Chapter 1

Introduction

What is system programming?

Computer systems are made up of hardware and software. Software gener-
ically refers to the programs running on the computer. While both hardware
and software can be modified or upgraded, it tends to happen more often
with software. In fact, the major reason to have software is to provide the
ability to change the instruction stream executed on the computer. This
means that it is often erpected that new programs will be written, or old
programs will be modified or evolved, during the life cycle of a computer
system.

Given this expectation, it is natural to look for methods for the computer
system to support program development. A number of tools have evolved
over the last 30 years to assist program development. These include standard
libraries (also called system libraries), system calls, debuggers, the shell en-
vironment, system programs, and the basic system file structure. Knowledge
of these tools greatly enhances the ability of a programmer. Being able to use
these tools elevates a programmer to a system programmer, often considered
the top level of expertise in the field of programming.

We may define system programming as the use of system tools during
program development. Proper use of these tools serves several purposes.
First and foremost, it saves a great deal of time and effort. Using system
libraries saves a programmer the time it would take to independently develop
the same functions. Using a debugger saves an enormous amount of time in
finding and fixing errors in a program. Common tasks, such as searching for
text within a set of files, or timing the execution of a program, are facilitated

2 CHAPTER 1. INTRODUCTION

by the existence of system programs.

Second, system tools provide opportunities for program development that
are otherwise extremely difficult. System calls provide access to the core func-
tions of the operating system, including memory management, file access,
process management, and interprocess communication. Some standard li-
braries implement complex functions that are beyond the capability of most
programmers. For example, the math library includes trigonometric func-
tions and other real-valued operations that require iterative methods to reach
a solution.

Third, consistent use of system tools promotes standards, so that code
developed for one computer system is more easily ported to another com-
puter system. System libraries provide a layer of abstraction, implementing
the same function calls on multiple computing systems. An application can
call a system library without worrying about the details of the underlying
hardware. In this manner, the application can be ported so long as the
destination system possesses the same system libraries. For graphics, this
has become increasingly important as the number and variety of hardware
display capabilities has expanded.

Knowledge of the basic system file structure assists in program man-
agement. A linux computer system typically includes well over 10,000 files
related to system operation (this does not include user data files). Over time,
a standard method for organizing these files has evolved. There are common
places for libraries, system programs, device files (connections to hardware),
applications, and user data.

Finally, there is the shell environment. The shell environment is rich with
options, capabilities and configurability, to the point that it is overwhelming
to novice programmers. However, once some proficiency has been gained,
the shell is a preferred tool for any serious system programmer. It offers
tremendous flexibility in process control, system management, and program
development.

This text was written with three goals. First, it supports the teaching
of the tools and concepts of system programming. Second, it should help
the reader elevate his or her programming skill beyond an introductory level.
Third, it provides a rigorous regimen of programming exercises and examples
that allow the reader to practice and develop the skills and concepts of system
programming. Towards that end, example code pieces and programs are
provided throughout the text. Each chapter ends with numerous problems
and exercises that can be undertaken to strengthen understanding of the

material.

Besides the concepts of system programming, this text explores the lower-
level data types: bits and bytes, bit operations, arrays, strings, structures
and pointers. This material is covered with an emphasis on memory, and
understanding how and why these different data types are used. It is common
for a student to be less comfortable with these topics than with other basic
programming concepts, such as loops and conditionals. The coverage of
the lower-level data types is intended to reinforce an introductory coverage
obtained previously. The goal is to advance the programming skill of the
reader to the point where these topics are well and comfortably used.

This text assumes that the reader has a basic understanding of C pro-
gramming. For example, the reader may have completed a single semester
of study covering an introduction to C programming. The text also assumes
that the reader has a working computer system, with a C compiler, text
editor, shell, and debugger already installed. The reader is assumed to be
familiar with basic operation of the computer system, such as navigating a
directory or folder hierarchy and executing programs.

Curriculum

The material in this text is intended to be used for study in a single
semester course in system programming. It is intended to follow an intro-
ductory course to programming. A colloquial title for the work might be
“Second Semester Programming”. It is intended to precede the study of
more advanced topics in programming such as data structures, algorithms,
operating systems, and compilers. While it is not necessary to sequence these
studies in this manner, the study of system programming will enhance the
ability of a student to effectively implement the more advanced topics. There
is a strong emphasis in this text on improving the practical programming skill
of the reader, which should benefit a student in subsequent courses of study.

Why linux?

The majority of the material presented in this text can be studied on
any computer system, using any operating system. However, we would be
naive not to recognize the two most prevalent operating systems at the time
of this writing: Microsoft Windows™ and unix/linux. For reasons about
to be explained, this text advocates the study of system programming on a
unix/linux system, specifically (and hereafter referred to as) a linux system.
Note that this discussion centers on which is to be preferred for study. There

4 CHAPTER 1. INTRODUCTION

are other ongoing debates as to which has the better business model, better
development, and other issues. The interested reader is directed to seek other
sources for discussion on these debates.

There are two kinds of automobile owners: hobbyists and drivers. An
automobile hobbyist wants to understand how the vehicle works. He (or she)
gets under the hood and figures out how the engine coolant system works,
and how the fuel/air mixture system works. He crawls under the vehicle
and learns how the braking system works. He studies these things with an
eye towards modifications, either for improvement or repair. Thoughts of
an automobile hobbyist bring to mind not only professional mechanics, but
also “car hackers” that are constantly tinkering with the operation of their
vehicles. In short, an automobile hobbyist is an expert.

Most automobile owners are not hobbyists, they are simply drivers. A
typical motorist wants to be able to climb into a car, turn the ignition,
press the gas and brake pedals, and turn the steering wheel. If something
goes wrong, or an improvement is desired (for example the installation of a
towing hitch) he calls upon the services of an expert. It is a testament to
automotive engineering that vehicles have become so safe and easy to use
that virtually anyone can drive. When automobiles were first manufactured,
the typical motorist needed far more knowledge of its operation than does
the average driver today.

