
ECE 222 System Programming Concepts

Lecture 6 – Pointers

Pointers are a difficult tool to master. They are the source of many coding errors and

bugs, leading to a number of flaws and security problems. Why then do we use them?

1) Passing values to/from a function.

 [Use example program func.c]

Consider the memory map for the given code:

label address (byte) value

numerator 1000-1003

denominator 1004-1007

dividend 1008-1011

remainder 1012-1015

x 2000-2003

y 2004-2007

d 2008-2011

r 2012-2015

When the code executes, the values 9 and 2 go into x and y, then the function call

happens. What does that do? It makes a copy of the given parameters, and places them

in the local memory locations for the function.

 [Place 9, 2, 2008, 2012 in the appropriate locations.]

Then the function code is executed. Using the pointer to dereference the address, the

results are placed in the memory locations for d and r. Notice that those results are never

in any local memory location for the function, they are stored only in the original main

variables.

2) Pointers are arrays, and vice versa.

 [Use example program ap.c]

 [Have the class read the code, to figure out what it does, while building the map]

label address (byte) value

array[0] 1000-1007 10.0

 [1] 1008-1015 11.0

 [2] 1016-1023 12.0

 [3] 1024-1031 13.0

 [4] 1032-1039 14.0

d_ptr 1040-1043 1000

value 1044-1051 -3.3

i 1052-1055

offset 1056-1059 2

This program demonstrates two ways to display an address, hexadecimal and base10.

The code %p stands for pointer (address), but displays in hexadecimal. I prefer base 10,

so I use %u which stands for unsigned integer.

 [After demonstrating the program, and in particular the assignment statement at

the bottom, have the class write an equivalent statement using a pointer.]

Answer: *(d_ptr+offset)=value;

3) Dynamic memory allocation.

When declaring variables in a program, you are using static allocation. This means that

the size (in bytes) of the variables is known before the program runs. Upon starting

execution of the program, the O/S finds a place in memory for all the variables in an area

called “the stack”. The entire time that the program is running, the size of this area does

not change.

Sometimes, a program does not know how much memory it needs prior to execution. For

example, in reading a dictionary, the program might not know how big an array is needed

to store all the words before the particular dictionary file has been selected, and read. In

this case we need to use dynamic memory allocation. The basic statement is as follows:

double *array;

array = (double *)malloc(10*sizeof(double));

 ^^^^^^^ ^^^^^^ ^^^^^^^^^^^^^^

 typecast request how many bytes?

 to O/S

The O/S manages a large pool of memory, called “virtual memory” (VM), that is much

larger than the stack. A malloc() call asks the O/S for a chunk of memory from VM of

the given size. The address of that chunk of memory, if available, is returned:

label address (byte) value

array 1000-1003 100000

VM 100000-…

When the program is done with that memory, it should use the free() function to return

ownership of the memory to the O/S:

free(array);

What does the sizeof() function do? It returns the size, in bytes, of a variable or type.

 [Use example program sizes.c to test students.]

Once memory is dynamically allocated, it can be used just like static memory. This

means that even though we allocated it using a pointer, we can access it using a pointer or

an array! (Remember, they are interchangeable most of the time.)

 [Use example program dyn.c to demonstrate.] [Show memory map using VM.]

4) Double pointers.

What is a double pointer? For example:

double **ptr;

Break it down piece by piece. *ptr is an address of a double. The * symbol means

“address of”, so **ptr must mean “address of address of a double”.

How big, in bytes, is a double pointer? It’s still just an address, so 4 bytes.

Why would we use one? Suppose we wanted to pass an address to a function, and have

that function allocate memory to it.

 [Use example program dyn2.c] [Memory map will look like:]

label address (byte) value

numbers 1000-1003 100000

i 1004-1007 7

listsize 2000-2003 7

list 2004-2007 1000

VM 100000-…

Look at the mixed array/pointer reference:

*(list)[i]=10+i;

How could that be rewritten using only pointers? [Make class think it through.]

Answer: *((*list)+i)=10+i;

