Chapter 8

Libraries

A library is a set of functions, packaged as a system resource, and intended
for use by other programs on the system. Normally a library is not written
for one single program, it is intended to be used by many programs. By
packaging the functions as a system resource, the code does not need to be
rewritten for every program that uses it. Although a library may include any
number of functions, it does not include one important function: main(). A
library is not an executable program. A library consists of functions that can
be combined with a main() to form a complete executable program.

On a typical computing system, there are many libraries. A single library
tends to contain functions concerning a single topic, such as mathematical
calculation, memory debugging, network operations, or graphics. Some li-
braries are small, containing ten or so functions, while other libraries may
contain a thousand functions. Some libraries are considered standard, having
become common to a large number of computing systems. Examples include
the C standard library and the X library. Some libraries are developed by
individuals or companies to support their specific product line, and may only
be found on computing systems related to those products.

When using a library, a program does not need to use every function
inside it. A program may call only a single function within that library, or it
may use them all, or any number in between. A program may use multiple
libraries. A library may be built on top of another library, calling upon its
functions. In this case, a program using the top level library must also make
use of the lower level library. Graphics libraries, in particular, have developed
this way.

This chapter covers libraries from the perspective of a system resource.

121

122 CHAPTER 8. LIBRARIES

A serious programmer must know how and when to use libraries. Using
a library saves time in programming, because a programmer can make use
of existing code. Library code tends to be written by experts, so that it
tends to have good design and performance. Because a library is used by
many programmers, it is usually debugged by a wide audience, and so a
programmer can use it with confidence.

Basic knowledge of some of the common libraries is also useful. In order
to understand how libraries work, and to become comfortable with them, this
chapter will describe three libraries in some detail. However, the coverage
of these libraries is not intended to turn the reader into an expert with
those particular libraries. Rather, they are intended to familiarize the reader
with the process of using a library. A programmer typically only becomes an
expert with a specific library through extensive code or product development
that makes use of that library. That is generally a goal only when tackling a
specific job.

8.1 Using a library

There are two basic steps to using a library. First, one or more header files
must be included in the C program code. Second, the library must be linked
into the executable. These concepts can be demonstrated with the following
code example:

#include <stdio.h>
#include <math.h>

main()

{

double x,s;

s=8.0;

x=sqrt(s);

printf ("%1f\n",x);
}

In this example we are making use of the sqrt() function, which is one of
the functions in the math library. Assume that this code is stored in a file
named sq.c. First, the header file math.h is included in order to use the
math library. Second, when compiling, we must link to the math library:

8.1. USING A LIBRARY 123

gcec -0 sq sq.c -1lm

The command line argument -1m tells the compiler to link (-1) to a library
file named m. This library file is what actually contains the code for the sqrt()
function, and all the other functions in the math library. In the following two
sections we take a look at what is inside a header file, and why it is needed;
and at a library file, and how it works.

8.1.1 Header files

A header file does not contain the code for any of the functions in the library.
That code is contained in the library file, which is brought in during linking.
Why then do we need to include the header file? For example:

#include <math.h>

One can think of a header file as the wnstructions for how to use the library.
It contains function prototypes, which describe the inputs and outputs of all
the functions (how many and what types of parameters each function takes,
and what type of value each function returns). For example, in math.h we
can trace the following code!:

double sqrt(double x);

This prototype tells us that the the sqrt() function takes in one argument,
a double, and also returns a double. By including the header file into our
own program, we inform the compiler of how the function works, so that it
can properly compile our use of the function. Remember, our program does
not include the code for the sqrt() function. Therefore the compiler needs
the function prototype in order to properly align our code which calls the
function.

A header file can also contain constants. For example, within math.h we
can find the following code:

#define M_PI 3.14159265358979323846 /* pi */

!Function prototypes are often written using nested preprocessing substitutions, to
provide for flexibility in implementation and system independence. However, the net
effect of expanding the preprocessing substitutions is to produce a line of code like the one
given here.

124 CHAPTER 8. LIBRARIES

This provides a constant value for pi, often used in trigonometric and other
mathematical calculations. A programmer can use this constant without
having to redefine it for every program. Within the header file X.h, the
primary include file for the X library, we find another use for constants:

#define KeyPress 2
#define KeyRelease 3
#define ButtonPress 4
#define ButtonRelease 5
#define MotionNotify 6
/* ... list continues for 34 entries ... */

These constants provide plain-English phrases for values commonly passed to
and from functions within the library. This particular list continues, defining
34 different possible values for a common function parameter. Programmers
typically find it easier to remember text phrases, as opposed to numeric
values, for oft-used parameter values. For example, one could write the
following code:

if (SomeEvent.type == 2)
/* process key press event */

However, it is more common to write that code as follows:

if (SomeEvent.type == KeyPress)
/* process key press event */

This code takes advantage of the constant definitions in the header file to
make the code easier to write, and more readable.

A header file may use typedef and struct definitions to create library-
specific aliases for common data types, or new data types. For example,
within the X.h header file, we find:

typedef unsigned long Mask;

This code creates an alias called “Mask” for the unsigned long int. Why is
this done? The X library uses bitwise operations to send and receive data
through many functions. Since a bitmask will be used as a parameter for
many of these functions, the X library provides a data type named “Mask”

8.1. USING A LIBRARY 125

to promote code readability, by more strongly identifying what a particular
variable is intended to do.

Another example can be seen in the FILE data type. By including the
header file stdio.h, we eventually find the following lines of code:

struct _IO_FILE {
int _flags;
int _fileno;
int _blksize;
/* ... many additional fields not printed here ... */

}
typedef struct _IO_FILE FILE;

This code defines a structure that contains information about accessing a
file. The code then defines an alias for that structure, to simplify writing
code. These lines of code explain the commonly seen:

#include <stdio.h>
FILE *fpt;

First, without including the stdio.h header file, the compiler will not un-
derstand the keyword “FILE”. Second, by tracing through the definition we
find that the variable fpt is nothing more than a pointer to a structure.
When using a library, it is common to make use of seemingly exotic and
unknown data types. However, they are nothing more than typedefs, aliases
and structure definitions, written out within the header file, to make code
more readable and portable.