Computer operators can similarly be divided into two types: users and
administrators. A user just wants to turn the machine on and run his partic-
ular applications. If something goes wrong, or an improvement or upgrade is
desired, the user calls upon the services of an administrator. An administra-
tor on the other hand learns about the underlying operation of the system.
He learns about system installation and configuration, process management,
and troubleshooting. A computer administrator can get “under the hood”
of a computer.

The Windows operating system is built for “computer drivers” (users).
The typical Windows computer operator just wants to run applications. It
is a testament to computer system engineering that computers have become
so easy to use. Omne could argue that a major advantage of Windows is
that it supports computer usage by anyone; it makes “computer driving”
easy enough so that the typical user can operate independent of any real
understanding of how the system works.

This is not to say that there are not Windows administrators. There of
course must be people who are expert in how a Windows system operates.

The problem, at least for education purposes, is that a Windows computer is
essentially a closed system. The system is designed to be “turn key”, in line
with the business model of providing the typical user with a system that is
as easy to use as possible. This design strategy necessarily obstructs getting
“under the hood”, to keep the typical user from doing something harmful to
the system. In the automobile analogy, this is similar to housing the fuel/air
mixture system out of reach of the driver.

In addition, Microsoft publishes limited information on the internal work-
ings and design of Windows. This is also a business policy, to protect their
design from competitors. Finally, Windows is monolithic, not allowing for
various parts of the system to be disconnected or swapped for alternatives.
Once again this is a business decision; Microsoft wants to sell its products
and only its products, so it makes its system fully integrated. It is straight-
forward to understand the business motivations for the closed design, scarcity
of published details, and non-modularity of Windows. However, these very
properties that make it more useful to the typical computer user can make
it frustrating for a student to study system operation.

Linux, on the other hand, has different design principles. It is open source,
so that all details of its inner workings can be studied. It is completely
modular, so that any system component can be swapped for an alternative.
For example, the linux kernel (the core program running on a linux system) is
developed completely independently of the desktop environment. Within the
kernel, a linux computer operator has many choices as to how to configure
the operation of the system. The kernel itself can be swapped or modified.
One could argue that these properties prevent the more widespread adoption
of linux by typical computer users, who are not interested in this flexibility
and openness. However, these design properties are what makes linux an
attractive choice for a student to study system operation.

Throughout this text, the examples shown are taken from a computer
running the linux operating system. For the most part these examples can
just as easily be run on a Windows system, or others. There are some
important design issues that differentiate linux and Windows, such as the
multi-user versus single-user nature of the systems. These differences will
be discussed in detail at the appropriate places. Beyond those issues, deep
down “under the hood”, the systems are largely similar. After all, an internal
combustion engine is an engine, whether manufactured by Ford or Toyota,

6 CHAPTER 1. INTRODUCTION

and all brake systems ultimately stop the vehicle.
Why C?

Selection of a particular programming language is an old debate in com-
puting. For application development, the debate still rages. However, for
system programming, very few experts argue for a language other than C.
The reason is simple: C is closest to the hardware. All programming lan-
guages provide various levels of abstraction to assist in program development.
For example, the concept of a named variable, as opposed to a numeric mem-
ory address, tremendously simplifies program development. Out of all the
commonly used programming languages, C provides for the least abstraction
(and hence is closest to the hardware). Most single C statements translate
simply to machine code. The available data types in C tend to reflect what
the hardware directly supports. Accessing memory via indirection (pointers)
provides the programmer with the ability to access all parts of the system.

Historically, the development of the linux kernel (as well as the devel-
opment of the original unix operating system) was done in C. Most system
software is developed in C. Device drivers are almost always written in C.
An indirect benefit of being close to the hardware is speed. Code written in
C tends to execute faster than code written in other languages. For a pro-
grammer who intends to work on system software, or who intends to develop
code that closely interacts with hardware (peripherals or the main system),
studying concepts using the C language provides opportunities to develop
the most practical skills.

This choice does not preclude the study of other languages, or advocate
only learning C. Other programming concepts outside the scope of this text
may be more readily studied and implemented using another programming
language. However, it is the opinion of this author that a firm understanding
of the programming language closest to the hardware better supports an
understanding and proper use of a more abstract programming language.

1.1 The Three Tools

The three main tools of a system programmer are a shell, a text editor, and
a debugger. Familiarity with these tools increases programming skill and
decreases the time it takes to get programs working properly. The following
serves as an introduction to these tools, and their interdependency. The real

1.1. THE THREE TOOLS 7

trick is in knowing how to use all three together. Later chapters of this text
will explore additional aspects of these tools.

1.1.1 Shell

A shell, sometimes referred to as a terminal or a console, is a program that
allows the user to run other programs. Most linux systems provide several
methods to start a shell. Some systems provide a shell after login, with-
out the benefits of a graphical desktop. On other systems a shell must be
started manually through a menu or mouse click interface. Once started,
a typical shell looks like the ones shown in Figure 1.1. Commands are en-
tered into the shell through a text-only interface. The shell informs the
user that it is waiting for its next command via a prompt. In Figure 1.1,
the prompt is ahoover@video>, which is the user name and machine name.
Some shell configurations show the current directory or other information in
the prompt. Throughout this text, the shell prompt will hereafter be shown
as ahoover@video> to promote clarity.

A typical command is the name of a program, which starts execution of
that program. For example, both the shells in Figure 1.1 show the execution
of the 1s program, which provides a listing of files in the current directory.
Many of the programs run in a shell have text-only input and output, similar
to 1s. However, it is also possible to run graphical (GUI) based programs
from a shell. For example, Figure 1.2 shows the result of typing xclock at
the prompt; it starts the xclock program.

