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Sobel operator

1 2 1 0 1 2 -1 0 1
hy=| 0 0 0| ha=]| -1 1| my=|-20 2 (4.48)
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The Sobel operator is often used as a simple detector of horizontality and verticality of edges,
in which case only masks hy and hy are used. If the hy vesponse is y and the hy response I,
we might then derive edge strength (magnitude) as

24y? or eyl (4.49)
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Figure 4.19: First-derivative edge detection using Prewitt compass operators: (a) north direc-
tion (the brighter the pizel value. the stronger the edge): (b) east direction; (c) strong edges

from (a); (d) strong edges from (b).
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Robinson operator

1 1 1 1 11 =] % i
hi=| 1 =2 1| ho=| =1 =2 1| b3=| -1 =2 1 (4.50)
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Kirsch operator

3 3 3 3 3 3 =5 B 8
hi=| 3 0 3| hg=|-5 0 3| ha=| -5 0 3 (4.51)
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To illustrate the application of gradient operators on real images, consider again the image
given in Figure 4.10a. The Laplace edge image calculated is shown in Figure 4.18a; the value
of the operator has been histogram equalized to enhance its visibility.

The properties of an operator approximating the first derivative are demonstrated using
the Prewitt operator—results of others are similar. The original image is again given in
Figure 4.10a; Prewitt approximations to the directional gradients are in Figures 4.19a,b, in
which north and east directions are shown. Significant edges (those with above-threshold
magnitude) in the two directions are given in Figures 4.19¢,d.

4.3.3 Zero-crossings of the second derivative

In the 1970s, Marr’s theory (see Section 9.1.1) concluded from neurophysiological experiments
that object boundaries are the most important cues that link an intensity image with its
interpretation. Edge detection techniques existing at that time (e.g., the Kirsch, Sobel, and
Pratt operators) were based on convolution in very small neighborhoods and worked well
only for specific images. The main disadvantage of these edge detectors is their dependence
on the size of the object and sensitivity to noise.

An edge detection technique based on the zero-crossings of the second derivative (in
its original form, the Marr-Hildreth edge detector [Marr and Hildreth 80] or the same
paper in a more recent collection, [Marr and Hildreth 91]) explores the fact that a step
edge corresponds to an abrupt change in the image function. The first derivative of the
image function should have an extremum at the position corresponding to the edge in the
image, and so the second derivative should be zero at the same position; however, it is much
easier and more precise to find a zero-crossing position than an extremum. In Figure 4.20
this principle is illustrated in 1D for the sake of simplicity. Figure 4.20a shows step edge
profiles of the original image function with two different slopes, Figure 4.20b depicts the first
derivative of the image function, and Figure 4.20c illustrates the second derivative; notice
that this crosses the zero level at the same position as the edge. Considering a step-like edge
in 2D, the 1D profile of Figure 4.20a corresponds to a cross section through the 2D step.
The steepness of the profile will change if the orientation of the cutting plane changes—the
maximum steepness is observed when the plane is perpendicular to the edge direction.

The crucial question is how to compute the second derivative robustly. One possibility
is to smooth an image first (to reduce noise) and then compute second derivatives. When
choosing a smoothing filter, there are two criteria that should be fulfilled [Marr and Hildreth
80]. First, the filter should be smooth and roughly band limited in the frequency domain to
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Figure 4.20: 1D edge profile of the Z€T0-CTOSSING.

reduce the possible number of frequencies at which function changes can take place. Second,
the constraint of spatial localization requires the response of a filter to be from nearby points
in the image. These two criteria are conflicting, but they can be optimized simultaneously
using a Gaussian distribution. In practice, one has to be more precise about what is meant
by the localization performance of an operator, and the Gaussian may turn out to be sub-
optimal. We shall consider this in the next section.

The 2D Gaussian smoothing operator G(z,y) (also called a Gaussian filter, or simply
a Gaussian) is given by

2442

G(z,y) = e~ mt (4.52)

where z, y are the image co-ordinates and o is a standard deviation of the associated proba-
bility distribution. Sometimes this is presented with a normalizing factor:

1 _.22 2 __3:2 2
G(z,y) = e S%t or G(zy)= &2t

2mo? Vaero

The standard deviation ¢ is the only parameter of the Gaussian filter—it is proportional
to the size of the neighborhood on which the filter operates. Pixels more distant from the
center of the operator have smaller influence, and pixels farther than 3o from the center have
negligible influence.