Header files for the C standard libraries are usually stored in /usr/include
on a linux system (or any unix-based system). On an MS Windows system,
it depends on which compiler is being used. Different compilers store the
header files in different locations. The MS Visual C compiler typically places
those header files in C:\Program Files\Microsoft Visual Studio\VC98
\Include. It does not particularly matter where header files are placed, so
long as the compiler knows where to find them. By default a compiler will
look in its preferred location(s), defined during installation. If a header file
is placed in a different location, for example by installing a new library in

126 CHAPTER 8. LIBRARIES

a non-standard location, then the compiler must be told where to find the
header file. Using the gcc compiler, this is accomplished by using the -Ipath
command line argument. For example:

gcc -o sq sq.c -I/usr/include/mathlib -1m

The option -I/usr/include/mathlib tells the compiler to look in the /usr
/include/mathlib directory, in addition to the standard locations, for any
requested include files. We will see this again when we look at the X library.

8.1.2 Library files

A library file contains the actual code for the functions in the library. During
compiling, we must link to the library file to bring the code together with
our own, to make the executable program. In the example at the beginning
of this section, we used the command line argument -1m while compiling to
tell the compiler to link to the m file, which is the math library file. But
where is this m file, and what exactly is inside it?

On a linux system (and all unix-based systems), library files are typically
stored in /usr/lib. Linux systems use the following convention for naming
library files: they begin with the letters 1ib, and have a filename suffix of .a.
The only part of a library filename that is unique lies in between those parts.
Thus, the math library file, which we called m when compiling, is actually
named libm.a on the system. We can find it as follows:

1s -1 /usr/lib/libm.a
-rw-r--r-- 1 root root 3092430 Sep 4 2001 /usr/lib/libm.a

Notice that the file is fairly large, about 3 MB (this will vary from system to
system). This shows that there is quite a bit of code in the library file. The
math library contains dozens of functions, some of which are quite complex.
On an MS Windows system, library files have no fixed prefix but they do
all end with either the .1ib or .d11 suffix. They may be found in several
directories, including C:\Winnt\system32, C:\Winnt\system, and a \1ib
subdirectory installed as part of a compiler (for the MS Visual C compiler,
this would be C:\Program Files\Microsoft Visual Studio\VC98\Lib).
When linking, a compiler knows to look for library files in the standard
directories, usually defined when the compiler is installed. It is also aware

8.2. PURPOSE OF LIBRARIES 127

of any naming conventions, such as expanding m to 1libm.a. However, some
library files may be stored in non-standard directories. For example, a new
library may be added to a system and stored in its own folder, in order to
make maintenance of the library easier. An example of this is the X library.
It is commonly stored in /usr/X11R6, with subdirectories for its include
(/usr/X11R6/include) and library (/usr/X11R6/lib) files. In order to link
with that library, we must tell the compiler to look in that directory, in
addition to the standard directories, when looking for library files:

gcc -o xprogl xprogl.c -1X11 -L/usr/X11R6/1ib

The command line argument -L/usr/X11R6/1ib tells the compiler to add
the path /usr/X11R6/lib to the set of directories in which to find library
files.

A library file contains the actual code for all the functions in the library.
The code for the library functions is static, in the sense that it is not expected
to change (ignoring for the moment library upgrades). Therefore, it is pre-
compiled and stored in an intermediate format called a library file. For the
present discussion, the detailed format of a library file is not important; it
is enough to know that it is code that has previously been compiled and is
ready to be linked. If one tries to open the file /usr/lib/libm.a with a text
editor, it will look like garbage, since it is not source code (ASCII text). This
topic will be visited again in the chapter on program building, when we take
a deeper look at object code files.

8.2 Purpose of libraries

There are several reasons to package a set of functions into a library:
Convenience, repetition.

An example in this category is the string function library. Many of the
string functions are easy to code. For example, the strlen() function is only a
couple lines of code. However, string functions are used frequently, and even
though they may be easy to code, it is convenient to put them in a library
to avoid rewriting them every time a new program is written.

Difficult to code.

An example in this category is the math library. The functions in the

128 CHAPTER 8. LIBRARIES

system A system B
, T TTTTEmEEEEET P, T TTTTTmEEEET I
1 advanced LI | sinpl e 1
1 gr aphi cs L gr aphi cs 1
1 di spl ay LI | di spl ay 1
1 1 1 1 1 1
1 LI | 1
1 (device driver) 1 (device driver) 1
1 LI | 1
1 L 1
. as 1, as 1
| S, L T !

wite() wite()

application) application
(program (program

Figure 8.1: A program must be written to work with multiple device drivers
if it is intended to work on different hardware or systems.

math library, such as sqrt() and cos(), are iterative in nature and very difficult
to code. For example, to solve for the square root of a number, one could
continually multiple a number by itself, lowering or raising the value, until
it is close enough to the value whose square root is being sought. Because
these functions are difficult to write, we prefer to utilize the expertise of
people who have studied these problems extensively, and written code for us
to use. While we might be able to write a method that works, the experts
have written more efficient, precise methods based on a detailed study of
computational mathematics.

Hardware/system independence.

An example in this category is a graphics library, such as the X library
or the OpenGL library. In order to access a piece of hardware, a program
must go through a device driver in the O/S (see earlier chapter on I/O). The
program can call the open function for the specific piece of hardware, and
then call the write function to send it data. If we were only developing an
application for one system (defined as the O/S plus hardware), then this is
a viable method for graphical output. However, most of the time we want
an application to be capable of running on a variety of graphics displays or
graphics cards.

Figure 8.1 shows an example. Suppose that on system A we have a state-
of-the-art graphics card, that can render 3D primitives with shaded lighting,

8.2. PURPOSE OF LIBRARIES 129

advanced
gr aphics
di spl ay

(device driver)

as

wite()

gr aphi cs
library

Dr awLi ne()

application
(program

Figure 8.2: A graphics library allows an application to call system or
hardware-independent functions.

textures, and other advanced features. System B on the other hand has an
inexpensive, low-resolution, straight pixel display card. Each of these systems
uses a different device driver, specific to its hardware. The data that is sent
via a write() function call on system A will look very different from the data
that is sent using write() on system B. Should the application need to know
about different device drivers, and change how it calls write() depending on
what hardware is available?

Instead, we use a graphics library to perform this job. Figure 8.2 demon-
strates the process. The graphics library contains generic graphics functions,
such as “DrawLine()”. Within its functions, a graphics library implements
the code specific to different graphics hardware to carry out that operation.
The details of how and when the graphics library calls write() to actually
implement DrawLine() are hidden from us. This is very similar to how the
details of the write() function call are hidden in the device driver.

Graphics libraries primarily provide us with hardware independence, but
they can also provide us with O/S independence. Some of the more generally
accepted and popular graphics libraries are available on a variety of operating
systems, and support a large variety of hardware. Examples include the X
library and the OpenGL library.

