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Abstract

This work considers the problem of calibrating a distributed multi-camera system. As opposed to traditional
multi-camera systems, such as stereo heads, in a distributed network the "elds-of-view do not all overlap. Our novel
method uses a grid of domino calibration targets. We also describe a novel grid-"nding algorithm, to expedite the
location of image-to-world correspondences. Experiments conducted in a hallway and two connecting rooms, using 12
cameras, demonstrate accuracies of 4.3 mm in world coordinates and 0.28 pixels in image coordinates. ( 2001
Published by Elsevier Science Ltd on behalf of Pattern Recognition Society.
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1. Introduction

This paper describes a method to calibrate a network
of cameras to a common world coordinate system. The
working environment is assumed to resemble common
indoor #oorplans, with rooms and corridors connected via
doorways. The camera network is assumed to resemble
a security video network, where each camera views a mod-
erate amount of #oorspace from an elevated position.

Traditional installations for multi-camera systems in-
clude stereo heads, object modeling scanners, and factory
workcells. In these con"gurations the "elds-of-view of the
cameras all overlap. In this case a single target can be used
to calibrate all the cameras to a common world coordinate
system [1]. Fig. 1 illustrates a common con"guration.

In this work we consider a distributed multi-camera
system. Fig. 2 illustrates a possible con"guration. In this

con"guration the "elds-of-view of the cameras do not
overlap, so that multiple targets must be used for calib-
ration. In this case methods are needed to establish the
positions of the multiple calibration targets in a common
world coordinate system.

Camera calibration also requires the establishment of
correspondences between image points and world coor-
dinates. A traditional multi-camera system might include
two to "ve cameras. In this case, manual methods are
tolerable. One approach is to carefully measure image
coordinates using a graphical user interface. However, as
the number of cameras increases, such methods become
increasingly tedious and error prone.

In this work, multiple, identical tiles are used for
calibration targets. The tiles are posterboard-sized.
Each tile exhibits a 2]2 dot pattern. The dots are posi-
tioned so that when two tiles are placed side-by-side, or
end-to-end, the spacing between consecutive dots re-
mains constant. We refer to these calibration targets as
dominoes.

Dominoes are placed on the #oor, throughout the
#oorspace of the combined "eld-of-view of the cameras.
All the dominoes must be adjoining side-by-side or
end-to-end. In this manner, the dots deploy a common
coordinate system. The dominoes do not require any
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Fig. 1. In a traditional multi-camera system, the "elds-of-view of all the cameras overlap. In this case a single target may be used to
calibrate the system.

Fig. 2. In a distributed multi-camera system, the "elds-of-view of the cameras do not overlap. In this case multiple targets are needed to
calibrate the system. A method is required to locate the targets in a common world coordinate system (X

w
,>

w
, Z

w
).

permanent marking of the environment, or any particu-
lar #oorspace con"guration.

A novel grid-"nding algorithm is applied to each im-
age. The grid-"nder automatically locates and segments
a rectilinear con"guration of dots. The user need only
specify the size (in dots) of the visible domino con"gura-

tion, the world coordinates of one of the visible dots, and
the world axes orientations and scales relative to the dot
axes. The grid-"nder produces as output a list of corres-
pondences between 2D image coordinates and 3D world
coordinates, one per dot. To solve for the camera model,
we use the coplanar solution introduced by Tsai [2,3].
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Fig. 3. A limited set of domino calibration targets may be
deployed in &leapfrog' fashion.

A single image is captured from each camera for
calibration. The images do not need to be captured simul-
taneously. A limited set of dominoes may be used in
&leapfrog' fashion (see Fig. 3). The dominoes are deployed
to "ll the "rst camera's "eld-of-view, and its calibration
image is acquired. Dominoes are then moved from one
side of the initial deployment to the other side of the initial
deployment. This motion iterates until the second cam-
era's "eld-of-view is "lled with dominoes, then its calib-
ration image is acquired. This procedure iterates until
a calibration image has been acquired for all cameras.

Blank dominoes may be substituted for dotted dom-
inoes to cover #oorspace on the boundary of a "eld-of-
view. Blank and dotted dominoes can also be substituted
between image captures for di!erent cameras. In this
manner, rectilinear dot grids can be presented to each
camera, regardless of the amount of "eld-of-view overlap.

