
ECE 222 System Programming Concepts

Lecture 5 – Memory map

A good method to understand all variable types, especially those involving pointers, is to

construct a map of memory. Memory can be thought of as a 1D array. In most modern

chips and computer systems, memory is byte addressed, so it is convenient to break up

the memory array into bytes. In addition, when we program in C, we do not reference

variables using explicit addresses; instead, we use variable names that provide labels for

addresses. For example, consider the following code:

char cv;

int iv;

float fv;

double dv;

cv=2;

iv=7;

fv=3.2;

dv=-4.6;

The corresponding memory map can be drawn as follows (the starting address value of

1000 is chosen arbitrarily):

label address (byte) value

cv 1000 2

iv 1001-1004 7

fv 1005-1008 3.2

dv 1009-1016 -4.6

A char takes up one byte, an int and float take 4 bytes each, and a double 8 bytes.

What about an array?

char ca[3];

int ia[3];

Each cell of an array has a unique label, and address:

ca[0] 1017

ca[1] 1018

ca[2] 1019

ia[0] 1020-1023

ia[1] 1024-1027

ia[2] 1028-1031

Now, how does a pointer fit into this? For example:

char *cp; /* pointer to char */

int *ip; /* pointer to int */

float *fp; /* pointer to float */

double *dp; /* pointer to double */

A pointer variable holds an address. How big is an address? (How many bytes are

needed to store an address?) Suppose an address were only 1 byte. How many different

addresses could be stored? Only 2
8
, or 256 unique addresses. That’s not very many,

certainly not enough for large numbers of variables, or even a single large array.

Try working backwards. A modern computer can have as a maximum 4GB of memory.

Why? It’s because the modern chips use 32 bit addressing, and 2
32

 = 4GB. How many

bytes are in 32 bits? The answer is 4 bytes, which is how many bytes an address takes to

store. Therefore, the memory map for the pointers looks like:

cp 1032-1035

ip 1036-1039

fp 1040-1043

dp 1044-1047

No matter what the pointer “points to”, or addresses, it takes 4 bytes to store the value

(which is an address).

In variable declaration, the symbol * indicates a pointer variable. It’s sort-of like

indicating a fifth variable type, called “pointer”.

In variable usage, there are two symbols of interest: & indicates “address of” a variable,

and * indicates “at the address in” a variable. For example:

cp=&cv; /* fill in the appropriate entry in the memory map */

ip=&(ia[0]); /* fill in the appropriate entry in the memory map */

ip=42; / fill in the appropriate entry in the memory map */

Note the two different uses for the * symbol, one during variable declaration, and one

during variable usage. Do not be confused; one is only giving the variable type (pointer),

the other is using the pointer to place a value at another address.

A natural question to ask is why use the complicated notation

char *cp;

to declare a variable, instead of something simple like

pointer cp;

After all, if we have keywords to define the other four data types, why not a keyword to

define this fifth data type (that stores an address)? The answer is pointer arithmetic.

When adding/subtracting amounts from an address, pointer arithmetic does it in

quantities of bytes equal to the size of the thing referenced. For example:

cp=&(ca[0]); /* fill in the appropriate entry in the memory map */

(cp+1)=8; / fill in the appropriate entry in the memory map */

 ^^

 +1 what? +1 char, = +1 byte

(ip+2)=33; / fill in the appropriate entry in the memory map */

 ^^

 +2 what? +2 int, = +8 byte

Notice that using pointer arithmetic, the offsets match the indices of the arrays. This is

the whole point. Pointers and arrays can be used interchangeably, in fact they are often

the same thing. We study this more next time.