This method for starting programs may seem strange to those familiar
with today’s desktop approach to running programs. Clicking on an icon
and perusing through a pull-down menu are typical operations used to run a
program. Why then start a program, the shell, just to run other programs?
The answer is flexibility. The desktop mouse and menu operations provide
limited options in how a program is run. Typically, the desktop and menu
shortcuts run a program in its default mode. For example, starting a word
processor opens the program in full-screen mode (the program fills the entire
screen), with an open blank page, and all options set to their defaults (bold is
off, text is left justified, font is Times Roman, etc.). Suppose one desired to
start the word processor with some of those options changed? A shell provides
for this through command line arguments. A command line argument is
anything typed at the shell prompt after the name of the program to execute.
It provides information about how the user wishes to run the program. For

8 CHAPTER 1. INTRODUCTION

=10] x|
File Edt View Window Help ‘
HeR |83 mea/aasséew
&1 Quick Connect (] Profiles v|
term =il ahoover@videos s C|
shoover@video> 1s ameter/ eced2s/ eceB93/ pathplan/ profiles stare/
ameter/ eced23s ecef893/ pathpland profiles stare/ Degktop/ eced6d/ mail/ Presentations/ Projects/ UNLX S
Desktop/ ecedbBs mail/ Presentations/ Projects/ UNIHA ece2zz/ ece8S4/ MNail/ printcap public_html/ Writing/
ece222/ eceBSd/ Mail/ printcap public_html/ Writing/ ahooverGuideo> |
ahoover@yideo>
Connected ta lngin.par.clemson, sdu 55H2 - aesl28-che - hmac-mds - none [80x24 | 7

(a) xterm (b) ssh secure shell

Figure 1.1: Two examples of a shell, running in different terminal emulators.

term ==k
hoouervidea> 1s

sweter! eced?3/ ecelS3/ pathplan’ profile’ stare/
Desktopd scedfB mail/ Presentations/ Projects/ UNIH/

cce222/ sceiSds Mail/ printcap public_htwl/ Uriting/
shoouer@vide> xclock

S

Figure 1.2: Starting a GUI-based program by typing its name in the shell.

1.1. THE THREE TOOLS 9

%J’;{m I=E]

ihuuver@v1deu> xclock —digital -bg grey

SEES

un 9 19:47:30 2006

Figure 1.3: Command line arguments change the way a program is run.

example, typing xclock -help at the prompt yields the following:

ahoover@video> xclock -help

Usage: xclock [-analog] [-bw <pixels>] [-digital] [-brief]
[-utime] [-fg <color>] [-bg <color>] [-hd <color>]
[-h1l <color>] [-bd <color>]
[-fn <font_name>] [-help] [-padding <pixels>]
[-rv] [-update <seconds>] [-display displayname]
[-geometry geoml]

ahoover@video>

In response to the ~help command line argument, the xclock program dis-
plays its usage and then quits. The usage explains all the command line
arguemnts that can be used when starting the program. For this particular
program, most of these arguments change the way the clock is displayed.
For example, xclock -digital -bg grey causes the program to run as dis-
played in Figure 1.3.

The control and flexibility offered by command line arguments is often
useful during program development and system administration. While many
programs can be reconfigured while running, selecting options through menu
interfaces can take time. Configuring the program at startup through com-
mand line arguments can save a great deal of time, especially if a program is
run multiple times, such as during development.

A variety of shells have been developed over the years. Some examples
include sh, csh, tcsh, ksh, and bash. On Windows systems there is a
very simple shell called console, sometimes called DOS console or command
prompt. The shells differ in their intrinsic capabilities. Besides having the

10 CHAPTER 1. INTRODUCTION

Command | Description

alias Create an alias

cd Change directory

pwd Print current directory

set Give a shell variable a value
which Identify full path of program

Table 1.1: Some common shell internal commands.

ability to run programs, and provide command line arguments, a shell has a
list of internal commands that it can perform. For example, most shells have
the ability to set up aliases for commonly typed commands. In the tcsh
shell, typing

ahoover@video> alias xc xclock -digital -bg grey
ahoover@video>

causes the shorter command xc to become an alias for the longer command
xclock -digital -bg grey. This can be quite useful when one is running
the same command over and over, for example during program debugging.
Table 1.1 lists some common internal commands for shells. All these com-
mands are common to all the most popular shells (notably excluding the
Windows console, which is only intended to be a limited shell). Unfortu-
nately, different shells implement some of these internal commands using
different syntaxes. For example, to create the same alias using the bash shell
as given in the above example for the tcsh shell, one would type

ahoover@video> alias xc='"xclock -digital -bg grey"
ahoover@video>

Most advanced programmers select a single shell with which to become pro-
ficient. Luckily, most of the shells are similar enough that proficiency with a
particular shell allows a programmer to work adequately in any shell.

In addition to the internal shell commands, there are a number of pro-
grams pre-compiled and ready to run on most linux systems. Table 1.2 lists
some of the commonly used programs. These programs are called system
programs, because they generally provide capabilities to manipulate, explore,
and develop programs for the computer system. For example, 1s is a system

1.1. THE THREE TOOLS 11

Command | Description

grep Search files for specific text

Is List files and their attributes

man Display manual (help) for command/program
more Display a text file using pausable scrolling
time Measure the running time of a program

sort Sort lines in a text file

Table 1.2: Some common system programs.

program that provides a listing of files in the current directory. Perhaps the
most important system program to begin using is man. It accesses a manual
of help files stored on the local computer system. Usually, there are individ-
ual “man pages” for all programs, and often for support files for the more
complex programs. There are also man pages for all the functions within
the various libraries on the system. These man pages usually come installed
by default on a linux system, but they are also posted many times over on
the internet, and can be found using a web search engine. It is also possible
(and recommended) to find tutorials and other help via the web on using a
particular shell.

The purpose of both shell internal commands and system programs is
to assist the system programmer. It is not terribly important to remember
whether a particular operation is a shell command or a system program.
Sometimes the operations are listed all together. The important thing is to
become comfortable with the common operations that save time and effort.