2. Related work

Camera calibration is the process of determining
a camera's internal (focal point, lens distortion, etc.) and
external (position and orientation) parameters. These
parameters model the camera in a reference system in the
space being imaged, often called world coordinates. Once
calibrated, a camera's 2D image coordinates map to 3D
rays in world coordinates.

The standard camera calibration process has two
steps. First, a list of 2D image coordinates and their

corresponding 3D world coordinates is established. Sec-
ond, a set of equations using these correspondences is
solved to obtain a camera model. Calibrating a distri-
buted multiple camera system requires a third step: The
world coordinates of the calibration targets used for each
camera must be measured in the same reference system
(see Fig. 2).

The majority of the literature on camera calibration
considers the issues involved in step two. Issues include
the complexity of the camera model (number of para-
meters), the number and distribution of correspondences
required to solve for the model, and the method of
solving (analytic or iterative, how many stages, etc.). Tsai
[4] and Jain et al. [5] review these issues in the context of
machine vision. Talluri and Aggarwal [6] review these
issues in the context of mobile robot position estimation.
Horaud et al. [7] review these issues in the context of
exterior camera calibration. Robert [8] presents an
interesting approach in which steps one and two are
iteratively solved simultaneously. However, this method
still requires an initial close estimate of correspondences.
In this work (for step two), we use the popular camera
model and coplanar solution method introduced by Tsai
[2,3]. These methods are reviewed in the appendix.

This paper presents novel methods concerned with the
issues involved in steps one and three. A new suite of
applications is emerging, for which uni"ed camera cover-
age of multiple connected areas is required. Examples
include automated surveillance and monitoring (see for
instance Refs. [9}12]), intelligent environment control,
augmented virtual reality (see for instance Ref. [13]), and
distributed robotic sensing and control (see for instance
Refs. [14,15]). For these applications, three factors are
increasing: the number of cameras, the size and distribu-
tion of coverage, and the number of installations. As
these factors grow, manual methods become increasingly
tedious and impractical.

This work describes two new methods for use in cali-
brating large numbers of cameras, that observe multiple
connecting rooms and corridors, to common world coor-
dinates. First, a domino calibration target is described
and evaluated. In multiples, this target can be deployed
throughout the observed #oorspace, while maintaining a
common coordinate system. Second, a novel grid-"nding
algorithm is described. The grid-"nder minimizes the
e!ort required of the user in establishing image-to-world
correspondences, particularly for multiple cameras.
Experiments are shown to demonstrate the e$cacy of
these methods. Accuracy and reliability estimates are
also reported.

3. Domino calibration target

The purpose of the domino calibration target is to
facilitate deployment of calibration points throughout
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Fig. 4. A sample deployment of a domino calibration grid.

Fig. 5. A domino calibration target, with a 2]2 dot pattern.

multiple connecting rooms and corridors, while main-
taining a common coordinate system. This is accomp-
lished by constructing multiple identical dominoes, so
that when positioned end-to-end and side-by-side, the
distances between dots remains constant. Fig. 4 presents
an overhead view of a #oorplan, consisting of three areas
(two rooms and a hallway), observed by 12 cameras,
along with a possible deployment of dominoes for
calibration. Each domino presents a 2]2 pattern. In this
example, dominoes have been deployed in 49 positions
(but not necessarily concurrently; see Fig. 3). Addition-
ally, two blank half-tiles have been deployed through
doorways.

To construct a domino, we considered the following
issues:

1. Materials. The material comprising a tile should be
light, so as to ease deployment, yet sturdy, so as to
avoid non-rigid deformations.

2. Uniformity. All tiles must have the same dimensions.
Although manual construction methods are possible,
machined methods are obviously preferred.

3. Tile size. The individual tile size must allow for deploy-
ment through doorways. Conversely, the number of
tiles required for total deployment should be kept
reasonably small, to minimize potential errors in
aligning tiles.

4. Color. The background (tile base) and foreground
(dots) must be reasonably easy to discriminate via
digital image analysis.

5. Dot size. The individual dot size, and distance between
dots, should span a minimum number of pixels when
imaged at the maximum expected distance. Converse-
ly, the number of dots per tile should be maximized,
for use in solving camera model equations.