130 CHAPTER 8. LIBRARIES

‘ header file ‘ contents ‘

stdio.h I/O functions, such as printf() and scanf()

stdlib.h large variety of functions, including memory allocation
string.h the string functions, such as strlen() and strcpy()
math.h the math functions, such as fabs() and sqrt()

time.h functions for converting various time and date formats

Table 8.1: Common header files in the C standard library.

8.3 The C standard library

The most important library in C programming is called the C standard li-
brary. It includes hundreds of functions for doing common operations, such
as basic text I/0O, file I/O, string manipulation, and mathematical calcula-
tions. Its functions include many of the most well known: printf(), strlen(),
fopen() and sqrt(). Very few programs are written without making at least
some use of this library.

The C standard library is really a collection of libraries that have been
grouped together. It makes use of multiple header files (24 as of the 1999
ANSI standard) and multiple library files (depending on system implemen-
tation). Because it includes functions covering a wide variety of topics, and
because it is organized into multiple files, different parts of it are sometimes
referred to in isolation. For example, it is not uncommon to call the math
functions portion of the C standard library as simply the “math library”.
Similarly, it is not uncommon to call the string functions portion as simply
the “string library”. Table 8.1 lists the most commonly used parts of the C
standard library.

Because the C standard library is so commonly used, many compilers
simplify the operations required to use it. For example, most C compilers
link to the core of the C standard library by default, without requiring the
user to specify it. Thus, either of the following lines does the same thing:

gcc -o progl progl.c
gcc -o progl progl.c -lc

Most compilers include the option -lc by default, so that a programmer
does not, have to type it every time a program is compiled. Some compilers

8.3. THE C STANDARD LIBRARY 131

also include the most common C standard library header files by default.
While both of these practices are convenient for experienced programmers,
they often confuse novice programmers. The hiding of the basic steps in
using a library can cause a novice programmer to make simple mistakes
when moving on to additional libraries.

One of the most common mistakes is to forget to include a header file.
This can lead to some unexpected and often confusing behavior on the part
of a program. For example:

main()

{
double a,b;

b=9.0;

a=sqrt(b) ;

printf ("%1f\n",a);
}

On some systems, compiling and executing this code may produce the fol-
lowing output:

1075970687.000000

This of course is not the square root of nine. A novice programmer, upon
seeing this, is often confused by the source of the error. Where did the
garbage value come from? The answer is that the header file math.h was
not included, so that the compiler did not know the type of value returned
by the sqrt() function. By default, the compiler assumes that all functions
return an int. However, the sqrt() function actually returns a double. This
causes a mismatch, where the return value is interpreted erroneously, causing
the garbage value to appear.

Some compilers will warn of this potential problem. For example, a com-
piler may produce the following warning:

main.c(8) : ’sqrt’ undefined; assuming extern returning int

With a little practice, a programmer will come to recognize this type of warn-
ing as a potentially serious problem, and try to alleviate its cause. However,
some programmers take advantage of the “int-by-default” return value and

132 CHAPTER 8. LIBRARIES

code without proper function prototypes or header file usage. An experi-
enced programmer should be aware of this practice, and ready to work with
code written in that manner.

8.4 The curses library

Curses is a basic graphics library, for use on a character terminal screen. It is
the lowest level of graphics, and dates back to the time when most computer
displays could only print text (they could not display images or other graph-
ics). These displays were called terminals. Although most modern computer
displays can show images and other graphics, the curses library and character
graphics in general are still useful. For example, many computing systems
use a “boot loader” when first powered. This boot loader runs before the
O/S is loaded. Without the O/S, and its device driver used to operate the
advanced graphics functions, the computing system is only capable of charac-
ter graphics. Similarly, when installing an O/S, the more advanced graphics
capabilities are typically not yet available. In some embedded systems, a
simple character-based display may be all that is required. In all these cases,
a library like curses is useful.

The following code serves to demonstrate the basic operations of the
curses library:

#include <curses.h>

main()

{

initscr(); /* turn on curses */
clear(); /* clear screen */

move (10,20) ; /* row 10, column 20 *x/
addstr("Hello world"); /+* add a string */
move (LINES-1,0) ; /* move to LL x/
refresh(); /* update the screen */
getch(); /* wait for user input */
endwin(); /* turn off curses */

}

8.4. THE CURSES LIBRARY 133

If this code were stored in a file called hello.c, then the following would
compile the program?:

gcc -o hello hello.c —-lncurses

Note that the header file curses.h must be included, and that the library is
linked through the command line argument -lncurses (ncurses is the “new
curses” library, a rewrite of the traditional curses library, and the most cur-
rent at the time of this writing).

Most graphics libraries use a function to initialize their internal global
variables. For example, the library might discover what sort of graphics card
or capability the system has, open the device driver for it, and initialize some
variables recording its size and other properties. These values will in turn
be available to the program using the library through those variables. In
the case of curses, the function initscr() performs the initialization. After
that, the program can access the global variables COLUMNS and LINES
to see the size of the terminal. The program can also access the variable
stdscr as the default “window”, which can be thought of as the library’s
name for the terminal. The library is closed (the device driver is closed,
and any dynamic memory allocated is freed) through the endwin() function
call. Curses functions cannot be used prior to calling initscr(), and a program
should always call endwin() to close out use of the library.

The basic functions in curses are:

move (10,20) ; /* move cursor to row=10, column=20 */
addstr("Hello"); /* draw string Hello at cursor location */

While drawing text, the cursor is moved ahead (incremented one column)
per character drawn, similar to standard typing.

8.4.1 1I/O control

There are three important concepts in I/O control: buffering, echoing, and
blocking. This section studies each of these concepts, and shows how they
can be implemented using the curses library.

2The reader is strongly encouraged to run this program, and all examples in this section,
to better learn the concepts.

134 CHAPTER 8. LIBRARIES

keyboar d program di spl ay
(CR to flush) (refresh() to flush)

line buffer buf f er

Figure 8.3: Buffering on both the input and output streams.

Buffering

Buffering refers to the process of temporarily storing bytes on a stream, and
grouping them up before transferring them to the destination. Figure 8.3
demonstrates the process. A buffer can be used on any stream; this example
shows buffers on both the input and output streams.

By default, characters sent to the curses output window are buffered.
This means that the characters are not actually displayed until the buffer
is flushed, sending all the characters to the terminal display. Flushing is
accomplished by the refresh() function call.

