
ECE 222 System Programming Concepts 

Lecture 2 – Bits, Bytes, and Data Types 
 

There are a few basic data types in C:  int, float, double, char.  We can qualify them as 

“unsigned”, and change their ranges using “short” and “long”.  All of these data types 

give us places to store values (variables).  But what is the difference between an int and a 

float?  That’s easy:  One stores whole numbers, the other stores real numbers.  How?  Or, 

how about some tougher questions:  What’s the difference between a float and a double?  

What’s the difference between a short int and an unsigned char?  In order to answer these 

questions, we have to understand the bit models that underlie the data types. 

 

A bit is a binary valued variable.  Typical values are 1 and 0, or true and false.  On a 

computing chip (processor, memory chip, etc.), they are represented by high and low 

voltages, where a high value is typically 1-5V and a low value is typically 0.0-0.5V.  

Everything in computing is based upon combinations of bits.  Everything stored in a 

computing chip is based upon using a fixed number of bits to model (or represent) the 

thing of interest. 

 

A byte is 8 bits:  [ ]   [ ]   [ ]   [ ]   [ ]   [ ]   [ ]   [ ] 

 

For our discussion, bits can be one or zero (1 or 0): 

 

For representing whole numbers, the “place values” of bits are as follows: 
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                      127    64    32    16    8      4      2    1 

A bit value of 0 indicates a place value of 0, a bit value of 1 indicates a place value as 

given in the picture.  The total value of the number represented is found by adding up the 

place values of all the bits. 

 

For example: 

0     0     0     1     0     0     1     1 

0     0     0     16   0     0     2     1    (sum = 19) 

 

Given 8 bits, it is possible to store numbers in the range 0… 122 8
7

0i

i  = 255. 

 

The bits with the lowest powers are called the least significant bits, or lowest order bits, 

because they represent the smallest portions of the number.  The bits with the highest 

powers are called the most significant bits, or higher order bits.  It is common practice to 

list bits from highest to lowest, left to right, following the same convention used to write 

base 10 numbers. 

 

Binary arithmetic is done similarly to base 10 arithmetic.  For example: 

 
 7  00000111 



    +4      +  00000100 

    --      ----------- 

    11         00001011 

 

When the sum in a column is greater than 9 (base 10) or 1 (base 2), then the sum carries 

over to the next digit. 

 

In the case where signed numbers are desired, a common practice is to allocate the 

highest order bit to be the “sign bit”.  This is called the sign-magnitude model. 
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             +-   64    32    16    8     4      2     1 

 

This provides a range of values from -127…127. 

 

Notice that there are two possible bit values for zero:  00000000 is “positive zero”, while 

10000000 is “negative zero”.  This does not make much sense.  Even more importantly, 

allowing negative numbers makes arithmetic computations more complicated.  If we have 

zero or two negative numbers, we perform addition, as above.  If we have one negative 

number, we must instead perform a subtraction. 

 

The two’s complement model was invented to overcome both these problems.  In two’s 

complement notation, positive numbers are represented as already shown.  A negative 

number is found by the following steps: 

 

(a) write bits for positive version of number 

(b) invert all bits 

(c) add one 

 

For example, to represent -7, one would: 

 
 00000111 +7 

 11111000 invert 

 11111001 add one 

 

When a two’s complement number has a 1 in the highest bit, it indicates the number is 

negative.  To find the value, we perform the same steps: 

 
 11111001 -[something] 

 00000110 invert 

 00000111 add one  => -7 

 

Two’s complement modeling solves the “double zero” problem: 

 
 00000000 0 

 11111111 invert 



 00000000 add one 

 

Note that we only have 8 bits, so the carry out of the highest order bit is lost there.  It has 

no place to go.  What happened to “negative zero”?  Remember that when a two’s 

complement number starts with 1, we assume it is a negative number, and proceed to find 

the value: 

 
 10000000 -[something] 

 01111111 invert 

 10000000 add one => -128 

 

This is called the “weird number”.  When following the two’s complement conversion 

steps, it comes out the same as it started.  However, at the beginning, we only look at the 

highest bit to determine the number is negative.  After converting, we see that the value is 

128, and so the complete value is -128.  Thus, in two’s complement, the full range of 

numbers using 8 bits is -128…+127. 