6. Cost. Depending on the expected #oorplan coverage,
the required number of tiles may be estimated.

With these issues in mind, we selected an art-style
poster-board for a tile base. The poster-board is
relatively inexpensive, yet sturdy, easy to acquire in
multiples, and is relatively uniform in size and color. The
posterboard selected is 1020]764 mm in size, which
is narrower than common doorways, yet big enough to
span an average room in multiples of 10 or less.
We selected white paper for tile dots, which contrasts
well against black poster-boards. Each dot, a square
216]216 mm in size, was attached to the poster-
board using clear tape. After some experimentation, we
found that this dot size "lled at least a 30-pixel-square
area when imaged at distances up to 8 m using a 6.0 mm
lens and a 480]640 frame-grabber. The "nal
dimensions we used are displayed in Fig. 5. We construc-
ted eight such targets, at a cost of approximately $7 (US)
in materials each, to experiment in a #oorspace of
11.5]14.5 m2.

To facilitate domino deployment through doorways,
two blank tiles were cut in half, one lengthwise
(1020]382 mm) and one breadthwise (510]764 mm).
The full-size and half-size dominoes were marked at the
midpoints, o!ering three potential alignments (either side
or the midpoint) to span narrow areas.

At least two improvements may be hypothesized. First,
the complete domino could be constructed by machine,
maximizing uniformity. Second, the ends of the dominoes
could be fashioned with locking mechanisms. This would
simplify the adjoining placement of dominoes (the posi-
tioning by hand would not have to be done as carefully).
It would also increase the reliability of the adjoining
placement of dominoes.
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Fig. 6. A calibration image after preprocessing. The centroids of the candidate grid regions are inputs to the grid "nder algorithm.
(a) Calibration image. (b) Candidate grid region.

4. Establishing correspondences

The following describes an algorithm for automatically
"nding rectilinear grids, imaged as described in Section 1.
Grid-like structures are often employed as calibration
targets (see for instance Refs. [8,16}19]). A grid makes a
good calibration target because it (a) uses features with
maximum contrast (dots on a background), (b) spans the
imaged area evenly (so the resulting camera model is
accurate for the entire image), and (c) presents a recogniz-
able macro-con"guration (the grid structure). Our novel
grid "nding algorithm speci"cally takes advantage of
property (c).

A segmentation of the input image is created by ap-
plying a single threshold. The grid is then found by
searching the segmented regions for the user-speci"ed
grid structure. The algorithm takes as input the size of
the grid (in rows and columns), the world coordinates of
the left-most point (in the image) of the grid, and the
world axes orientations and scales of the grid rows and
columns. The output of the algorithm is a set of matching
image coordinates and world coordinates. These corre-
spondences are then used to solve for a camera model
(see the appendix).

The image coordinates are found as the centroids of
the domino dots. The projected centroid of a region does
not in general coincide with the centroid of a projected
region. However, at the scales we are considering (de-
scribed in Section 3), the error is less than one pixel
(described in Section 5). We consider this an acceptable
bias, given the advantages region centroids have for
automated detection. For applications requiring greater
accuracy, our algorithm may still be used to locate the
macro grid structure prior to sub-pixel analysis.

The algorithm can function given only the expected
grid size, calibrating to an arbitrary world coordinate
system. For applications using only a single camera, this
calibration may be su$cient. To calibrate multiple
cameras to the same world coordinate system, the other
above-mentioned inputs are required.

4.1. Preprocessing

The input to the grid "nder is a calibration image of
the type shown in Fig. 6(a). The grid "nder uses three
preprocessing steps. First, the calibration image is histo-
gram equalized to make the thresholding robust to di!er-
ent lighting levels. Second, a single threshold is used to
separate the foreground dots from the background.
Third, the regions in the thresholded image are found by
performing a connected components analysis.

The candidate regions for the grid are those within the
appropriate range of size (number of pixels). Fig. 6(b)
shows an example of candidate regions, where each re-
gion has a di!erent color. As can be seen, regions outside
the grid have been segmented. The goal of the grid "nder
is to locate, from among these regions, a grid of the
speci"ed size. The grid "nder considers each region as
a point, computed as the centroid of the region.