Character input is unbuffered by default. This means that functions that
read the keyboard (such as getch()) return immediately as soon as any key is
pressed. This is different from how the C standard input function (scanf())
works. The scanf() function is line buffered, meaning that it does not return
until the user presses ENTER. The advantage to line buffering is that a user
can correct typing mistakes using the backspace or delete key before actually
committing the input to the program. These operations are handled by the
O/S working on the data in the buffer. Line buffering can be turned on in
curses using the nocbreak() function. For example:

#include <curses.h>

main()
{
initscr(); /* turn on curses */
nocbreak() ; /* turn on line buffering */
/* by default keyboard input is unbuffered */
getch(); /* wait for user input */
endwin(); /* turn off curses */

}

8.4. THE CURSES LIBRARY 135

keyboar d program di spl ay

echoi ng

Figure 8.4: Echoing the input stream to the output stream.

Seemingly, this program waits for one character of input from the user, and
then terminates. However, when this program is run, the user can type any
number of keystrokes; the program will not end until ENTER is pressed.
This is because the input is line buffered. Line buffering can be turned off
by calling the cbreak() function.

Echoing

Echoing refers to the process of copying bytes from the input stream to the
output stream. Figure 8.4 shows the process. When echoing is turned on,
every byte that appears on the input stream is copied directly to the output
stream, in addition to being given to the program for processing. Echoing
is how a user can see what he or she is typing while providing input to a
program.

By default, keyboard input in curses is echoed. The following example
demonstrates turning echoing off:

#include <curses.h>

main()
{
int i;
initscr();
noecho() ; /* turn off echoing */
for (i=0; i<5; i++)
getch(); /* wait for user input */
endwin();

}

The noecho() function call turns echoing off. When this program is run,
characters typed are not seen on the screen. Echoing can be turned back on
using the echo() function.

136 CHAPTER 8. LIBRARIES

keyboard program keyboard program
. L (continue | ar
(wait) <= get input if no data € 9et input
present)
bl ocki ng non- bl ocki ng

Figure 8.5: Types of blocking on an input stream.

Blocking

Blocking refers to the process of how the program will wait for bytes to
appear on the input stream. Figure 8.5 shows the process. When blocking is
turned on, every function call for input will wait until data appears on the
input stream. The program will not continue until input is received. When
blocking is turned off, the function call will check to see if data is present. If
data is present, the read occurs normally, just as if blocking was turned on.
However, if no data is present, the function call will return immediately and
inform the program that no data was present. This allows the program to
continue whether input data is present or not.

By default, the scanf() function is a blocking function; it will wait until
input is received. The same is true of the curses library. The following
example demonstrates turning blocking off:

#include <curses.h>

main()

{

int i;
initscr();

nodelay(stdscr,TRUE) ; /* turn off blocking */
for (i=0; i<b; i++)
{
getch(); /* wait for user input? */
sleep(1);
}
endwin() ;

}

When this program is run, even if the user does not touch the keyboard, the

8.4. THE CURSES LIBRARY 137

program finishes in 5 seconds.

Blocking does not have to be on (indefinite) or off (immediate). Blocking
can occur for a pre-selected amount of time, allowing the program to continue
if no input is received during that time. The following example demonstrates
timed blocking:

#include <curses.h>

main()
{
int i;
initscr();
halfdelay(5); /* blocking = 5/10 second */
for (i=0; i<5; i++)
getch(); /* wait for user input */
endwin() ;

}

In this example, blocking is set to 0.5 seconds. Each getch() function call
will wait 0.5 seconds for input to appear, but if nothing appears in that time,
the function returns and the program continues. Thus, if this program is run
without touching the keyboard, it will run for 2.5 seconds and then end.

Being able to control blocking is important in a number of situations.
For example, a banking machine typically does not wait forever for a user
to provide or password, or to command a transaction. After waiting a fixed
amount of time, a banking machine program typically continues to a portion
of the program that ends the banking session, in order to protect the user.
This is an example of timed blocking. For another example, consider a movie
playing program. A user expects to be able to rewind, pause, and interact
with a film while it is playing back. This can be accomplished through non-
blocking input. This will be explored more in the next section.

8.4.2 Dynamic graphics

The curses library is most commonly used for menus and basic user interac-
tion. However, it can be used to create dynamic or moving graphics, albeit of
a limited nature. In this section we study a few techniques to create dynamic
graphics. Although the techniques are demonstrated using the curses library,
the same techniques can be applied using other graphics libraries.

138 CHAPTER 8. LIBRARIES

Motion

The most basic technique to creating a moving graphic is to erase the screen
at the graphic’s previous location, immediately redrawing it at an adjacent
location. Repeating this process over and over provides the illusion of motion.
The following code demonstrates the technique:

#include <curses.h>

main()
{

int i;

initscr();
clear(); /* clear screen */

for (i=0; i<30; i++)
{
move (10,1);
addstr("Hello world");

refresh(); /* flush buffer */
usleep(100000) ; /* pause 0.1 seconds */
move (10,i); /* back to previous spot */
addstr (" "); /% draw empty space */
}

getch();

endwin() ;

}

Running this program, the user will see the phrase “Hello world” move hor-
izontally across the screen. The usleep() function call is used to control
the rate of motion. The usleep() function pauses the program for the given
number of microseconds, allowing for finer control of pausing as compared to
the sleep() function. Note that the output buffer must be flushed (using the
refresh() function) at the appropriate time, or the technique will not work.
If the refresh() function call were moved to the bottom of the loop, then
the graphic would never be seen. The same is true of the pause (using the
usleep() function). The correct order of operation is (1) draw the graphic, (2)
flush the buffer, (3) pause the program, (4) erase the graphic, and (5) move

8.4. THE CURSES LIBRARY 139

/ erase graphic \

updat e graphic
coor di nat es

\ /

flush buffer | draw graphic

pause program

Figure 8.6: Steps in creating a moving graphic. It is often convenient to start
the loop with the “erase graphic” step.

to a new location. Figure 8.6 shows the process. Because it is cyclical, it can
be started at any point. It is often convenient to put all the code involving
a single graphic together, with the flush and pause at the end. In this case,
the loop would start with the step that erases the graphic. We will see this
again below.

User input during motion

Moving graphics generally require loops, as described above. The graphic
stays in motion only so long as the loop keeps iterating. If we require the
user to be able to provide input to the program, while the graphic is in
motion, then we must turn blocking off. Otherwise, any function call for
input will wait until input is received. Meanwhile, the motion of the graphic
will seem to pause. Using a fixed-time blocking is also generally a bad idea,
unless the fixed-time is very small. Otherwise, during iterations where the
user immediately provides input, the graphic will move faster than during
iterations where the program waits for the blocking to time out.