Our goal is to obtain a second derivative of a smoothed 2D function f(z,y). We have
already seen that the Laplace operator V2 gives the second derivative, and is non-directional
(isotropic). Consider then the Laplacian of an image f(z,y) smoothed by 2 Gaussian (ex-
pressed using a convolution ). The operation is abbreviated by some authors as LoG, from
Laplacian of Gaussian.

V2(G(x,,0) * f(z,9)] (4.53)



4.3 Local pre-processing 85

The order of performing differentiation and convolution can be interchanged because of the
linearity of the operators involved:

[V2G(z,y,0)] * f(z,v) (4.54)

The derivative of the Gaussian filter V2G can be pre-computed analytically, since it
is independent of the image under consideration. Thus, the complexity of the composite
operation is reduced. For simplicity, we use the substitution r? = z? + y?, where r measures
distance from the origin; this is reasonable, as the Gaussian is circularly symmetric. This

substitution converts the 2D Gaussian [equation (4.52)] into a 1D function that is easier to
differentiate:

G(r) = e 27 (4.55)
The first derivative G'(r) is then
1
G'(r) =i e 2s7 (456)
g

and the second derivative G"(r), the Laplacian of a Gaussian, is

a1 [\
G (7‘) S -;2- g 1) e 2 (457)
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After returning to the original co-ordinates x, y and introducing a normalizing multiplicative
coefficient ¢, we get a convolution mask of a LoG operator:

ol

2 3 ~2 22
h(z,y) =c¢ (———-—:C st Sk ) et (4.58)

where ¢ normalizes the sum of mask elements to zero. Because of its shape, the inverted LoG
operator is commonly called a Mexican hat. Examples of discrete approximations of 5x5
and 17 x 17 LoG operators V2G follow [Jain et al. 95]:

0o 0 -1 0 O
0 -1 -2 -1 0
~1 =2 18 =2 -1
0o -1 -2 -1 0
o 0-1 0 O
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the upper left, if LoG/DoG image values of both polarities occur in the 2 x 2 window; no edge
label would be given if values within the window are either all positive or all negative. Another
post-processing step to avoid detection of zero-crossings corresponding to nonsignificant edges
in regions of almost constant gray-level would admit only those zero-crossings for which there
is sufficient edge evidence from a first-derivative edge detector. Figure 4.21 provides several
examples of edge detection using zero crossings of the second derivative.

Many other approaches improving zero-crossing performance can be found in the literature
[Qian and Huang 94, Mehrotra and Shiming 96]; some of them are used in pre-processing
[Hardie and Boncelet 93] or post-processing steps [Alparone et al. 96].

Figure 4.21: Zero-crossings of the second derivative, see Figure 4.10a for the original image:
(a) DoG image (o, = 0.10.02 = 0.09), dark pizels correspond to negative DoG values, bright
pizels represent positive DoG values; (b) zero-crossings of the DoG image; (c) DoG zero-
crossing edges after removing edges lacking first-derivative support; (d) LoG zero-crossing
edges (o = 0.20) after removing edges lacking first-derivative support—note different scale of
edges due to different Gaussian smoothing parameters.
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The traditional second-derivative zero-crossing technique has disadvantages as well, First,
it smoothes the shape too much; for example, sharp corners are lost. Second, it tends to create
closed loops of edges (nicknamed the ‘plate of spaghetti’ effect). Although this property was
highlighted as an advantage in original papers, it has been seen as a drawback in many
applications.

Neurophysiological experiments [Marr 82, Ullman 81] provide evidence that the human
eye retina in the form of the ganglion cells performs operations very similar to the V2G
operations. Each such cell responds to light stimuli in a local neighborhood called the recep-
tive field, which has a center-surround organization of two complementary types, off-center
and on-center. When a light stimulus occurs, activity of on-center cells increases and that of
off-center cells is inhibited. The retinal operation on the image can be described analytically
as the convolution of the image with the V2G operator.

4.3.4 Scale in image processing

Many image processing techniques work locally, theoretically at the level of individual pixels—
edge detection methods are an example. The essential problem in such computation is scale.
Edges correspond to the gradient of the image function, which is computed as a difference be-
tween pixels in some neighborhood. There is seldom a sound reason for choosing a particular
size of neighborhood, since the ‘right’ size depends on the size of the objects under investiga-
tion. To know what the objects are assumes that it is clear how to interpret an image, and this
is not in general known at the pre-processing stage. The solution to the problem formulated
above is a special case of a general paradigm called the system approach. This methodology
is common in cybernetics or general system theory to study complex phenomena.