1.1.2 Text editor

The second tool considered here is a text editor. The basic operations of a
text editor allow the user to write and edit code, save it to a file, and load it
from a file. These operations are not much different from those supported by
a word processor. In fact, it is possible to use a word processor to write code
(although it is not recommended). However, there are additional features
that a text editor can provide, beyond what a typical word processor provides,
designed to support programming. For example, Figure 1.4 illustrates the
finding of matching parentheses. Using the text editor vi, if the cursor is
on an opening or closing parenthesis, pressing the keyboard symbol % moves

12 CHAPTER 1. INTRODUCTION

Figure 1.4: Using a text editor to identify matching parentheses.

the cursor to the matching parenthesis. Pressing it a second time moves the
cursor back to where it started. The same keystroke matches opening and
closing braces (the symbols surrounding blocks of code) and square brackets
(the symbols used for array indices). This can be quite useful in tracking
down logic errors on expressions, flow errors on loops, array usage, and other
bugs.

Perhaps the most important features a text editor can provide to a pro-
grammer are the ability to display the line number of the program for the
given cursor location, and the ability to move the cursor to a given line num-
ber. Figure 1.5 illustrates an example. Using the text editor vi, the keyboard
sequence CTRL-G displays the line number. The keyboard sequence :N[CR]
relocates the cursor to line number N. These operations allow a program-
mer to use line numbers to communicate with a debugger. The programmer
can tell the debugger to pause program execution at a given line number.
The debugger can tell the programmer at what line number a given error
occurred. In this manner, the programmer can work with the debugger to
focus on the relevant line of code.

As a programmer becomes familiar with a given text editor, other useful
features will be learned. The ability to search and/or replace a given string
is often helpful in debugging variable usage. The ability to cut and paste a
word, line, or block of code is often useful during code writing. The ability to
arrange indentation helps support good coding practices. Some text editors
support color coding of keywords and code blocks.

Not all text editors share all features. The text editor vi is the oldest,
perhaps one of the most powerful, but also one of the most arcane. It uses
strange keystroke combinations to access features. Once learned, they can

1.1. THE THREE TOOLS 13

|"strange—sun,c" [Modified] line 13 of 15 --86%-- col 1

Figure 1.5: Using a text editor to identify or find a program line number.

be among the fastest methods for implementing these features. However,
the initiate should almost never start with vi. Better text editors have been
invented over the years. The text editor emacs was perhaps the first ma-
jor editor to displace vi among newer system programmers. Somewhat less
powerful but easier to use text editors include pico and gedit. Whichever
text editor a programmer chooses, he should dedicate himself to becoming
comfortable with its features that support programming.

1.1.3 Debugger

The debugger is perhaps the most important tool for a system programmer.
It allows a programmer to observe the execution of a program, pausing it
while it runs, in order to examine the values of variables. It also allows a
programmer to determine if and when specific lines of code are executed.
It allows a programmer to step through a program, executing it one line at
a time, in order to observe program flow through branches. This section
describes how a debugger works; the process of debugging is addressed in the
next section.

The debugger is itself a program, which is executed like any other pro-
gram. As with shells and text editors, there are many debuggers. In this text,
examples are explained using the GNU debugger, which is usually executed
as gdb. Although it is possible for a debugger to interoperate with more than
one compiler, most debuggers are correlated with specific compilers. In this
text the concepts and examples are explained using the GNU C compiler,
which is usually executed as gcc.

To explain how a debugger works, we will use the code example given in

14 CHAPTER 1. INTRODUCTION

Figure 1.5. Suppose this code is stored in a file called sum.c. In order to
compile the file, one would execute the following operation:

ahoover@video> gcc sum.c
ahoover@video>

This produces a file called a.out, which is an executable program. Typing
a.out runs the program:

ahoover@video> a.out
sum=29
ahoover@video>

The program is executed, running until it ends, at which time the shell
prompts for another command. In order to use the debugger to run the
program, one must follow a sequence of operations:

ahoover@video> gcc -g sum.c
ahoover@video> gdb a.out

(gdb) run

Starting program: /home/ahoover/a.out
sum=29

Program exited with code 07.

(gdb) quit

ahoover@video>

We will discuss each of these steps in detail.

First, when compiling, we make use of the command line argument -g.
This tells the compiler that the executable file is intended for debugging.
(Other compilers use similar flags or options.) While creating the executable
file, the compiler will store additional information about the program, called
a symbol table. The symbol table includes a list of the names of variables used
by the program. For our example, this list includes i and sum. The program is
also compiled without optimization. Normally a compiler will rearrange code
to make it execute faster. However, if the program is intended for debugging,
then any rearrangement of the code will make it difficult to relate which line
of C code is currently being executed. Compiling for debugging turns off all
optimizations, so that program execution follows the original C code exactly.

One can see the effects of compiling for debugging by looking at the size
of the executable:

1.1. THE THREE TOOLS 15

debugger

synbol table C code

sum\ execut abl e/r NN
\ / NNV
N

Figure 1.6: A debugger relates an executable to the original variable names
and source code file, so that a programmer can track execution.

ahoover@video> gcc sum.c

ahoover@video> 1ls -1 a.out

—“IWXT—XIr—-X 1 ahoover fusion 4759 Jun 19 18:53 a.outx*
ahoover@video> gcc -g sum.cC

ahoover@video> 1ls -1 a.out

—“TWXr-Xr-X 1 ahoover fusion 5843 Jun 19 18:54 a.outx*
ahoover@video>

The executable has increased in size by 1,084 bytes. This increase in size is
caused by the inclusion of the symbol table, and because the compiler was
not allowed to optimize the code, so that its final output is not as efficient as
possible. Note that if you forget to compile for debugging, then the debugger
will not be able to operate on your executable. Without the symbol table,
or in the presence of optimizations, the debugger will be lost.

After compiling, we run the debugger gdb on the executable a.out that
we just created. This does not immediately execute our program. It runs the
debugger, and loads our program into the debugger environment. This is em-
phasized by the fact that the prompt has changed. Instead of ahoover@video,
which is the shell prompt, we now see (gdb), which is the debugger prompt.
One can think of a debugger as a wrapper around a program. Figure 1.6
shows a diagram. When the debugger is started, it uses the symbol table
and original C code file to keep track of what the program is doing during
execution.