The following code demonstrates polling for user input while a graphic is
in motion. Polling refers to the process of using a non-blocking function call
to check for user input, and acting upon the input if given, but otherwise
continuing program execution.

#include <curses.h>

main()

{

140 CHAPTER 8. LIBRARIES

int i,row;
char ch;

initscr();

clear();

nodelay(stdscr,TRUE) ; /* turn off blocking */
row=10;

for (i=0; i<30; i++)
{
move (row,i);
addstr("Hello world");
refresh();
usleep(100000) ;
move (row,i);
addstr (" ")
ch=getch(); /* poll for input */
if (ch == ’z’) /* act on input */
row++;
}
getch();
endwin() ;

}

This program works similarly to the last example, but if the user presses ‘z’
then the graphic will move down a line. With or without input, the graphic
will continually move rightwards across the screen. Executing this program,
the user will notice that when the input ‘z’ is given, it is also displayed on the
screen, near the moving graphic. This is a consequence of echoing. In most
programs using dynamic graphics, echoing is turned off. This can easily be
added to this example by calling noecho() before the loop starts.

Varying-rate graphics

Using the basic loop structure outlined above, graphics move at the rate de-
fined by the amount of time spent paused in each iteration. Increasing the
usleep() causes the graphics to move slower, while decreasing the usleep()
causes the graphics to most faster. However, if multiple graphics are dis-

8.4. THE CURSES LIBRARY 141

played, they would all move at the same rate. How can different graphics be
moved at different rates?

One answer is to use modulus arithmetic on the loop counter to control
when the motion of each graphic occurs. If one graphic moves every iteration,
but another graphic only moves every other iteration, then the first graphic
is moving twice as fast as the second. The following code demonstrates this
technique:

#include <curses.h>

main ()
{

int i;

initscr();
clear();

for (i=0; i<30; i++)
{
move (10,1i);
addstr(" ")
move (10,i+1);
addstr("Hello");
if (i%2 == 0) /* every 2nd iteration */
{
move (12,i/2);
addstr (" ");
move (12,i/2+1);
addstr("world");
}
move (LINES-1,0);
refresh();
usleep(100000) ;
}
getch();
endwin() ;

}

As mentioned previously, it is convenient to start the loop with the step that

142 CHAPTER 8. LIBRARIES

erases the graphic. In this way, all the code involving a single graphic can
be grouped together, and the flush and pause happen at the end of the loop.
The line move(LINES-1,0); puts the cursor at the bottom left corner of
the screen, so that it does not bounce around following the graphics as they
move.

8.5 The X library

In order to understand the X library, we first describe how grahpics libraries
in general have developed. It is beneficial to examine the graphics libraries
used on both a linux/unix system and an MS Windows system. There are
many similarities, and some differences, which help to highlight things a
system programmer needs to know.

In Section 8.2, we saw that a graphics library serves as a standarized set
of function calls between an operating system (in particular, a device driver)
and an application. This is so that the same application can work with dif-
ferent graphics displays with varying capabilities. Recent times have seen
a tremendous explosion in these capabilities, from simple 2D raster buffer-
ing to full texturing, lighting control, and complex rendering of 3D objects
and scenes. Applications depend upon graphics libraries to implement all of
these capabilities, either in hardware (if supported by the available graphics
hardware) or in software in the library itself.

As graphics hardware capabilities have expanded, a hierarchy of graphics
libraries has evolved that somewhat resembles the progression of capabilities.
Figure 8.7 shows this hierarchy and some of the popular graphics libraries.
On a linux/unix system, the X library is at the bottom level. The X library
provides for the creation and manipulation of windows. Each window can
serve as a separate “screen” or “display”. This allows a user to run a number
of different applications at the same time, each having its own graphical
display, even though the system itself has only one monitor or hardware
display. This capability has become so commonplace that users of desktop
computers expect it by default. However, it would not be available without
the X library or an equivalent.

In addition to windows functions, the X library provides functions for
drawing simple 2D graphics, such as lines, circles, and rasters (images). The
basic properties of these primitives can be manipulated, such as line color,
width, and type (e.g. dotted, dashed or solid). The X library also provides

8.5. THE X LIBRARY 143

I'i nux/uni x system M5 W ndows system
3D graphics penGL library DirectX library
user interface GIK+ library

user input Wn32 library

2D graphi cs X library

wi ndow nmanagenent

Figure 8.7: Hierarchy and content of popular graphics libraries.

functions for interacting with user input devices, particularly a keyboard
and a mouse. Most importantly, input can be directed to the appropriate
window (and program) depending on how the user is interacting with the
overall system.

The equivalent library on an MS Windows system is the Win32 library. It
provides all the above-described capabilities: window creation and manipula-
tion, drawing of 2D graphics, and control of user input. However, it provides
an additional capability not available in the X library: the user interface. On
an MS Windows system, all menus look and operate similarly. All dialog and
message boxes look and operate similarly. When opening a file, the interface
looks similar from application to application. This is because the Win32
library provides a set of functions to create and interact with menus, dialog
boxes, message boxes, and other aspects of a standard user interface. The
X library does not provide an equivalent set of functions. The developers of
the X library wanted all parts of the system to remain modular. Any system
operator is free to install and set up the user interface of his or her choice.
Since there are no functions available in the X library for a standard user
interface, additional libraries have been developed that provide different user
interfaces. These libraries include GTK+, Motif, and Qt. While this initially
seemed like a good idea, and in the spirit of modular system development,
it turned out to be problematic. Only a small percentage of computer users
want the capability to change the standard user interface. Most application
developers rely upon a standard user interface. Even experienced system
programmers typically prefer to rely upon a standard user interface. Many
users take advantage of the capability to fine-tune or adjust a user interface

144 CHAPTER 8. LIBRARIES

to suit individual preferences, but there does not seem to be any advantage to
providing completely unique user interfaces to all users. At the time of this
writing, the GTK+ library is a popular user interface library on a linux/unix
system, but there is no consensus standard.

Another important difference between the X library and the Win32 li-
brary is the separation of “display” from the hardware. Using the X library,
an application can open a window and interact with a user on hardware that
is separate from the hardware on which the application is running. This is
accomplished through networking. For example, a user can remotely log into
a machine, run an application on that machine, and yet graphically display
its output on the local monitor. This process can also be done in reverse,
displaying output on a remote machine. The Win32 library does not provide
for separation of window and display. The library can only interact with
hardware directly connected to the system. While this capability can some-
times be useful, it is rarely used by system programmers. As emphasized
throughout this book, experienced system programmers prefer to interact
with programs through a shell interface. A remote text-display capability is
usually sufficient for interacting with programs through a network.

