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Figure 11-26 Comparison of the Wiener and matched filters

11.5.8 A Practical Example

We conclude the chapter with an example that illustrates how optimal filter theory can guide
the design of practical filters. Figure 11-27 shows a digitized X ray of a tube filled with
X-ray-absorbing dye. The image models angiography, a diagnostic technique in which dye
is injected into blood vessels during X-ray exposure. Here, the smooth tube substitutes for
the vessel.

The goal in this example is to develop a processing technique that will find the edges
of the tube in the noisy image of Figure 11-27 and reliably measure the tube’s diameter all
along its length. Such a technique is useful for quantifying the narrowing of blood vessels
that accompanies atherosclerosis and produces heart attacks [7].

Since the problem is one of edge detection, the matched detector would seem the nat-
ural choice. In this example, however, we pose the problem somewhat differently. We shall
assume that the vessel’s edges occur, on each image line, at the two points of steepest slope
and attempt to locate these by differentiation. Before differentiating, however, we shall
employ a Wiener filter to estimate the noise-free image. Furthermore, we shall process each
horizontal scan line individually. This not only reduces the problem to a one-dimensional
one, but also allows the procedure to respond to rapid changes in width, should they occur.

Figure 11-28 shows a gray-level plot of one line f;(x) from Figure 11-27. The evident
noise is common in radiography, due primarily to film grain and photon statistics in the illu-
minating beam. Clearly, differentiating this curve would not produce reliable peaks at the
inflection points, because of the noise.

Assuming uncorrelated signal s(x) and noise n(x), the specification of the Wiener
filter [Eq. (59)] requires the power spectrum of the signal and that of the noise. We can esti-
mate the signal’s power spectrum by line averaging, since, with a smooth tube, all lines f;(x)
should be identical in the absence of noise. Thus,
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of a smooth tube
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will reduce the noise by the factor 1/./N . Figure 11-29 shows the result of averaging 60

lines in Figure 11-27 and the resulting amplitude spectrum of the signal.

Once the signal has been estimated, the power spectrum of the noise can be estimated
from Figure 11-27 using line-by-line power spectrum averaging after subtraction of the sig-

nal; that is,
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Figure 11-29 (a) Noise-free signal estimate obtained by line averaging in
Figure 11-27; (b) Fourier amplitude spectrum of (a)
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In this study, Eq. (124) showed the power spectrum of the noise to be essentially constant
with frequency.

Figure 11-30(a) shows the Wiener filter transfer function H,(s) computed by
Eq. (59). The transfer function takes on values near unity at the signal-dominated low fre-
quencies and tends to zero at high frequencies.

We could inverse transform the transfer function in Figure 11-30(a) to obtain the
impulse response for predifferentiation smoothing. There are, however, some practical con-
siderations worthy of note.

The notches in the transfer function of Figure 11-30(a) are produced by the zero-
crossings in the signal’s spectrum [Figure 11-29(b)]. By the similarity theorem, the position
of these notches will shift with changes in the width of the vessel.

This points up the fact that our signal is not actually an ergodic random process, as the
Wiener filter development assumes. The member functions in the signal ensemble corre-
spond to vessels of different width and thus do not all have identical power spectra. As it
happens, we are forced to violate one of the assumptions on which the Wiener filter is based.
We shall proceed nevertheless, acting in the belief that a “near-optimal” technique will
prove an adequate substitute for true optimality, which is beyond our grasp.

If we were to include the troublesome notches in the design, our filter would be quite
sensitive to slight changes in the vessel’s width. It would be optimal only for the exact ves-
sel width used in the design and would rapidly become suboptimal as the width varied. This
is due to the rather abrupt frequency-domain behavior of the transfer function.

We choose instead to ignore the notches by fitting a smooth envelope to the transfer
function. Figure 11-30(b) shows a smooth approximation, ]:l(s) , to the Wiener filter transfer
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Figure 11-30 (a) Wiener filter transfer function; (b) smooth approximation
to (a)
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function. H(s) was chosen because of two desirable properties: It is a reasonable approxi-
mation to the envelope of Figure 11-30(a), and its impulse response renders digital convoly-
tion quite an efficient computation. .

Figure 11-31 shows the corresponding impulse response, /1(x), which is piecewise
parabolic, and h’(x), its first derivative, which is piecewise linear. Since differentiation
commutes with convolution, using the latter function combines smoothing and differentia-
tion into one step. Furthermore, digital convolution using a piecewise linear impulse
response can be programmed to execute very efficiently [8].

Figure 11-32 shows the results of using the two impulse responses in Figure 11-31 on
the image line in Figure 11-28. The first produces smoothing for noise reduction only, while
the second combines smoothing with differentiation. In this case. the degree of noise reduc-
tion is gratifying. Notice also that the inflection points in the upper curve give rise to distinct
peaks in the lower curve, suggesting that vessel edge detection is now a simple task.

The piecewise linear impulse response h’(x) is a computationally efficient approx-
imation to the differentiating Wiener filter for this application. Even though the signal is
nonergodic, the notch-free transfer function [:[(5) should be rather well behaved under sub-
optimal conditions, since it has no abrupt behavior in the frequency domain. Furthermore,
Figure 11-32 strongly suggests that we have a comfortable solution to this edge detection
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Figure 11-31 (a) Impulse response of Figure 11-30(b); (b) derivative of (a)
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Figure 11-32 Results of smoothing the line in Figure 11-28(a) with h(x);
(b) with h’(x)

problem. The differentiating Wiener filter designed on the smooth tube has proved useful
on routine angiograms [8].

11.6 ORDER-STATISTIC FILTERS

_ By definition, if a filter fails the test of linearity (Chapter 9), it is nonlinear. Many types of non-
: linear filters have been described, tested, and used. Arguably, nonlinear approaches can solve
certain types of image-processing problems better than linear filters can. They lack, however,
the far-reaching and relatively straightforward theoretical background that underlies linear fil-
ters. For an introductory treatment, we address one of the most useful classes, order-statistic

3 filters, so called because they are based on statistics derived from ordering (ranking) the ele-
;i ments of a set rather than computing means, etc. The median filter is one of these.

11.6.1 The Median Filter

The nonlinear filtering technique that has probably found most common usage is the median
filter. It is a neighborhood operation, similar to convolution, except that the calculation is