 

Two’s complement also makes addition and subtraction easier to implement, because 

regardless of the signs of the two numbers, they can always be added.  For example: 

 
     11111111   (carry bits) 

  7 00000111 

   +(-5) 11111011 00000101 invert 11111010 add1 11111011 

   -----  -------- 

      2   00000010 

 

Note that the final carry bit was again thrown away.  However, it must be checked.  For 

the operation to be valid, the highest two carry bits must be either 11 or 00.  If they are 

either 10 or 01, then the result is an arithmetic overflow.  Arithmetic overflow is when 

the process of a calculation results in a number outside the range of values that can be 

represented by the available bits.  For example: 

 
     10000000   (carry bits) 

  (-127) 10000001  01111111 invert 10000000 add1 10000001 

 +(-126) 10000010 01111110 invert 10000001 add1 10000010 

   -----  -------- 

   -253   00000011 

 

The result appears to be 00000011, or 3.  But in fact an overflow has occurred.  With 8 

bits, we cannot represent -253 (it is outside our allowed range of -128…+127).  We can 

see that an overflow has occurred by looking at the highest two carry bits, which are 10. 

 

 

In the C language, the data type qualifier “signed” is the default; “unsigned” must be used 

to allocate the highest order bit to values.  For example, 

 

  char a1; 



  unsigned char a2; 

 

gives us a 1-byte variable named a1 to store numbers ranged 0…255 (magnitude only 

numbers), and a 1-byte variable named a2 to stored numbers ranged -128…127 (two’s 

compliment numbers). 

 

Storing such small numbers is not always enough.  To have larger numbers, we must use 

a different data type.  The int data type uses 4 bytes to store a whole number.  It can also 

be qualified as “unsigned”. 

 

  [What range does it allow?  Have class figure it out.] 

  [Answer:  32 bits.  Unsigned, 0…4billion.  Signed, -2billion….+2billion.] 

 

In the C language, data types can often be qualified using “long”, and sometimes “long 

long”, which tend to double the amount of bytes used to store a value. 

 

The sizeof() function reports how many bytes a data type, or a variable, is using. 

 

 

For storing real numbers, a different system must be used.  The most common approach 

is floating point, in which the general idea is to represent the number using scientific 

notation (a base and an exponent).  For example: 

 

  123.456 = 1.23456 * 10
2
 

 

In a computer we have only bits, so the representation uses an implied (known) base of 2 

and a leading mantissa value of 1: 

 

  1.f * 2
e
 

 

Thus, what is stored in the bits are values for e and f.  For a concrete example, we look at 

the IEEE floating point standard for computing.  It assumes 4 bytes are used: 

 

 total bits  1         8               23 

                         [s] [    exp  ] [   fraction  ] 

 bit  31  30…23    22……....0 

 

The 8 bits for the exponent represent -127…+128.  The bits in the fraction represent 

powers of one over two the N.  For example, bit 22 represents ½, bit 21 represents ¼, bit 

20 represents 1/8, etc. 

 

To find all the bit values, the following steps are performed.  In order to understand them, 

we will work an example at the same time.  We will encode -118.625. 

 

 (a) get sign bit     sign bit = 1 

 (b) write # in binary (without sign)  1110110.101       (118.625) 



 (c) normalize, moving radix (decimal pt) 

       to just after the first 1 digit  1.110110101 x 2
6 

 (d) f = right of the radix, zero padded  f = 110 1101 0100 0000 0000 0000 

 (e) e = given exponent, biased +127  e = 6+127 = 133 = 1000 0101 

 

The exponent is biased so that the range of powers is half negative (representing 

fractional numbers less than 1.0) and half positive (representing large numbers). 

 

For our example, the final 32 bit number is 1 1000 0101 110 1101 0100 0000 0000 0000.  

Note that the spaces are for our convenience only, they are not really there. 

 

 

In the C language, the float data type uses 4 bytes to store a real number, while the double 

data type uses 8 bytes to store a real number.  The double still uses 1 bit for sign, but it 

uses a lot more bits for the exponent and fraction, so that it can represent a wider range of 

really small numbers (fractions) and large numbers. 

 

 

To summarize, what is 1100 0010 1110 1101 0100 0000 0000 0000  ? 

 

Depends! 

 

It could be 4 unsigned char (magnitude-only) in a row:   194  237  64  0 

It could be 4 char in a row (two’s complement):    -62   -19    64    0  

It could be 1 float:   -118.625 

It could be a lot of other things as well, depending on how many bytes we group (half of 

a double?  two short ints?) and what bit model is applied (two’s complement, ASCII?). 

 

 

 

 

 