As 3D graphics have become popular, particularly for games, another
level of libraries has developed to satisfy the need for hardware-independent
application development. On a linux/unix system, the OpenGL library is
commonly used. It provides functions for mainpulating and rendering 3D
meshes, applying textures, and controlling lighting. On an MS Windows
system, the DirectX library is commonly used. It provides a similar set of
functions for manipulating and displaying 3D graphics. Although primarily
developed for specific systems, there are implementations of both libraries
available for other platforms. The main difference is that the OpenGL library
is open source while the DirectX library is proprietary. At the time of this
writing, both are available for free.

There is one last important difference to discuss between a linux/unix
system and an MS Windows system. On an MS Windows system, not only is
the user interface standardized, but the system interface is also standardized.
All windows look and operate similarly. The titlebar is a standard size with
a standard font. The application menu always list from the top left corner,
rightwards, and each is a pull-down menu. The system menu for each window
always appears in the top right corner and consists of three consistent icons:
lower horizontal line (minimize window), square (maximize window), and X
(close window). The mouse always uses the same cursor. The overall system

8.5. THE X LIBRARY 145

menu is always in the bottom left corner, and the clock is always displayed
in the bottom right corner. Right clicking on the background (or desktop)
brings up a menu to control desktop appearance, while left clicking on the
desktop allows the user to drag icons or start applications. On a linux/unix
system, the system interface is not standardized. The gnome desktop is
popular, but at the time of this writing there is no consensus standard.

The lack of standardization on linux/unix systems is a result of modular
development. This allows users maximum flexibility, and to some degree
provides for more consistent interfacing between the various parts of the
system. The system software for an MS Windows system is largely monolithic
and integrated. The advantage to this approach is that a user can expect a
system and its applications to appear and operate in a somewhat predictable
manner. This typically decreases the time necessary for a user to become
proficient with a new computer, or even a new application. The user does
not need to spend time becoming familiar with new icons, menu operations or
placements, or appearances. This is one of the strengths of an MS Windows
system; it helps allow relatively inexperienced users to operate the system. At
the time of this writing, there is growing momentum towards standardizing
the linux user and system interfaces. These decisions of course have direct
impact upon the libraries a system programmer can expect to use.

8.5.1 Windows

The basic construct in X library programming is a window. A window is a
virtual monitor or display created for a program. It allows multiple programs
to operate sharing the same physical monitor or display, each using its own
window. In this paradigm, a program must create and manage a window
where the output will be displayed. The window also controls input to the
program. Typically, a system will only send keyboard and mouse input to
a program when the program’s window is active. Commonly, a window is
active when the user selects the window by clicking on it, or when the user
moves the mouse into the on-screen area of the window. Window activation
depends upon the particular system interface.

The following code demonstrates the basic steps involved in a program
using the X library to create a window:

#include <stdio.h>
#include <stdlib.h>

146 CHAPTER 8. LIBRARIES

#include <X11/X1ib.h> /* X library definitions */

main(int argc, char *argv[])

{

Display *Monitor; /* screen to display on */
Window DrawWindow; /* the window to be created */
GC WindowGC; /* graphics context */

/* First, every X program must connect to a display */
Monitor=X0OpenDisplay (NULL) ;
if (Monitor == NULL)
{
printf("Unable to open graphics display\n");
exit (0);
}

/* Create a window - describe a few attributes */
DrawWindow=XCreateSimpleWindow(Monitor,RootWindow(Monitor,0),

10,10, /* x,y on screen */
100,50, /* width, height */
2, /* border width */
BlackPixel (Monitor,0), /* foreground color */
WhitePixel (Monitor,0)); /* background color */

/* Create a default graphics context */
WindowGC=XCreateGC (Monitor,DrawWindow,0,NULL) ;

/* Place the window onscreen, and flush buffer */
XMapWindow (Monitor,DrawWindow) ;
XFlush(Monitor) ;

/* wait 2 seconds, then close X library */
sleep(2);
XCloseDisplay(Monitor);
}

Assuming this code is stored in a file called window.c, then the following

8.5. THE X LIBRARY 147

command compiles the code:
gcc -0 window window.c -L/usr/X11R6/1ib -1X11

The -L/usr/X11R6/lib command tells the compiler to search in the path
/usr/X11R6/1ib for additional library files. Depending on how the compiler
is configured, this option may or may not be necessary (the compiler may
already have that path added to its default list of places to look for linking
to library files). The command -1X11 tells the compiler to link to the X11
library file.

In the example, the first function called is XOpenDisplay(), which ini-
tializes the library for use by the program. It also creates a connection to a
physical display (this example uses the default display), discovering its prop-
erties and using them to initialize the library. The second function called
is XCreateSimpleWindow(), which creates a window for use by the pro-
gram. There are several function calls that create a window, with varying
degrees of control over the window’s appearance. This one is the simplest.
The third function called is XCreateGC(), which creates a graphics con-
text. A graphics context contains information about how graphics should be
drawn in the window. This information includes things like what font to use,
how thick to draw lines and other primitives, and what color to use when
drawing. This example demonstrate creating a graphics context having all
default values. The XMapWindow() function call draws the window on the
given display (remember that in the X library, the concepts of window and
display are separated, so that a window can be drawn on multiple different
displays). Since the output display is buffered, the XFlush() function call
is needed to force flushing of the buffer, to insure that the window actually
appears on-screen. Finally, the example program sleeps for two seconds and
then closes its use of the X library.

Both Window and GC (graphics context) variables are actually struc-
tures. Each contains a list of variables, the former about how the window
appears, and the latter about how to draw into the window. A program can
create any number of windows and graphics contexts, each having a different
variable name. It is possible to use a single graphics context for all windows.

When running this program, it is possible that the window will not ap-
pear at the specified location (10,10). This is due to the involvement of a
window manager. A window manager is a program that runs on the sys-
tem and actually controls the placement of windows. It typically tries to

148 CHAPTER 8. LIBRARIES

place windows so that they all have minimal overlap. It may therefore over-
ride a program’s request for a specific window location, in favor of another
position. There are function calls in the X library that can override the win-
dow manager, and force placement of the window according to the program’s
specifications, such as XSetWMHints(). These functions are beyond the
scope of this text.