The phenomenon under investigation is expressed at different resolutions of the descrip-
tion, and a formal model is created at each resolution. Then the qualitative behavior of the
model is studied under changing resolution of the description. Such a methodology enables
the deduction of meta-knowledge about the phenomenon that is not seen at the individual
description levels.

Different description levels are easily interpreted as different scales in the domain of digital
images. The idea of scale is fundamental to Marr’s edge detection technique, introduced in
Section 4.3.3, where different scales are provided by different sizes of Gaussian filter masks.
The aim was not only to eliminate fine scale noise but also to separate events at different
scales arising from distinct physical processes [Marr 82).

Assume that a signal has been smoothed with several masks of variable sizes. Every
setting of the scale parameters implies a different description, but it is not known which one
is correct; for many tasks, no one scale is categorically correct. If the ambiguity introduced by
the scale is inescapable, the goal of scale-independent description is to reduce this ambiguity
as much as possible.

Many publications tackle scale-space problems, e.g., [Hummel and Moniot 89, Perona and
Malik 90, Williams and Shah 90, Mokhtarian and Mackworth 92, Mokhtarian 95, Morrone
et al. 95, Elder and Zucker 96, Aydin et al. 96, Lindeberg 96]. A symbolic approach to
constructing a multi-scale primitive shape description to 2D binary (contour) shape images
is presented in [Saund 90], and the use of a scale-space approach for object recognition is in
[Topkar et al. 90]. Here we shall consider just three examples of the application of multiple
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scale description to image analysis.

The first approach [Lowe 89] aims to process planar noisy curves at a range of scales—the
segment of curve that represents the underlying structure of the scene needs to be found. The
problem is illustrated by an example of two noisy curves; see Figure 4.22. One of these may
be interpreted as a closed (perhaps circular) curve, while the other could be described as two
intersecting straight lines. Local tangent direction and curvature of the curve are significant

Figure 4.22: Curves that may be analyzed at multiple scales.

only with some idea of scale after the curve is smoothed by a Gaussian filter with varying
standard deviations.

A second approach [Witkin 83], called scale-space filtering, tries to describe signals
qualitatively with respect to scale. The problem was formulated for 1D signals f(z), but it

can easily be generalized for 2D functions as images. The original 1D signal f(x) is smoothed
by convolution with a 1D Gaussian,

z

G(x,0) = e 27 (4.59)

If the standard deviation o is slowly changed, the function

F(z,0) = f(z) * G(z,0) (4.60)

represents a surface on the (z,0) plane that is called the scale-space image. Inflection
points of the curve F(x, ) for a distinct value oy,

&8F(x,00) . 9 F(z,00)
9z 0 a3 #0 el

describe the curve f(z) qualitatively. The positions of inflection points can be drawn as
a set of curves in (z,0) co-ordinates (see Figure 6.15). Coarse to fine analysis of the curves
corresponding to inflection points, i.e., in the direction of decreasing value of the o, localizes
large-scale events.

The qualitative information contained in the scale-space image can be transformed into
a simple interval tree that expresses the structure of the signal f(z) over all observed scales.
The interval tree is built from the root that corresponds to the largest scale (0max), and then
the scale-space image is searched in the direction of decreasing o. The interval tree branches
at those points where new curves corresponding to inflection points appear (see Chapter 6
and Section 6.2.4).

The third example of the application of scale is that used by the popular Canny edge
detector. Since the Canny detector is a significant and widely used contribution to edge
detection techniques, its principles will be explained in detail.
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4.3.5 Canny edge detection

Canny proposed a new approach to edge detection [Canny 83, Brady 84, Canny 86] that is

optimal for step edges corrupted by white noise. The optimality of the detector is related to
three criteria.

e The detection criterion expresses the fact that important edges should not be missed

and that there should be no spurious responses.

The localization criterion says that the distance between the actual and located posi-
tion of the edge should be minimal.

e The one response criterion minimizes multiple responses to a single edge. This is

partly covered by the first criterion, since when there are two responses to a single
edge, one of them should be considered as false. This third criterion solves the problem

of an edge corrupted by noise and works against non-smooth edge operators [Rosenfeld
and Thurston 71).

Canny’s derivation of a new edge detector is based on several ideas.

i,

}\D

The edge detector was expressed for a 1D signal and the first two optimality criteria.
A closed-form solution was found using the calculus of variations.