16 CHAPTER 1. INTRODUCTION

Once the debugger is started, it has its own set of commands. One of these
commands is run, which begins execution of the program. In our example,
this results in the program running as it would from the shell, eventually
producing the output sum=29 and then exiting. With the program finished,
we are back at the debugger prompt (gdb). To exit the debugger we issue
the command quit which takes us back to the shell.

Sometimes it is useful to execute a program all the way to completion
within a debugger. However, more often it is useful to execute a program
“half way”, or only through part of its complete code. This is accomplished
by setting a breakpoint. It tells the debugger to execute the program until that
point is reached, at which time execution is to be paused. The programmer
is then able to give commands to the debugger while the program is paused.
For example:

ahoover@video> gdb a.out

(gdb) break 13

Breakpoint 1 at 0x804837b: file sum.c, line 13.
(gdb) run

Starting program: /home/ahoover/a.out
Breakpoint 1, main () at sum.c:13

13 sum=sum+ ((1-3)/2+(i/3));

(gdb)

At this point, the program has reached line 13 in the file sum.c for the first
time. This should happen when the variable i reaches a value of 5 in the
loop. Execution of the program is paused while we decide what to do. For
example, we can print out the value of i:

(gdb) print i
$1 =5
(gdb)

As expected, the value of i is 5. We can also ask the debugger to tell us
where the program is paused in relation to the original source code:

(gdb) where
#0 main () at sum.c:13
#1 0x4004e507 in libc_start_main (main=0x8048460 <main>,

argc=1, ubp_av=0xbffffa34, init=0x80482e4 <_init>,

1.1. THE THREE TOOLS 17

fini=0x8048530 <_fini>, rtld_fini=0x4000dc14 <_dl_fini>,
stack_end=0xbffffa2c)
at ../sysdeps/generic/libc-start.c:129

(gdb)

As expected, the first line tells us that we are at line 13 in the file sum.c,
which is where we set the breakpoint. For now, we can ignore the other
strange looking line. In a later chapter this text will discuss functions and
variable scope and revisit the debugger in that context.

When a program is paused, there are three different ways to start it
executing again: step, next and continue. The step command executes
the next line of code and then pauses again. For example:

(gdb) step
9 for (i=0; i<10; i++)
(gdb)

We had paused the program prior to the execution of line 13 using a break-
point. After the step command has finished, we have executed line 13 and
moved to the next line, which in this case is back to the top of the for loop
at line 9. The debugger has again paused the program, prior to executing
this line, and is awaiting our command.

The next command does the same thing, but if the next line of code is
a function call, then the debugger will execute all the lines of code in that
function call and then pause after the function returns. In other words, it
treats the entire execution of the function call as one line of code. The step
command will go into the function call and pause inside it at the first line
of its code. Successive step commands can then be used to go through the
entire function.

Issuing step or next commands repeatedly allows a programmer to run
a program one line at a time, pausing after each line. This is called stepping
through a program. For example, picking up where we left off above:

(gdb) next

10 if (1 < 5)

(gdb) next

Breakpoint 1, main () at sum.c:13
13 sum=sum+ ((i-3)/2+(i/3));

18 CHAPTER 1. INTRODUCTION

(gdb) next

9 for (i=0; i<10; i++)

(gdb) next

10 if (i < 5)

(gdb) next

Breakpoint 1, main () at sum.c:13
13 sum=sum+((1i-3)/2+(1/3));
(gdb) next

Each time the command next is issued, one more line of code is executed.
Note that if a breakpoint is reached, the debugger also informs us of that,
although it would have paused anyway because the next line of code was
finished executing. Depending on the situation, using next to step through
a program is often preferred over using step. The step command may
cause the debugger to go into system library function calls, such as printf ()
function calls, which is rarely useful. (We can - hopefully! - expect the system
library code to be more bug-free than code we are currently writing.) It is
also useful to know that pressing [ENTER] alone will cause the gdb debugger
to issue the previous command, so that one does not need to type “next” over
and over. Most debuggers have a similar shortcut or keystroke to simplify
stepping through a program.

The third method of continuing program execution is enacted by the
continue command. It restarts execution and allows it to continue until a
breakpoint is reached, until the program exits normally, or until the program
reaches a line of code doing something illegal. Illegal operations include
things like trying to divide by zero, or trying to access a bad memory location.

There are two different ways to observe the value of a variable. The print
command is a one-time request to see the value. The debugger displays the
value once only, and will not display it again until requested. The display
command is a request for ongoing observation. The debugger will display
the value of the variable each time the program is paused. For example:

ahoover@video> gdb a.out

(gdb) break 13

Breakpoint 1 at 0x8048490: file sum.c, line 13.
(gdb) run

Starting program: /home/ahoover/a.out
Breakpoint 1, main () at sum.c:13

1.1. THE THREE TOOLS 19

13 sum=sum+ ((1-3) /2+(i/3));
(gdb) display i

1: 1 =5

(gdb) continue

Continuing.

Breakpoint 1, main () at sum.c:13
13 sum=sum+ ((1-3) /2+(i/3));
1: 1 =6

(gdb) continue

Continuing.

Breakpoint 1, main () at sum.c:13
13 sum=sum+ ((i-3)/2+(i/3));
1: 1 =7

(gdb)

Notice that each time the program is paused, the value of i is displayed.
The continue command is used to resume execution of the program each
time, causing it to run until it again reaches the breakpoint. Each time this
happens, the loop counter i has increased by one.

Multiple breakpoints can be set. For example:

(gdb) break 13

Breakpoint 1 at 0x8048490: file sum.c, line 13.
(gdb) break 8

Breakpoint 2 at 0x8048467: file sum.c, line 8.
(gdb) run

Starting program: /home/ahoover/a.out
Breakpoint 2, main () at sum.c:8

8 sum=0;

(gdb) display i

1: i = 134518128

(gdb) continue

Continuing.

Breakpoint 1, main () at sum.c:13
13 sum=sum+ ((i-3)/2+(i/3));
1: 1 =5

(gdb)

20 CHAPTER 1. INTRODUCTION

The order of the breakpoints does not matter. When any breakpoint is
reached, the debugger pauses. In this example we displayed the value of i
at line 8, before it had been given any value in the program. The strange
value 134518128 is essentially a random value that happens to be stored in
i at the beginning of execution of the program; later when the program is
inside the loop, we see the more normal looking value 5.

