
Lecture Notes: Noises

The problem of tracking something can be stated as a question of “where is it?” As
figure 1 demonstrates, the answer to this question can be given as a scalar (“it is at 15.2”).
This provides useful information for making decisions. For example, in the case of tracking
an enemy plane, this provides a location at which to aim a weapon.

But the reality in a tracking problem is that the answer is rarely if ever certain. A filter
makes this explicit by calculating a probability distribution for each variable of interest,
rather than a scalar. As figure 2 illustrates, “you are here” on a map can be reimagined as
“you are likely somewhere in this area, according to this probability curve”. (It takes a lot
more room to say this on a map, which could be why “you are here” is more common on
mall maps. Or maybe mall-goers just don’t like math.)

In the context of filtering, there are two types of noises that are modeled using proba-
bility distributions. Dynamic noise (also called system noise) refers to the uncertainty in
predictions in the state transition equations. For example, consider the equations we used
previously to model the the 1D motion of an object moving along an x axis. The state vari-
ables are [xt, ẋt], where xt provides the position of the object and ẋt provides the velocity of
the object at time t. For the state transition equations we wrote:

xt+1,t = xt,t + ẋt,tT (1)

ẋt+1,t = ẋt,t (2)

where T is the interval of time between sensor readings. These equations assume that the
object is moving at a constant velocity. However, suppose that the object can have a non-zero
acceleration. This can be written into the equations as follows:

xt+1,t = xt,t + ẋt,tT (3)

ẋt+1,t = ẋt,t +N(0, σ2

a) (4)
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Figure 1: The scalar answer to “you are here”.
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Figure 2: The probability distribution answer to “you are here”. In a filtering problem, a
probability distribution is associated with every variable of interest.

where N(0, σ2
a) denotes a random, normally distributed variable with a mean of zero and a

standard deviation of σa. The size of σa defines how large of an acceleration can be expected
during each prediction interval.

At least one of the predicted state variables must be affected by a dynamic noise, but
this is not required of all predicted state variables. For this example, it would not make
sense to have a dynamic noise on the position variable (unless the object can teleport). It is
better to leave the prediction uncertainty in velocity, which has a real-world interpretation.
If no state variables have dynamic noise, then there is no reason to filter, because the thing
being tracked has no uncertainty in its behavior.

Measurement noise refers to the uncertainty in the sensor readings. For our 1D ex-
ample, we previously wrote the measurement equation as:

yt = xt,t (5)

This equation states that we observe the position of the object along the x axis with no
uncertainty. However, suppose that the measurements are corrupted by noise. This can be
written into the measurement equation as:

yt = xt,t +N(0, σ2

n) (6)

where N(0, σ2
n) denotes a random, normally distributed variable with a mean of zero and

a standard deviation of σn. The size of σn defines the amount of expected corruption in a
measurement.

As with dynamic noise, at least one measurement variable (but not necessarily all of
them) should be affected by measurement noise. If there is no measurement noise, then the
only reason to filter would be to model the behavior between measurements.

Previously, we wrote the filtering update equations for the 1D example as follows:

xt,t = xt,t−1 + gt(yt − xt,t−1) (7)

ẋt,t = ẋt,t−1 + ht

yt − xt,t−1

T
(8)

In an example iteration, we obtained a sensor reading that differed from the prediction. The
values gt and ht were introduced as weights to control how to combine the estimates. Using
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Figure 3: Given two estimates x and y of an unknown c, they can be combined by weighting
according to their variances.

the concepts of dynamic noise and measurement noise, we can now develop a mathematical
formula for how to calculate values for these weights. The basic idea is to balance the combi-
nation depending on the relative magnitude of the noises. For example, if the measurement
noise is much higher than the dynamic noise, we would use relatively low values for gt and ht,
relying more upon the predictions. Conversely, if the dynamic noise was much higher than
the measurement noise, we would use higher values for gt and ht, which puts more weight
on the measurements.

The Kalman filter takes the following approach to the problem. Assume that we have two
estimates of a quantity, and we are seeking the best linear combination of those estimates:

c = K1x+K2y (9)

where x and y are the estimates and c is the combined estimate. How should the constants
K1 and K2 be chosen? Assume that each estimate has a known variance, as illustrated in
figure 3. If we believe the estimates according to the inverse of the size of these variances,
we can define the error of the combined estimate as:

E =
(x− c)2

σ2
x

+
(y − c)2

σ2
y

(10)

This makes intuitive sense. If the variance of the estimate x is small, then we require x to
be very close to the actual value c in order to keep the error down. The same holds for y.

We can minimize the error by taking the partial derivative:

∂E

∂c
=

−2(x− c)

σ2
x

+
−2(y − c)

σ2
y

(11)

Setting this equation equal to zero and solving for c:

−2(x− c)

σ2
x

+
−2(y − c)

σ2
y

= 0 (12)

x

σ2
x

−

c

σ2
x

+
y

σ2
y

−

c

σ2
y

= 0 (13)

c
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1

σ2
x
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1
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y

)

=
x

σ2
x

+
y

σ2
y

(14)

c =

x

σ2
x

+ y

σ2
y

1

σ2
x

+ 1

σ2
y

(15)
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This equation again makes intuitive sense. Suppose that the variance of x is much smaller
than the variance of y. Then the combined estimate c is equal to x. The same is true in
the other direction. Suppose that the variances of x and y were equal, say to S. Then the
combined estimate c is the mean (average) of x and y.

Now we will manipulate the equation for c algebraically. If we scale the last equation for
common denominators, we obtain:

c =

σ2
y
x

σ2
x
σ2
y

+ σ2
x
y

σ2
x
σ2
y

σ2
y

σ2
x
σ2
y

+ σ2
x

σ2
x
σ2
y

(16)

Eliminating common denominators gives:

c =
σ2
yx+ σ2

xy

σ2
y + σ2

x

(17)

Expanding in terms of x and y gives:

c =
σ2
y

σ2
y + σ2

x

x+
σ2
x

σ2
y + σ2

x

y (18)

Now comes a little trick. How far away is the x term from a whole 1

1
x? Rewriting just that

part gives:

c = x−

σ2
x

σ2
y + σ2

x

x+
σ2
x

σ2
y + σ2

x

y (19)

Combining terms with common fractions gives:

c = x+
σ2
x

σ2
y + σ2

x

(y − x) (20)

Looking back at equation 7 we see that equation 20 has the same form, but the weight
has been calculated as a function of the variances. In the Kalman filter, the two estimates
of an unknown quantity come from sensor readings and predictions from state transition
equations. They are combined in the update part of the filter according to a function of
their variances.
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