4.2. Grid xnder

The purpose of the grid "nder is to search a set of
n points (in our case the centroids of the segmented
regions) to "nd a grid of size r]c (rows ] columns),
where rc)n. A brute force solution to this problem is to
select all permutations of r]c points, checking whether
the selected set forms the speci"ed grid. The algorithmic
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complexity of this approach is O(nrc), and thus is imprac-
tical for even relatively small grids.

A bootstrap solution to this problem is to select all
permutations of x points, where x is the minimum num-
ber of points required to solve for the camera model. The
image locations of the remaining rc!x points may be
solved for by projecting their coordinates using the min-
imally solved camera model. For Tsai's coplanar solution
[3], x"5, yielding a complexity of O(n5). A search for
each of the remaining rc!x grid points in the set of
n!x candidate points has a complexity of O(rcn). The
complexity of this bootstrap solution is therefore O(rcn6).

If the e!ects of internal camera parameters (except
focal length) and lens distortion may be ignored, then
x"4 is su$cient to solve for a camera model [5]. This
reduces the complexity of the bootstrap solution to
O(rcn5). In any bootstrap solution, a hidden constant in
the complexity is the time necessary to solve for a camera
model. This step requires a nonlinear regression, which is
costly.

Instead of searching for a grid, we propose an ap-
proach that searches for the grid corners. If the row and
column distances between neighboring grid points are
constant (for instance, as after an orthographic projec-
tion), then given three corner positions, the rest of the
grid positions may be solved for by interpolation (see Fig.
7(a)). The complexity of this search is O(n3), since each
permutation of three points must be tested. Given the
corners, a search for each of the remaining rc!3 grid
points in the set of n!3 candidate points has a complex-
ity of O(rcn). The complexity of the interpolation solution
is therefore O(rcn4).

For a grid with non-uniform spacing (for instance, as
after a perspective projection), the unknown spacing be-
tween interior grid points prevents a direct interpolation
from the corners (see Fig. 7(b)). However, a line valida-
tion test may be used to determine whether or not the
required number of points lies between two given points
(when the size of the grid is known). The successive
application of this test, "rst between corner points, and
then between border points, is su$cient to validate a
grid. The solution takes four steps, as illustrated in Fig. 8.

1. Find the topmost line.
2. Find the bottommost line.
3. Find the columns connecting these lines.
4. Find the rows connecting the two outermost columns.

The "rst step consists of selecting candidates for i and
j (top corners of the grid, see Fig. 8) from n until a valid
line is found. The procedure for testing whether or not
a line is valid is outlined below. If a valid line is found, as
in Fig. 8(a), then the algorithm continues to step two,
otherwise it exits unsuccessfully. The second step consists
of selecting candidates for k and l (bottom corners of the
grid, see Fig. 8) from n until a valid line is found. If a valid

line is found, as in Fig. 8(b), then the two lines are
assumed to be the top- and bottommost lines in the grid.
The third step validates the columns of the grid. The
endpoints of the columns are selected as pairs of oppos-
ing points from the top and bottom rows, as illustrated in
Fig. 8(c). In the fourth step the rows are validated by
searching for lines between pairs of opposing points on
the left and right most columns, as illustrated in Fig. 8(d).
The left and right most columns are found as the lines
spanned by i and k and j and l, respectively. The grid is
found if all rows and columns in the grid are validated.

The grid "nder algorithm is formally described by the
following pseudo code:

for i " 1 to (total points-rows * columns)
for j " 1 to total points

if (validate}line(i, j) " success)
for k " 1 to total points

for l " 1 to total points
if (validate}line(k, l) " success)

for (m,n)"(points in line from
i to j,
points in line from
k to l)

if (validate}line(m,n)
" failure)

select next l
end if

end for (m,n)
for (m,n) " (points in line from

i to k,
points in line from
j to l)

if (validate}line(m,n)
" failure)

select next l
end if

end for (m,n)
exit successfully } grid found.

end if
end for

end for
end if

end for
end for
exit unsuccessfully } no grid found.

The complexity of this algorithm is O((r#c)n5), which
improves upon all other methods handling perspective
projection. One drawback to this approach is that there
must be at least three rows and columns for the solution to
work, since any two points may pass the line validation test.