If the third criterion (multiple responses) is added, the best solution may be found
by numerical optimization. The resulting filter can be approximated effectively with
error less than 20% oy the first derivative of a Gaussian smoothing filter with standard
deviation ¢ [Canny 86); the reason for doing this is the existence of an effective imple-
mentation. There is a strong similarity here to the Marr-Hildreth edge detector [Marr
and Hildreth 80], which is based on the Laplacian of a Gaussian—see Section 4.3.3.

The detector is then generalized to two dimensions. A step edge is given by its position,
orientation, and possibly magnitude (strength). It can be shown that convolving an
image with a symmetric 2D Gaussian and then differentiating in the direction of the
gradient (perpendicular to the edge direction) forms a simple and effective directional
operator (recall that the Marr-Hildreth zero-crossing operator does not give information
about edge direction, as it uses a Laplacian filter).

Suppose G is a 2D Gaussian [equation (4.52)] and assume we wish to convolve the image
with an operator G, which is a first derivative of G in the direction n.

Gn:%{:n-VG (4.62)
dn

The direction n should be oriented perpendicular to the edge. Although this direction is
not known in advance, a robust estimate of it based on the smoothed gradient direction
is available. If f is the image, the normal to the edge n is estimated as

V(G * f)

PTG e
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The edge location is then at the local maximum of the image f convolved with the
operator G, in the direction n.

P 3
'5;Gn * f =0 (464)

Substituting in equation (4.64) for G from equation (4.62), we get

8’3
sl & foul (4.65)

This equation (4.65) illustrates how to find local maxima in the direction perpendicular
to the edge; this operation is often referred to as non-maximal suppression (see also
Algorithm 5.5).

As the convolution and derivative are associative operations in equation (4.65), we
can first convolve an image f with a symmetric Gaussian G and then compute the
directional second-derivative using an estimate of the direction n computed according

to equation (4.63). The strength of the edge (magnitude of the gradient of the image
intensity function f) is measured as

|G+ fI =|V(G * f)] (4.66)

A different generalization of this optimal detector into two dimensions was proposed

by Spacek [Spacek 86], and the problem of edge localization is revisited in [Tagare and
deFigueiredo 90].

. Spurious responses to the single edge caused by noise usually create a ‘streaking’ prob-
lem that is very comumon in edge detection in general. The output of an edge detector
is usually thresholded to decide which edges are significant, and streaking means the
breaking up of the edge contour caused by the operator fluctuating above and below
the threshold. Streaking can be eliminated by thresholding with hysteresis. If any
edge response is above a high threshold, those pixels constitute definite edge output of
the detector for a particular scale. Individual weak responses usually correspond to
noise, but if these points are connected to any of the pixels with strong responses, they
are more likely to be actual edges in the image. Such connected pixels are treated as
edge pixels if their response is above a low threshold. The low and high thresholds are
set according to an estimated signal-to-noise ratio [Canny 86] (see also Algorithm 5.6).

. The correct scale for the operator depends on the objects contained in the image. The
solution to this unknown is to use multiple scales and aggregate information from them.
Different scales for the Canny detector are represented by different standard deviations
o of the Gaussians. There may be several scales of operators that give significant
responses to edges (i.e., signal-to-noise ratio above the threshold); in this case the
operator with the smallest scale is chosen, as it gives the best localization of the edge.

Canny proposed a feature synthesis approach. All significant edges from the opera-
tor with the smallest scale are marked first, and the edges of a hypothetical operator
with larger o are synthesized from them (i.e., a prediction is made of how the large ¢
should perform on the evidence gleaned from the smaller c—see also Section 4.3.4 and
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Figure 6.15). Then the synthesized edge response is compared with the actual edge
response for larger o- Additional edges are marked only if they have a significantly
stronger response than that predicted from synthetic output.

This procedure may be repeated for a sequence of scales, a cumulative edge map being
built by adding those edges that were not identified at smaller scales.

Algorithm 4.4: Canny edge detector

1. Convolve an image f with a Gaussian of scale 0.

9. Estimate local edge normal directions n using equation (4.63) for each pixel in the
image.

3. Find the location of the edges using equation (4.65) (non-maximal suppression)-
4. Compute the magnitude of the edge using equation (4.66).

5. Threshold edges in the image with hysteresis to eliminate spurious responses.

6. Repeat steps (1) through (5) for ascending values of the standard deviation 0.

—

7. Aggregate the final information about edges at multiple scale using the ‘feature synthe-
sis’ approach.

Figure 4.23: Canny edge detection at two different scales.

Figure 4.232 shows the edges of Figure 4.10a detected by a Canny operator with o = 1.0.
Figure 4.23b shows the edge detector response for o = 2.8 (feature synthesis has not been
applied here).