Breakpoints can be removed during debugging using the clear command.
This can be useful during extended debugging sessions. However, it is more
common for a programmer to quit and restart the debugging process from
scratch, using new breakpoints. Usually when a program has done something
unexpected, a programmer will want to start over in order to try to identify
where the program misbehaved.

The gdb debugger (and many other debuggers as well) includes a large
set of commands not discussed here. These commands include capabilities
to pause execution based upon variables being read or written (called watch-
points), to pause execution based upon signals (called catchpoints), and oth-
ers. While these commands are useful, they are not necessary for common
debugging. The commands and concepts introduced in this section generally
suffice for the vast majority of debugging problems. The reader is encouraged
to get started with this set of concepts, and to explore additional debugging
capabilities as the need arises.

1.1.4 Integrated Development Environment (IDE)

As systems have evolved, so have system tools. The interdependence of
the three tools outlined in the previous sections has been recognized for
many years. This led to the establishment of an integrated development
environment (IDE). An IDE combines the three tools, along with a compiler,
into a single program or program interface. Rather than separately running
a text editor, compiler, and debugger, they can all be run together from
within a single IDE. This allows the tools to be even more tightly integrated.
Usually an IDE supports graphics-based operations that tie the individual
tools together in a manner that can further speed program development and
management.

At the time of this writing, popular examples of IDEs include Microsoft’s
Visual Studio, Sun Microsystem’s NetBeans, and the GNAT Programming
Studio. Some IDEs are intended to support a single programming language,
such as NetBeans (for java). Other IDEs support multiplate languages, such

1.2. HOW TO DEBUG 21

as Visual Studio and GNAT; the former is proprietary while the latter is
open source. The advantage of multiple language support is to be able
to assist a team of programmers in large-scale software development, or in
multi-platform development. The centralized control of program develop-
ment within one environment is often one of the biggest advantages to using
an IDE.

An IDE is a powerful tool and belongs in the repertoire of any serious
system programmer. However, it is important to understand what comprises
an IDE, and how it works, by understanding the individual tools within it.
Students of system programming should be encouraged to use the basic tools
to gain at least some proficiency. That basic proficiency should help in future
transitions to other IDEs or systems.

1.2 How To Debug

The last section introduced the shell environment and the three most im-
portant tools for system programming: the shell, the text editor, and the
debugger. In this section we discuss methods to use the debugger. This
includes deciding when and how to use the debugger to track down various
problems.

In this discussion we must make a distinction between fixing program
logic, and fixing program errors. Debugging is primarily inteded to help with
the latter. Translating logical ideas into program code requires an under-
standing of how and when to use various programming constructs, such as
a loop, a conditional, and an array. A debugger will not help a programmer
determine if a problem requires a pair of nested loops, or if a single loop
will do the job. This is a logic concept, and should be approached through
pseudocode writing, flowcharting, or other program development techniques.
On the other hand, when a programmer is confident (or at least comfortable)
with the logic being written into a program, then a debugger is an invaluable
tool. It can assist the programmer in finding errors in the implementation
or due to unanticipated details. For example, a debugger can help locate the
use of an incorrect data type (e.g. using an int in place of a float), incor-
rect bounds on a loop, incorrect array indices, equation and logic errors, and
typographical errors (some of the more devilish errors turn out to be nothing
more than simple typos, such as a missing semicolon).

There are a handful of situations that are common to debugging problems.

22 CHAPTER 1. INTRODUCTION

The following sections will describe each of these situations and go through
an example debugging session. We will approach the debugging problem from
the perspective of a programmer: we witness a symptom, or some observed
bad behavior on the part of a program. We then present a technique to
locate the problem in the program code, and ultimately to identify the cause
of the program error.

1.2.1 Program crashes

When a program stops executing in an unexpected manner, it is said to have
crashed. Something went wrong, and the system was unable to continue
running the program. For example, suppose the following code is contained
in a file called crashl.c:

#include <stdio.h>
main()

{

int X,V;

y=54389;

for (x=10; x>=0; x—-)
y=y/%;

printf ("%d\n",y);

}

At the shell, we compile ! and execute the program, only to find that it
crashes:

ahoover@video> gcc -o crashl crashl.c
ahoover@video> crashl

Floating exception (core dumped)
ahoover@video>

LThe option to the compiler o crash1 tells it to name our executable crash1 instead
of the default a.out. It is a good habit to give executables meaningful names instead of
calling all of them a.out.

1.2. HOW TO DEBUG 23

The error message “Floating exception” gives only a limited idea of what
went wrong, and gives almost no idea of where it went wrong. The system
has created a core dump file to help the programmer. It contains a snapshot
of the contents of memory and other information about the system right at
the moment that the program crashed. However, core dump files are usually
large, containing far more than is needed for common debugging. Typically
core dump files are only used in advanced system programming problems.
A naive programmer might open up the C code file and begin studying
the code, looking for possible sources of error. In a program as small as our
example, this might even work. However, using a debugger is far simpler,
and will save a great deal of time. The idea is to run the program in the
debugger until it crashes, and at that point look at what happened:

ahoover@video> gcc -g -o crashl crashl.c
ahoover@video> gdb crashl

(gdb) run

Starting program: /home/ahoover/crashil

Program received signal SIGFPE, Arithmetic exception.
0x0804848b in main () at crashl.c:10

10 y=y/x;

(gdb)

The debugger tells us that the program crashed at line 10, and shows us the
line of code at line 10. Looking at that line, it is easy to see that not many
things could have gone wrong. Something must be wrong with either the
value of y or x. The most likely scenario is that the value of x is zero, and
that the program is therefore attempting to divide by zero. We can test this
by asking the debugger to display the value of x:

(gdb) display x
1: x=0
(gdb)

As we suspected, x has a value of zero. Now we can review the code to
determine if this was intended, or if we have an implementation error. For
example, we might not have intended the loop to run until x>=0, and instead
intended it to run until x>0.