The algorithm can be further improved by ordering the
selection of points for i, j, k and l according to their
relative positions. The candidates for i, j, k and l should
be selected in order from the left, right, top and bottom
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Fig. 7. Under orthographic projection, grid points may be interpolated using the locations of the corners: P
rc
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. Under perspective projection, the unknown nonlinear spacing between points prevents
a direct solution. (a) Grid under orthographic projection. (b) Grid under perspective projection.

Fig. 8. The four steps in the grid "nder: (a) the top line is found, (b) the bottom line is found, (c) the columns are found, (d) the rows are
found and (e) the "nal result.

sides of the image, respectively. Although this selection
scheme does not change the complexity of the algorithm, it
does improve the performance, particularly when rc+n.

4.3. Line validation

The inputs to the line validation function are the two
endpoints of the line, A and B, the number of points on
the line, n

L
, and a list of candidate points. The function

goes through the list of candidate points and for each
point C computes the distance from C to AB,
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segment AB if

D(C,AB)(¹
#-04%

and 0(I
x
(1 and 0(I

y
(1.

(3)

The situation for a single point is shown in Fig. 9.
As the function proceeds through the list of candidate

points, a running count of the number of points found to
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Fig. 9. The point C is tested against the line between A and B.

Fig. 10. Snapshots from the graphical user interface. (a) Camera selection. (b) Grid size. (c) Grid found. (d) Coordinates of left most point.

lie within AB is kept. If this count for the entire list equals
n
L
, then the function returns successfully. As soon as the

count exceeds n
L
, or if the entire list is processed and the

count does not reach n
L
, then the function returns unsuc-

cessfully.

5. Experiments

To make the calibration process easier a graphical user
interface has been constructed. From the interface it is
possible to control the calibration of multiple cameras.
The interface o!ers the option to select the input camera,
as in Fig. 10(a), and adjust the algorithm parameters. The
image on screen is a live video signal. This is especially
useful while positioning dominoes. When the user
chooses to perform a calibration, the program prompts
for the size of the grid to look for, as in Fig. 10(b). If the
grid "nder is successful it prompts the user for the world
coordinates of the left most point, as in Fig. 10(d), the
orientations and scales of the world axes, and "nally
produces a set of matching world coordinates and image
coordinates. This data set is then used as input for Tsai's
coplanar solution to produce a camera model (see the
appendix).

Experiments were performed to determine the e$cacy
and accuracy of the proposed methods. Twelve cameras
were positioned to observe two rooms and a hallway, as
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Fig. 11. Camera and grid positions for calibrated environment.

Fig. 12. A plot of points as observed by the camera network. A portion of the plot is zoomed to better discern the scale of the agreement
of the cameras on point position.

depicted in Fig. 4. The cameras labeled 0, 2, 4, 5, 9 and 10
are Sony XC-999 CCDs with 6.0 mm lenses. The cameras
labeled 1 and 3 are Sony XC-999 CCDs with 3.5 mm
lenses. The cameras labeled 7 and 8 are Sony camcorders
(model CCD-TR700). The camera labeled 6 is a Kodak
camcorder (model E440). The camera labeled 11 is an
SGI O2 digital camera.

Three doorways connect the areas in Fig. 4. Dominoes
were deployed in a loop through these doorways, starting
and ending at the same location. The eight dominoes we
constructed were placed in &leapfrog' fashion: The posi-
tion of the domino deployed last in the previous leap was
maintained, becoming the domino "rst deployed in the
current leap. The loop spanned nine tiles (18 dots) in its
furthest extent in the X direction and 12 tiles (24 dots) in
its furthest extent in the > direction. Thus, 42 side-by-

side and end-to-end domino adjoinments were needed
(minimally) to complete the loop.

The domino grid was deployed and imaged in three
di!erent patterns for calibrating all 12 cameras. Fig. 11
shows a 3D snapshot of the domino grid and camera
models computed for the third test, superimposed upon
the environment walls and #oor. The tests took 105, 55,
and 30 min, conducted by a two-person team. The di!er-
ences in time re#ect the learning curve associated with
the method. The most important item learned was how
to arrange blank and dotted dominoes for individual
camera snapshots, so as to maximize the visible points
while keeping a rectilinear grid in the "eld-of-view. Most
of the time for each calibration test was spent in position-
ing the dominoes. The complete processing for each
image takes less than 1 min. The average distance be-
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Fig. 13. Transformation between computer image coordinates
and 3D world coordinates.