8.5.2 2D graphics

There are a large number of functions in the X library that draw 2D graphics.
The following code demonstrates the drawing of a line:

#include <stdio.h>
#include <stdlib.h>
#include <X11/X1ib.h>

main(int argc, char *argv[])

{

Display *Monitor;
Window DrawWindow;
GC WindowGC;
int x1,y1,x2,y2;

Monitor=X0OpenDisplay (NULL) ;
DrawWindow=XCreateSimpleWindow(Monitor,RootWindow(Monitor,0),

10,10, /* x,y on screen */
100,50, /* width, height x/
2, /* border width */

BlackPixel (Monitor,0),

WhitePixel (Monitor,0));
WindowGC=XCreateGC (Monitor,DrawWindow,0,NULL) ;
XMapWindow (Monitor,DrawWindow) ;
XFlush(Monitor) ;

while (1)
{
printf("Line coordinates? ");
scanf ("%d %d %d %d",&x1,&yl,&x2,&y2);

8.5. THE X LIBRARY 149

if (x1 == -1)
break;
XDrawLine (Monitor,DrawWindow,WindowGC,x1,y1,x2,y2) ;
XFlush(Monitor) ;
}

XCloseDisplay (Monitor) ;
}

After initializing the library and creating and mapping a window, this pro-
gram goes into a loop. The loop uses the traditional printf() and scanf()
functions to get the desired endpoints of the line from the user. It then
calls XDrawLine() with the given coordinates. The origin of the coordi-
nate system is the top left, with the x-axis positive rightwards and the y-axis
positive downwards. Units are pixels; for reference, the window created in
this example is 100 x 50 pixels in size.

Additional functions for drawing 2D graphics include XDrawRectangle,
XDrawPoint, and XDrawArc. The latter can be used to draw a circle,
an ellipse, or any portion of an arc.

8.5.3 Graphics properties

The properties controlling how graphics are drawn are stored in the graphics
context (GC). The Win32 library has a similar construct called a device
context (DC). The following code demonstrates changing the color of the
lines drawn from the default (black) to blue:

#include <stdio.h>
#include <stdlib.h>
#include <X11/X1ib.h>

main(int argc, char *argv[])

{

Display *Monitor;
Window DrawWindow;
GC WindowGC;
int x1,y1,x2,y2;

XGCValues GCValues;

150 CHAPTER 8. LIBRARIES

unsigned long GCmask;
int i;

Monitor=XOpenDisplay (NULL) ;
DrawWindow=XCreateSimpleWindow(Monitor,RootWindow(Monitor,0),
10,10,
100,50,
2,
BlackPixel (Monitor,0),
WhitePixel (Monitor,0));
WindowGC=XCreateGC (Monitor ,DrawWindow,0,NULL) ;
XMapWindow (Monitor,DrawWindow) ;
XFlush(Monitor) ;

/* change the foreground color to blue */

GCmask=GCForeground;
GCValues.foreground=0x0000FF; /* red is OxFF0000 x/
i=XChangeGC (Monitor,WindowGC, GCmask,&GCValues) ;
if (1 == 0)

{

printf("Unable to change GC values\n");

exit(1);

}

while (1)
{
printf("Line coordinates? ");
scanf ("%d %d %d %d",&x1,&yl,&x2,&y2);
if (x1 == -1)
break;
XDrawLine (Monitor,DrawWindow,WindowGC,x1,y1,x2,y2);
XFlush(Monitor) ;
}

XCloseDisplay(Monitor);
}

8.5. THE X LIBRARY 151

The XChangeGC() function call takes in three relevant arguments: the
GC in which values are to be changed, a new set of values, and a mask.
The new set of values is stored in an XGCValues variable, which is another
structure. The mask variable indicates which values in that structure are to
be used to change the given GC. Multiple values can be changed in a single
XChangeGC function call. For example:

GCmask=GCForeground | GCLineStyle | GCLineWidth;
GCValues.foreground=0x0000FF;
GCValues.line_style=LineDoubleDash;
GCValues.line_width=4;

/* man XChangeGC to see all GC properties */
XChangeGC (Monitor,WindowGC,GCmask,&GCValues) ;

This code changes the foreground color, the line style, and the line width.
The man page for XChangeGC() or a similar reference can be used to see all
the properties that are changeable in a graphics context.

8.5.4 User input

Using the X library, user input is provided to a program through events.
An event occurs every time the user manipulates an input device. This
includes key presses, key releases, mouse motion, and mouse button presses
and releases. An event can also be generated by the operating system in
response to actions taken by another program. For example, if a program
ends, destroying its window and thereby uncovering another window, the
operating system will send an event to the program associated with the
newly uncovered window.
The following code demonstrates using events to obtain user input:

#include <stdio.h>
#include <stdlib.h>
#include <X11/X1ib.h>

main(int argc, char *argv([])
{

Display *Monitor;
Window DrawWindow;

152 CHAPTER 8. LIBRARIES

GC WindowGC;
XEvent SomeEvent;
long int EventMask;

Monitor=XOpenDisplay (NULL) ;
DrawWindow=XCreateSimpleWindow(Monitor,RootWindow(Monitor,0),
10,10, 100,50, 2,
BlackPixel (Monitor,0),
WhitePixel (Monitor,0));
WindowGC=XCreateGC (Monitor ,DrawWindow,O,NULL) ;
XMapWindow (Monitor,DrawWindow) ;
XFlush(Monitor) ;

/* Tell X server which events to pass to program */
EventMask=ButtonPressMask;
XSelectInput (Monitor,DrawWindow,EventMask) ;

while (1)
{
XNextEvent (Monitor,&SomeEvent); /* get user input */
if (SomeEvent.type == ButtonPress)
printf ("Button pressed!\n");
}

XCloseDisplay(Monitor);
}

In this example, if a mouse button is pressed, then the program prints out
a message to the user. The XSelectInput() function call tells the system
which events the program is interested in receiving. For example, a program
may only use the mouse, and so would not include keyboard-related events
in its event mask. The XNextEvent() function can be used to obtain input
from the user. Once it returns, a program can decide what to do with the
given event.

There are several functions that vary in how events are received by a
program. The XNextEvent() function is a blocking function; it will not
return until an event has been received. The XPeekEvent() function can
be used with appropriate coding to implement non-blocking input polling.

