Lecture Notes: Recursive Bayesian Estimation

The Kalman filter is only intended for linear systems. The extended Kalman filter works
on nonlinear systems. However, both filters assume that the state distribution, dynamic
noise and observation noise are all Gaussian. Figure 1 illustrates an example.
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Figure 1: An example Gaussian distribution for a state variable.

Mathematically, this is modeled by the covariance matrices used in the filters. For exam-
ple, in the 1D constant velocity model from previous lectures, the dynamic noise modeling
acceleration can be written as:

j:t—l—l = ft + a (1)
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The term a; is a zero-mean Gaussian noise with variance ¢-. Another way to write this

equation is
plivaali) = exp ( 2)
Similarly, we can take the observation equation

Y = Ty + Ny (3)

where n; is a zero-mean Gaussian noise with variance o2, and rewrite it as

plade) = exp (220 ()
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Figure 2: Illustration of a discrete process = and observations (y) of it.

However, equations 2 and 4 are only appropriate if the distributions are Gaussian. When
the distributions are not Gaussian, the Kalman and extended Kalman filters do not apply.
Instead, we need a more general theory that applies to generic distributions.
Consider the problem as illustrated in figure 2. At discrete time intervals ¢, the true state
x; is observed by measurements y;. It then transitions to a next state at ¢ + 1. In general
form, we wish to determine
P(Zo:t|yo:t) (5)

which is the probability of all the transitions over all time given all the observations. However,
realistically, we do not want to base our calculations on all the previous estimates of state
and all the previous measurements. We want to set up a recursive relationship where we
base our next estimate on the previous estimate and the latest measurement:

p(xo:t’y():t) =f [p(xO:t—1|y0:t—1>7yt] (6)

So, we set out to identify such a relationship.
Before doing so, we define the notation:

2o+ = w9 AND z; AND ... 2, (7)
= X0, T1,... Ty (8)
= xoNx1N... 7 (9)

Also, we need to establish two identities used in proving the recursion. Identity #1 is
defined as

p(x,y) = p(z|y)p(y) (10)

This is a basic relationship in probability. We use it to derive a second, somewhat less
obvious, identity:

p(a,b,c) = p({a,b},c) = p({a, b} c)p(c) (11)
pla;b,c) = pla,{b,c}) = p(al{b, c})p(b, c) = p(alb, c)p(blc)p(c) (12)

Setting the results equal to each other, and eliminating the common term p(c), we obtain
p(a,ble) = p(alb, c)p(blc) (13)



We will call this identity #2.
Finally, we make two assumptions. First, we assume that we are dealing with a Markov
process, so that

p($t|$0:t—1) = p($t|$t—1) (14)

This means that the next state depends only upon the current state, and not upon all the
previous history of state. This can be imagined in considering a plane flying about. The
next position and velocity of the plane depends upon its current position and velocity, but
does not depend upon the whole history of the plane before it flew to its current position
and velocity. The second assumption is one of independent observations:

p(yelre, ANY) = p(yil|z:) (15)

This means that the current observation only depends upon the current state. It does not
depend upon any previous states, nor does it depend upon any previous observations.

Now, we set out to establish the function desired in equation 6. From Bayes’ rule, we
_ plz)p(z

know that p(z|y) = T))' Therefore we can write

p(@o:t|yor) = p(yO:th(Z;)f))(xO:t) (16)

The observation terms can be sub-grouped as

_ p<yt7 Yo:t—1 ’130:15)27(330:15) (17)
(Yt Yo:—1)

Applying identity #2 to the first term in the numerator yields

_ p(yt |yO:t—17 xO:t)p(yO:t—l |Io:t)p($o:t) (18)
p(yt, yo:t—l)

Applying identity #1 to the denominator term yields

_ p(yt|y0:t—1> 330:t)P(?Jo:t—1 \Q?O:t)p(fﬂo:t)

(19)
PWelvo:—1)P(Yo:t—1)
We now apply Bayes’ rule to the middle numerator term, producing
_ P(YelYo:t—1, To:)P(@0:t [ Yo:t—1)P(Yo:t—1)P(To0:t) (20)
P(YeYo:t—1)P(Yor—1)p(To:)
Simplifying common terms in the numerator and denominator yields
_ (el Yo:t—1, T )P(To:t [Yo:t—1) (21)

P(yt|y0:t—1)

Applying the assumption of independent observations to the first numerator term produces

_ p(le)p(zoslyor) (22)

p(yt|yo:t—1)
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The states in the second numerator term can be sub-grouped as

. p(!/t’xt)p(xtv xO:t71|y0:t71>

= (23
P(Ye|yo:t—1) )

Applying identity #2 to the second numerator term yields
_ p(elze)p(i] 0.1, Yor—1)P(To—1|Yo:-1) (24)

p(yt’yO:t71>

Applying the assumption of a Markov process to the middle numerator term produces

_ p(:yt"%t)p(%f‘l'tfl)p(x&tfl’yO:tfl)
p(yt|y0:t—1)

(25)

Rearranging this last result, we obtain

p(:vt!a:t_l)p(ytlrrt)
P(?/t|yo:t—1)

P(To:t|Yo:t) = P(Tot—1|Yo:t-1) (26)

This is the solution for equation 6. It is called recursive Bayesian estimation. Note that is
is applicable for ANY distribution, not just Gaussians.