Dividing by zero is not the only thing that can cause a program to crash.
Perhaps the most common error resulting in a crash occurs when using arrays

24 CHAPTER 1. INTRODUCTION

or pointers. For example, suppose the following code is stored in a file called
crash2.c:

#include <stdio.h>

main ()

{

int x,y,z[3];

y=54389;

for (x=10; x>=1; x—-)
z[yl=y/x;

printf ("%d\n",z[0]);

}

When we compile and execute this code, the program crashes:

ahoover@video> gcc -o crash2 crash2.c
ahoover@video> crash2

Segmentation fault (core dumped)
ahoover@video>

Using the debugger, we run the program until it crashes to find out where
the problem occurred:

ahoover@video> gcc -g -o crash2 crash2.c
ahoover@video> gdb crash2

(gdb) run

Starting program: /home/ahoover/crash2

Program received signal SIGSEGV, Segmentation fault.
0x080484a2 in main () at crash2.c:10

10 zlyl=y/x;

(gdb)

A “segmentation fault” is usually a bad memory access; in other words, the
program has tried to access a memory location that does not belong to the
program. For example, an array has a specified size. Trying to access a cell
index outside the specified size is a bad memory access. Looking at the line

1.2. HOW TO DEBUG 25

of code where the program crashed, we can see an access to the array z[]
at cell index y. We cam ask the debugger for the value of y and compare it
against the allowed range (z[] was defined as a three element array, so the
allowed range is 0...2):

(gdb) display y
1: y = 54389
(gdb)

As we suspected, the value for y is outside the allowed range for indices for
the array z[]. Once again, we have quickly identified the point where the
program has misbehaved, and can now go about the process of determining
if the program logic or implementation is at fault.

Using a debugger to discover where a program is crashing is probably the
most popular use for a debugger. During program development, if a crash is
observed, the first action should almost always be to run the program in a
debugger to locate the problem.

1.2.2 Program stuck in infinite loop

When a program runs for a long time without displaying anything new, or
prompting the user for new input, then it is probably stuck in an infinite loop.
This means that the code executing in the loop is never going to cause the
conditional controlling the loop to fail, so that the loop runs over and over.
Of course, a “long time” is a relative expression. Some programs may need
10 seconds, or a minute or longer, in order to complete a complex calculation.
However, if you can go for a cup of coffee, check the baseball scores, come
back and still see the program not responding, then it is probably stuck in
an infinite loop. For example, suppose the following code is stored in the file
infloop.c:

#include <stdio.h>
main()

{

int X,¥;

26 CHAPTER 1. INTRODUCTION

for (x=0; x<10; x++)
{
y=y+x;
if (y > 10)
X
}
}

When we compile and execute this code, the program seems to “run forever”:

ahoover@video> gcc -o infloop infloop.c
ahoover@video> infloop

The “” symbol indicates the cursor. The program is running, but never
ends so we never see the shell prompt again. Eventually we press CTRL-C
to force the program to stop executing.

We can perform the same operation using the debugger, but pressing
CTRL-C in the debugger does not cause the program to quit. Instead, it
tells the debugger to pause program execution at whatever line is currently
being executed. We can then look at the surrounding code to determine
which loop is executing infinitely:

ahoover@video> gcc -g -o infloop infloop.c
ahoover@video> gdb infloop

(gdb) run

Starting program: /home/ahoover/infloop

_ [...user presses CTRL-C...]
Program received signal SIGINT, Interrupt.
0x08048444 in main () at infloop.c:8

8 for (x=0; x<10; x++)

(gdb)

In this simple example, there is only one loop, so it comes as no surprise that
the program is currently executing a line of code somewhere in this loop. In
order to determine why the program will not finish the loop, we can watch
the loop counter through an iteration:

1.2. HOW TO DEBUG 27

(gdb) display x

1: x=0

(gdb) next

10 y=y+x;

1: x=0

(gdb) next

11 if (y > 10)
1: x=0

(gdb) next

12 X—=;

1: x =0

(gdb) next

8 for (x=0; x<10; x++)
1: x = -1

(gdb) next

10 y=y+x;

1: x=0

(gdb)

After having watched a complete iteration of the loop, we find that the
counter variable x has the same value (zero) at the beginning of every itera-
tion. Since it never reaches 10, the loop never ends. Now we can go about
the process of examining the code involving x within the loop to determine
the problem.

This technique for debugging is particularly useful when there are many
separate loops within a program. It is the fastest way to determine which
loop is faulty, and a good way to determine why the loop is not terminating

properly.

1.2.3 More debugging problems

There are other instances in which a debugger is useful for finding problems.
These include:

1. Variable has wrong value.
2. Identify faulty program block.

3. Watch loop iterations.

28 CHAPTER 1. INTRODUCTION
4. Watch variable value.

Examples of these are forthcoming, and may be covered in class as time
permits.

1.3 Review of C

The following serves as a quick review of the basic data types, operations, and
statements in the C programming language. The reader is directed to any one
of a number of excellent books covering the syntax of C for a deeper coverage.
The goal of this review is to remind the reader of a few key concepts. This
section can also assist the reader who has not yet studied C, but has studied
an introduction to programming in a related language, such as C++ or java.
It is possible to learn the syntax of C while studying the concepts of system
programming in this text, provided that the reader is willing to undertake the
extra burden. Such a reader is strongly encouraged to acquire an additional
textbook that covers the C programming language, to use in conjunction
with this text. Several excellent candidate books include:

1. The C Programming Language, 2nd edition, by B. Kernighan and D.
Ritchie, Prentice Hall Publishing, 1988, ISBN 0131103628.