8.5. THE X LIBRARY 153

A program can request multiple types of events be sent to it, and then
process them differently. For example:

EventMask=ButtonPressMask | KeyPressMask | PointerMotionMask;
/* see /usr/include/X11/X.h for list of all masks */
XSelectInput (Monitor,DrawWindow,EventMask) ;

while (1)
{
XNextEvent (Monitor,&SomeEvent) ;
/* man XEvent, and its derivatives (e.g. XButtonEvent)
x* for complete lists of event types and contents */
if (SomeEvent.type == ButtonPress)
printf("Button pressed!\n");
if (SomeEvent.type == KeyPress)
printf ("Key pressed!\n");
if (SomeEvent.type == MotionNotify)
printf ("Mouse is moving!\n");

}

Using these concepts, we can use mouse input to control the drawing
of lines. The following code can replace the text-based interface from the

example in Section 8.5.2:
int WhichPoint;

WhichPoint=0; /% 0=>first point, 1=>second point */
while (1)
{
XNextEvent (Monitor,&SomeEvent) ;
if (SomeEvent.type == ButtonPress)
{
if (WhichPoint == 0)
{
x1=SomeEvent .xbutton.x;
yl=SomeEvent .xbutton.y;
WhichPoint=1;
}

154 CHAPTER 8. LIBRARIES

else
{
x2=SomeEvent.xbutton.x;
y2=SomeEvent .xbutton.y;
WhichPoint=0;
if (x1 == x2 && vyl == y2)

break; /* exit loop and program */
XDrawLine (Monitor,DrawWindow,WindowGC,x1,y1,x2,y2);
XFlush(Monitor) ;
}

8.5.5 Fonts

A shell display uses a fixed grid of character graphics. Characters can only be
drawn inside the grid cells. For example, a character cannot be drawn halfway
between two lines of text. In addition, the font is fixed and is typically courier,
where every character fills the same amount of space. With the X library, a
program can draw text at any location in a window, using any font. There is
no character grid, instead the units of location are pixels. In order to draw
text using a specific font, a program must first set up the graphics context
to know how to draw with that font. The following code demonstrates using
the X library to draw text:

#include <stdio.h>
#include <string.h>

#include <X11/X1ib.h>

main(int argc, char *argv[])

{

Display *Monitor;
Window DrawWindow;
GC WindowGC;
int xl,y1;
XGCValues GCValues;

unsigned long GCmask;
XEvent SomeEvent;

8.5. THE X LIBRARY 155

char text [80];
Font NewFont;

Monitor=XOpenDisplay(NULL) ;
DrawWindow=XCreateSimpleWindow(Monitor,RootWindow(Monitor,0),

10,10, 100,50, 2,

BlackPixel(Monitor,0),

WhitePixel (Monitor,0));
WindowGC=XCreateGC(Monitor,DrawWindow,0,NULL) ;
XMapWindow(Monitor,DrawWindow) ;

XFlush(Monitor) ;

NewFont=XLoadFont (Monitor, "ri4") ;

GCmask=GCForeground | GCFont;
GCValues.foreground=0xFF0000;
GCValues.font=NewFont;

XChangeGC (Monitor,WindowGC,GCmask,&GCValues) ;

XSelectInput (Monitor,DrawWindow,ButtonPressMask) ;

while (1)

{

XNextEvent (Monitor,&SomeEvent) ;

if (SomeEvent.type == ButtonPress)
{
x1=SomeEvent.xbutton.x;
yl=SomeEvent.xbutton.y;
strcpy(text,"Hello!");
XDrawString(Monitor ,DrawWindow,WindowGC,x1,y1,

text,strlen(text));

XFlush(Monitor) ;
}

XCloseDisplay (Monitor) ;
}

156 CHAPTER 8. LIBRARIES

This program will draw “Hello!” at the current mouse location whenver the
user presses a mouse button. The program uses the XLoadFont() function
to load information from the system about the “r14” font. It then assigns
that font to the graphics context for the created window. The program uses
the XDrawString() function to actually draw the text. The properties of
the text are controlled by the values previously set in the graphics context.

The information about how to draw text using a particlar font is stored
in a font file on the system. Font files use a variety of formats, but they all
contain the same basic information: the appearance of all characters in the
given font. In order to use a font, a program must identify that font by its
name. The X library provides functions to identify the fonts available on a
system. The following code demonstrates these functions:

#tinclude <stdio.h>
#include <X11/X1ib.h>

main()

{

char text [80] ,partial[80];
char *xAvailableFonts;

int font_count,i;

Display *Monitor;

Monitor=XOpenDisplay (NULL) ;
printf ("Enter a string to search: ");
scanf ("%s",partial);
sprintf (text,"*%s*" ,partial);
AvailableFonts=XListFonts (Monitor,text,10,&font_count);
for (i=0; i<font_count; i++)
printf ("%s\n",AvailableFonts[i]);
XFreeFontNames (AvailableFonts) ;
XCloseDisplay(Monitor) ;
}

The XListFonts() function searches the system for fonts matching the given
string, and returns a list of all font names that partially match. The example
program asks for at most 10 matches, and prints them out. The XFree-
FontNames() function should be called to free up the memory allocated for

8.6. LIBRARY PITFALLS 157

storing the font names in the XListFonts() function. There are additional
functions related to loading and handling fonts; these are beyond the scope
of this text.

8.6 Library pitfalls

Once a programmer gets used to the idea of using libraries, it is easy to get
enthralled by them. They save time, and allow us to code things that might
otherwise be very difficult. It is important to remember that a library is
just a tool. Libraries should be used to help overcome problems, not just for
the sake of their existence. A programmer can make the mistake of using a
library when its utility to a given problem is minimal. This is bad, because
now an application is tied to a library that it doesn’t really need. Programs
can become bloated and difficult to maintain simply because they have been
linked to too many libraries.

Another common pitfall is to spend too much time looking for a library
to solve a problem. It can be enticing to think that somebody “out there
somewhere” has already written code to tackle the problem at hand. This
leads to a programmer unwilling to solve the given problem from scratch,
instead searching for library-supported existing solutions. This can end up
taking more time in the search than it would to simply write code from
scratch. It can also cause a programmer to use a library that does not quite
fit the problem at hand, but can be forced to provide a hacked solution. This
leads to inefficient and sometimes error-prone applications.

A library is just another tool in the arsenal of an experienced system
programmer. Like a debugger, or a shell, or a system call, it is there to help
solve problems. A carpenter may use a hammer, wrench, or screwdriver to
work on something, but (hopefully) only in the appropriate circumstances.
Similarly, a programmer should only use the tools at hand when the job calls
for them.

