
ECE 222 System Programming Concepts
Lecture notes – Streams, Buffers, Pipes

When a program is running, it is “connected” to the keyboard and to the monitor (and
maybe to additional devices, but we will come to that later). Each connection is said to
be a stream, representing a flow of data.

 monitor keyboard

stream

running
program

Every time a program is started, three streams are automatically created by the O/S.

 monitor keyboard standard out running
program

standard in

monitor
or printer

standard error

The standard in stream carries bytes from the keyboard to the program, the standard out
carries bytes from the program to the monitor (or the shell or window in which the
program is running), and the standard error stream carries bytes from the program to
either the same monitor, or perhaps a backup device like a printer.

In C, the scanf () function is actually a special version of the more generic fscanf ()
function, which can send receive bytes from any stream. For example:

#include <stdio.h>
char s[80];
fscanf(stdin,”%s”,s);

The same is true with regards to printf() and fprintf(), the latter is the generic version:

fprintf(stdout,”%s\n”,s);
fprintf(stderr,”Hello error stream\n”);

Note that these look a lot like how we access files. In fact, this is exactly how we access
files, except that there is a stdin, stdout, or stderr. What are they?

 [Look inside /usr/include/stdio.h and search for them.]

They are in fact addresses, maintained by the O/S, of places to send and receive bytes.
When you open a file, you get the same thing – an address. (The address is stored in a
structure type-defined as FILE.) In other words, pieces of hardware are treated similarly
to how files are treated; they are both accessed as streams from a given address.

 monitor keyboard standard out running
program

standard in

monitor
or printer

standard error file opened for reading

opened for writing
file file

read & write

While opening a file, a program indicates the direction of the stream. For a read/write
stream, the program must be aware of two addresses, one at which to receive bytes and
one at which to send bytes.

Each address is at a memory location controlled by the O/S. The O/S implements a
buffer there. A buffer is a temporary storage to help manage the flow of bytes.

buffer

keyboard running
program

standard in

For example, what if the sender puts bytes into the stream faster than the receiver can
handle? Or what if the program is in the middle of a calculation, and is not prepared to
receive any bytes? The buffer can store up the bytes until the program is able to handle
them, receiving them at the reduced rate, or when it is ready for them.

The keyboard and the running program do not need to know everything about how the
buffer works, for example they do not know the address of the block of memory where
bytes are temporarily stored. It is however important to know when the buffer “flushes”.
Flushing is the act of emptying out the temporary storage, sending all the bytes in the
buffer on down the stream to the receiver. In general, a buffer is set up to flush in one of
three modes:

block buffering – flushes when an entire “block” is full, such as 1 KB, or 4 KB, etc.
line buffering – usually indicates an ASCII-based stream, flushes when a CR is seen
unbuffered – flushes on every byte

You can see the effect of buffering through the following C code:

int i;
for (i=0; i<5; i++)
 {
 printf(“i=%d “,i);
 sleep(1);
 }

Running it as written above, you see no output until the program ends. This means that
the stdout stream is buffered, either block or line. We can determine that it is line
buffered by adding a newline at the end of the printf(). This time, every second we see a
new line of output.

We can force the buffer to flush using the fflush(stdout) function call, without having to
print a newline each time. Note that fflush() can be used on any stream.

Recall that the O/S automatically opens 3 streams for every running program. Because of
this, the shell uses special symbols to “reconnect” those streams to other blocks. Using
these symbols is called pipelining, or piping.

< standard in comes from the given file
> standard out goes to the given file
| standard out from the first program goes to standard in for the second program

For example:

shell> pipes1 < pipes1-input.txt

 monitor keyboard running
program

pipes1-input standard in

We can do the same thing with the standard out stream:

shell> pipes1 < pipes1-input.txt > pipes1-output.txt

We can even connect the output from one program to the input to another program:

shell> pipes1 < pipes1-input.txt | pipes2

All of these reconnections, or redirections of input and output, can be chained together
repeatedly. This allows us to write programs that perform single, simple operations, and

link them together into complex chains in order to accomplish tasks. This is where the
phrase pipelining (or piping) comes from. For example:

shell> ls –al /usr/lib | grep libc | sort –r > results.txt

A nice set of standard programs has been built up over the years, following this
methodology. Most unix/linux systems come with these programs installed. There are a
few of which you should always be aware; more will become known and useful as one
becomes more invested in system programming.

grep search for the given string
sort sorting
wc count lines, words, bytes (chars)
more interactive program to pause lengthy display
diff compare two files

Note that even these simple programs have lots of options, controlled by command line
arguments, to affect how they operate.

 [Do in-class exercise depunct-inst.txt.]

