the large amount of vol. 3968, 2006, pp. 366-382.

data generated during an entire day. For our next expersmeldf] F. Zhu, A. Mariappan, C. Boushey, D. Kerr, K. Lutes, D.efband

we intend to use a “smart phone”.
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