Fig. 14. Examples of the e!ect of radial lens distortion for
various values of i

1
.

tween the "rst and last tiles placed (which completed the
loop) was 50 mm. This error averages to 1.2 mm per tile
adjoinment.

Using the results of the third calibration test, dominoes
were imaged throughout the combined #oorspace, posi-
tioned at unknown world coordinates. For each camera,
the visible dot centroids were computed and projected
back to the #oor plane in world coordinates. These
coordinates were then plotted and compared for align-
ment between cameras (with overlapping "elds-of-view),
to test the accuracy of the camera network's coverage.
Fig. 12 shows an overhead view of the camera positions
and the back-projected points, color-coded for each cam-
era. In the global view, the point alignment from multiple
cameras is too close to discern. In the zoomed view, the
point alignment decreases at larger distances from
cameras, as expected. For instance, the points in the
zoomed view seen by camera one are far away (they are
viewed through the doorway to the next room).

Another experiment was done to test the accuracy of
the entire process. Cameras 0, 1, 2 and 3 were calibrated
nine times using 16 points (4]4 grids) randomly trans-
lated and rotated throughout the room. The calibration
dot centroids were projected back to the #oor plane in
world coordinates, and compared to the values used for
calibration. The average error was 4.3 mm, with a 2.7
variance. The world coordinates used for calibration
were also projected forward to the image plane, and
compared to the calibration dot centroids. The average
error was 0.28 pixels, with a 0.01 variance.

6. Conclusions and discussion

In this paper, novel methods were described to cali-
brate multiple cameras that observe multiple connecting
rooms and corridors to a common coordinate system.
A domino calibration target was described, along with
a grid "nder algorithm, to expedite the calibration pro-
cess. Experiments were shown to demonstrate the e$-
cacy and accuracy of the approach.

We imagine accuracies of 4.3 mm in world coordinates
and 0.28 pixels in image coordinates should prove ac-
ceptable for a variety of applications, including surveil-
lance, augmented virtual reality, and intelligent environ-
ment control. We are pursuing using this video network
to track and control mobile robots [20]. An advantage
for these applications is that the camera network covers
an extensive (combined) "eld-of-view, while remaining
stationary. Although cameras can be actively calibrated
while moving (see for instance Ref. [21]), data fusion
problems become much simpler using stationary sensors
(see for instance Ref. [10]).

Five hours were required to mount, aim, and wire the
12 cameras used in these experiments to a central video
patch board. The entire calibration process took (for our
third test) one-half hour. We imagine our methods could
save a great deal of time and e!ort for other parties
working with distributed multi-camera networks.

7. Summary

This work considers the problem of calibrating a dis-
tributed multi-camera system. As opposed to traditional
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multi-camera systems, such as stereo heads, in a distrib-
uted network the "elds-of-view do not all overlap.
Methods are needed to align multiple distributed
calibration targets in a common coordinate system.
Methods are also needed in which the required e!ort
scales reasonably as the number of cameras and installa-
tions increases. Our novel method uses a grid of domino
calibration targets. We describe and evaluate a domino
calibration target that may be constructed from inexpen-
sive materials. We also describe a novel grid-"nding
algorithm, to expedite the location of image-to-world
correspondences. To solve for the camera model, we use
the coplanar solution introduced by Tsai [2,3]. Experi-
ments conducted in a hallway and two connecting rooms,
using 12 cameras, demonstrate accuracies of 4.3 mm in
world coordinates and 0.28 pixels in image coordinates.
This calibration method should prove useful for a variety
of applications, including distributed sensing, robotics,
augmented virtual reality, and intelligent environment
control.

Appendix: Camera model and solution method

After using our methods to establish a set of corre-
spondences, we use the camera model and coplanar solu-
tion method introduced by Tsai [2,3]. We have found it
to be robust for a variety of industrial and commercial
cameras and lenses, and a dependable implementation is
publically available [22]. Here we review the model,
using the terminology adopted from Tsai. The model
describes a set of transformations between a digitized (or
computer) image space and the world space as outlined
in Fig. 13.

