What is range data?

How Range Cameras Work

Judson P. Jones

Diffuse Reflection

Light emitted from a laser scatters when it hits most objects. Some of the light reflects back in the direction of the laser.

Amplitude Modulation

The light is amplitude modulated so that a standing wave is created between the laser and the object of interest. The distance to the object is determined by measuring the relative phase of the outgoing and incoming beam. The reflectance of the object is determined by measuring the relative amplitudes.

Image Formation

Two rotating mirrors sweep the beam over a 60 by 60 degree field of view.

Calibration

This is not as easy as it looks. Because image formation is not done with a lens, as in conventional cameras, we were forced to develop an explicit mechanical model of the camera, and a new calibration method. See O.H. Dorum, A. Hoover, J.P. Jones (1995) "Calibration and control issues in range imaging for mobile robot navigation." In: *Research in Computer and Robot Vision*, Ed. C. Archibald & P.Kwok, World Scientific Press, Singapore.

A Range Imaging System

Example LRF image

distances coded in greyscale

distances coded in color

How does a structured light type range camera work?

ACQUIRING IMAGE ONE

CCD

ACQUIRING IMAGE TWO

light

projector

image 5 of 8

Example SLS image

distances coded in greyscale

distances coded in color

$2\frac{1}{2}$ -D Data

original image

four views of 3D points