2. Programming in C, 3rd edition, by S. Kochan, Sams Publishing, 2004,
ISBN 0672326663.

3. C Primer Plus, 5th edition, by S. Prata, Sams Publishing, 2004, ISBN
0672326965.

1.3.1 Basic data types

There are four basic data types in C: int, float, double and char. The
int data type is intended to store whole numbers. The float data type
is intended to store real numbers. The double data type is also intended
to store real numbers, but has twice the precision so that it can store a
larger range of numbers. The char data type is intended to store character
symbols and controls used to display text. The following code demonstrates
the differences between the types:

1.3. REVIEW OF C 29

#include <stdio.h>
int main()

{

int x,y;
char a;
float f,e;
double d;

x=4;

y=7;

a="H’;

f=-3.4;
d=54.123456789;
e=54.123456789;

printf("%d Jc %f %1f\n",x,a,e,d);
printf("%d Y%c %.9f %.91f\n",x,a,e,d);
}

Executing this code produces the following result:

4 H 54.123455 54.123457
4 H 54.123455048 54.123456789

In the first line of output, the float variable has seemingly been rounded
downward in the last displayed digit, while the double variable has correctly
been rounded upward in the last displayed digit. In fact, the float has simply
run out of precision. This can be seen in the second line of output, where
both variables are forced to print to nine decimal places. The double variable
has the correct value, but the float has erroneous values in the latter digits.

The printf() and scanf () functions are the primary output and input
functions in C. They are included in the C standard library, which is usually
linked to an executable by default (in other words a programmer can use
these functions without worrying about where they come from). The syntax
for them involves pairing up each variable in the list of arguments with a for-
matting symbol within the quoted string. For the details of this formatting,

30 CHAPTER 1. INTRODUCTION

the reader is encouraged to consult a C programming book or the man page
for either function.

1.3.2 Basic arithmetic

The basic arithmetic operations supported in C include addition, subtrac-
tion, multiplication, division, and modulus (remainder). Within loops, it is
common to increment (add one to) or decrement (subtract one from) a vari-
able. The operators ++ and -- are provided for this reason. The following
code demonstrates the basic arithmetic operations:

#include <stdio.h>

int main()

{

int X,Y;

int rl,r2,r3,r4,r5;
x=4;

y=T7;

ri=x+y; 1r2=x-y; 1r3=x/y; Tr4=X*y;
printf("/%d %d %d %d\n",rl,r2,r3,r4);

r3++; rd4--; rb5=rdjri;
printf("%d %d %d\n",r3,r4,r5);
}

The output of executing this code is as follows:

11 -3 0 28
1 27 5

The modulus operator can only be used on integer variables. All the other
arithmetic operators can be applied to all variables.

1.3. REVIEW OF C 31

1.3.3 Loops

There are three basic types of loops in C: for, while, and do-while. The for
loop is intended to be executed a fixed number of iterations, known before
the loop is entered. Hence, it is given both a starting condition and an ending
condition. The while loop is intended to be executed an unknown number of
iterations. Hence, it is only given an ending condition. The do-while loop
is also intended to be executed an unknown number of iterations, but it will
get executed at least once. The while loop may be ezecuted zero times if it
fails the condition on the first attempt. The do-while loop does not test the
condition until it has finished the loop, so it will execute the loop at least
once. The following code demonstrates the three types of loops:

#include <stdio.h>

int main()

x=0;

for (i=0; i<4; i++)
{
X=X+1i;
printf ("%d\n",x);
}

while (i<7)
{
x=x+1i; it++;
printf ("%d\n",x);
}

do
{
x=x+i; i++;
printf ("%d\n",x);
}

while (i<9);

}

32 CHAPTER 1. INTRODUCTION

The following is the output of executing this code:

The reader is encouraged to identify which lines of output came from which
loops.

1.3.4 Conditionals and blocks

The basic conditional in C is the if-else statement. It supports tests for
equality (==), inequality (!=), and relative size (>, <, >= and <=). Multi-
ple conditions can be tested within a single statement using the logical AND
(&%) and logical OR (|) operators to group the individual conditions. State-
ments (individual lines of code) are grouped using brackets ({ and }). In the
absence of brackets, a conditional or loop statement only applies to the sin-
gle following statement. The following code demonstrates conditionals and
blocks:

#tinclude <stdio.h>

int main()

{
int i,x;
x=0;
for (i=0; i<b; i++)
{
if (i%2 == [l i==1)

x=x+1;

1.3. REVIEW OF C 33

else
X=x-1i;
printf ("%d\n",x);
}
}

The following is the output of executing this code:

B O Wk O

The indentation in the code is for convenience only; it does not affect the
grouping of statements. The topic of formatting code for easier management
and understanding is addressed in a later chapter.

1.3.5 Flow control

Normally, loop iterations must be run to completion. When the bottom of a
loop is reached, control is returned to the top of the loop, or to the statement
immediately following the loop, depending on the result of evaluating the
loop conditional. There are two flow control statements that change the
way an interation through a loop is executed: continue and break. The
continue statement returns control to the beginning of the loop, testing the
loop conditional to start the next iteration. In effect, it skips the rest of the
current iteration and starts the next one. The break statement terminates
the loop and immediately proceeds to the next line of code following the
loop. The following code demonstrates flow control:

#include <stdio.h>

int main()

34 CHAPTER 1. INTRODUCTION

for (i=0; i<5; i++)

{

if (i%2 == 0)
continue;

X=x-1;

if (i%4 == 0)
break;

printf ("%d\n",x);

}

}

Executing this code produces the following output:

-1
-4

Out of the five iterations in the loop, only two reach the printf() statement.
The fourth iteration ends in the break statement, which terminates the loop,
so that the fifth iteration never runs. Beginning students of C may be dis-
couraged from using these flow control statements. The alternative is to use
conditionals to control flow inside loops. The advantage to using control
flow statements is that it simplifies (reduces) the number of program blocks,
which usually simplifies the indentation that goes along with multiple pro-
gram blocks.

There are also two control flow statements that are program-wide: exit
and goto. The exit statement immediately terminates the program. It is
useful for handling unwanted situations, such as when a user inputs data
outside an allowed range. The goto statement jumps program execution to
the named line of code. In general, it should be avoided by all but the most
experienced programmers. Unlike the other flow control statements, it can
have complex consequences that can outweigh its benefits.