Coordinates in the world space are referred to as 3D
world coordinates and are represented by a three-dimen-
sional column vector

P
w
"[x

w
y
w

z
w
]T. (A.1)

The coordinates in a camera space are referred to as 3D
camera coordinates and are likewise represented by
a three-dimensional column vector

P
c
"[x

c
y
c

z
c
]T. (A.2)

The rigid body transformation between 3D world coordi-
nates and 3D camera coordinates is written as

P
c
"RP

w
#¹, (A.3)

where ¹ is the translation vector,

¹"[¹
x

¹
y

¹
z
]T (A.4)

and R is the 3]3 rotation matrix,

R"C
r
11

r
12

r
13

r
21

r
22

r
23

r
31

r
32

r
33D. (A.5)

The rotation matrix is de"ned as three separate rotations
h
x
, h

y
and h

z
around the x, y and z axes:

R
x
"C

1 0 0

0 cos(h
x
) !sin(h

x
)

0 sin(h
x
) cos(h

x
) D, (A.6)

R
y
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cos(h
y
) 0 sin(h

y
)

0 1 0

!sin(h
y
) 0 cos(h

y
)D, (A.7)

R
z
"C

cos(h
z
) !sin(h

z
) 0

sin(h
z
) cos(h

z
) 0

0 0 1D. (A.8)

The product of these rotations yields the rotation matrix

R"R
z
R

y
R

x
. (A.9)

The perspective projection transforms points from the
camera space (3D camera coordinates) to ideal undis-
torted image coordinates (;

u
,<

u
). This is done using a

pin-hole camera model, which results in the following
equations:

;
u
"f

x
c

z
c

, (A.10)

<
u
"f

y
c

z
c

, (A.11)

where f is the e!ective focal length of the camera.
There are two kinds of lens distortion: tangential and

radial. For each kind of distortion an in"nite series is
required. In Ref. [3] it is argued that for most industrial
applications only radial lens distortion needs to be
modeled, and only by one term. This gives the following
set of equations that relate distorted image coordinates
(;

d
,<

d
) to ideal undistorted image coordinates

;
d
"

;
u

1#i
1
r2

, (A.12)

<
d
"

<
u

1#i
1
r2

, (A.13)

where i
1

is the distortion coe$cient and

r"J;2
d
#<2

d
. (A.14)
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The e!ect of the radial lens distortion is illustrated in
Fig. 14 for various values of i

1
. The values of i

1
for the

cameras used in this work was found to be in the range
0.001}0.007.

The digitization of distorted image coordinates is de-
scribed by

;
f
"

s
x

d@
x

;
d
#C

x
, (A.15)

<
f
"

1

d
y

<
d
#C

y
, (A.16)

d@
x
"d

x

N
cx

N
fx

, (A.17)

where (;
f
,<

f
) is the digitized image coordinates, (C

x
,C

y
)

is the center of the digitized image, d
x

and d
y

are the
center to center distance between adjacent sensor ele-
ments in the x and y direction respectively, N

cx
is the

number of sensor elements in the x direction, N
fx

is the
number of pixels in a line as sampled by the computer,
and s

x
is the uncertainty scale factor. The digitized image

coordinates (;
f
,<

f
) are also referred to as (x, y) coordi-

nates in the image space.
The described model has a number of parameters

whose values need to be estimated. The parameters re-
lated to the frame-grabber are determined from the man-
ual of the frame-grabber, as provided by the manufac-
turer. The parameters related to the frame-grabber are
d
x
, d

y
,N

cx
and N

fx
. The "ve intrinsic parameters of the

model that need to be estimated are f,i
1
,C

x
, C

y
and s

x
.

The six external parameters that need to be estimated are
h
x
, h

y
, h

z
,¹

x
,¹

y
and ¹

z
. The parameter estimation itself

is a two-step procedure, as described in detail in Ref. [3].
We use the coplanar case because the calibration points
as described in this work are all in the same plane. This
means that the parameter s

x
cannot be estimated and is

therefore set to 1, as recommended by Tsai.
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