
ECE 222 System Programming Concepts

Lecture 7 – Structures

What is a structure? A structure is a method to define a new data type (we have 5 so far:

char, int, float, double, pointer) that refers to a group of variables using one name. Each

part of a structure is called a field.

 [this code in struct1.c – put on board while drawing memory map]

struct person { /* “person” is name for structure type */

char first[30]; /* first field of structure is array of char */

char last[30]; /* second field of structure is array of char */

int year; /* third field of structure is int */

double ppg; /* fourth field is double */

}; /* ending ; means end of structure type definition */

In this case, “person” is the new data type. It consists of two arrays of char, an int, and a

double. However, we have not yet declared a variable of the new type, just a template.

In other words, we have defined something like “int”, not a variable of type “int”.

To declare a structure, we use the new type definition:

struct person teacher;

We use the “.” symbol to access parts, called fields, of the structure:

teacher.year=2005;

teacher.ppg=10.4;

strcpy(teacher.first,”Adam”);

strcpy(teacher.last,”Hoover”);

What is the result of the following print statements?

printf(“year: %d points per game: %lf\n”,teacher.year,teacher.ppg);

printf(“%c\n”,teacher.first[3]);

printf(“%c %c\n”,teacher.last[6],teacher.last[9]);

printf(“%d\n”,teacher.last[6]);

printf(“%c %c\n”,teacher.first[32],teacher.first[33]);

To answer these questions, construct a memory map:

label address (byte) value (ACSII symbol)

teacher.first[0] 400 65 „A‟

 [1] 401 100 „d‟

 [2] 402 97 „a‟

 [3] 403 109 „m‟

 [4] 404 0 „\0‟

 [5]-[31] 405-431

teacher.last[0] 432 72 „H‟

 [1] 433 111 „o‟

 [2] 434 111 „o‟

 [3] 435 118 „v‟

 [4] 436 101 „e‟

 [5] 437 114 „r‟

 [6] 438 0 „\0‟

 [7]-[31] 439-463

teacher.year 464-467 2005

teacher.ppg 468-475 10.4

The last two examples emphasize how a structure is formed. In memory, the fields of the

structure come one after another, so that access to memory just past the first field spills

over into the second field. It is important to note that structures do not always reside in

contiguous memory. Compilers will often block them into 1, 2, or 4 byte boundaries,

depending on the architecture (processor) the system is running. This is to make memory

accesses uniform.

It is possible to create an array of structs, just like it is possible to have an array of any

data type. (Ask class – would this be done in the template declaration or in the data

variable declaration?) For example:

 [use struct2.c code example]

The individual structs in the array of structs are contiguous in memory, just as the fields

of a single struct are contiguous in memory. The address of a struct is the same as the

address of its first part; one need only think about a memory map to see this.

Struct variables can be global or local to a function, just like the other 5 data types.

 [use struct3.c code example]

A struct template can be “throw away”, meaning it is used only once, when declaring

variables of the given template. Without a template name, that structure template cannot

be used to declare more variables of the same type (what would we call them?).

The second display of the paperback.title demonstrates a buffer overflow. We copied a

name longer than the 20 chars defined for the field, so it overran the next bit of memory,

which is the “cost” field. You can resolve these sorts of enigmas by reasoning about the

memory map, and where a buffer overflow must have come from.

The last printf statements demonstrate global versus local structs work like any other data

type.

