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ABSTRACT

This paper concerns a method to automatically detect drusen in a retinal image without

human supervision or interaction. We use a multi-level approach, beginning with classi-

fication at the pixel level and proceeding to the region level, area level, and then image

level. This allows the lowest levels of classification to be tuned to detect even the faintest

and most difficult to discern drusen, relying upon the higher levels of classification to use

an ever broadening context to refine the segmentation. We develop a wavelet-based fea-

ture vector for pixel-level classification which uses discretized versions of the Mexican hat

wavelet. We test our methods on a set of 119 images containing all types of drusen as well

as images containing no drusen or other potentially confusing lesions. Our overall correct

detection rate is 87%.
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Chapter 1

Introduction

Drusen are deposits of cellular waste that form beneath the retina. They are the primary

manifestation of age-related macular degeneration, the leading cause of late age blindness.

Limited drusen formation is considered normal in older patients but excessive formation

can lead to serious problems. Retinal detachment and cell death can result from drusen

blocking blood flow to nearby cells. Nearby areas of the retina can also be stretched and

distorted, hurting visual acuity [1].

A common method to screen for drusen is through retinal imaging. This paper concerns

a method to automatically detect drusen in a retinal image without human supervision

or interaction. This method could be applied to screening, reducing costs by eliminating

the need for an eyecare professional to examine the large quantity of images produced

for screening. This method could also be applied to treatment evaluation by providing a

quantified measurement of drusen presence that is objective and repeatable.

In an image of the retina, drusen appear as yellowish, cloudy blobs. Drusen exhibit no

specific size or shape, and can appear with a variety of characteristics. Drusen are often

classified as either hard or soft. Hard drusen tend to be smaller and more sharply defined
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than soft drusen and are generally less harmful. Soft drusen may be accompanied by other

symptoms such as new vessel formation or fluid build-up in the macula. Drusen can form

in groups or clusters, for example radially around the fovea or near the optic nerve head.

Drusen can have a similar appearance to other lesions, such as cotton wool spots. Some

faint drusen can also appear similar to normal features of the retina, such as the background

pattern caused by the choroidal vessels.

In this thesis we divide drusen into four classifications: large many, large few, fine many,

or fine few. We test our methods on each of these four classes as well as images of normal

retinas and of retinas containing various types of non-drusen abnormalities. Figure 1.1

shows examples1 of each drusen class as well as a normal retina and a retina containing

non-drusen lesions.

1.1 Overview of Approach

In this thesis, we introduce a technique to detect and segment (quantify) drusen in a full

retinal image. We report our results on images containing a variety of types of drusen, as

well as on images containing no drusen and on images containing lesions that could be

confused with drusen. To our knowledge, we are the first to report such results.

We use a multi-level approach to drusen detection, beginning with classification at the

pixel level and proceeding to the region level, area level, and then image level. At the pixel

level, many retinal features have a similar appearance to drusen. Therefore a pixel-level

classifier will over-segment, producing a large number of false positives. At the region

level the segmentation can be pruned by passing only those regions that appear druse-like.

The area and image level classification steps further prune the segmentation, successively

1Contrast enhanced for better viewing
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(a) Large many drusen (b) Fine many drusen

(c) Large few drusen (d) Fine few drusen

(e) Normal retina (f) Abnormal retina (lesions)

Figure 1.1: Retinal images showing each of the four drusen classes as well as a normal
retina and a drusen free abnormal retina. Drusen in (a) is present throughout the image.
Boxes have been superimposed in (b), (c), and (d) to indicate drusen locations.
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(a) Druse at region level (b) Druse at area level

(c) False positive at region level (d) False positive at area level

Figure 1.2: Example showing the need for multilevel analysis.

taking into account larger contextual properties. This approach allows the lowest levels of

classification to be tuned to detect even the faintest and most difficult to discern drusen,

relying upon the higher levels of classification to use an ever broadening context to refine

the segmentation. Figure 1.2 shows an example region of a druse and a region of a non-

druse that at the region-level cannot be distinguished, but at the area level (when compared

to similar surrounding regions) can be distinguished.

Pixel-level classification is the most complex processing stage and serves as the basis

of our approach. In this stage, a wavelet-based feature vector is developed which describes
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the shape of the area around the pixel at multiple resolutions. An artificial neural network

is then used for classification. The region-level stage uses region growing and region prop-

erties to analyze groups of connected pixels. The area-level stage analyzes the properties

of clusters of regions and produces a set of statistics. The image-wide statistics are then

used to produce the overall image classification.

Our final result is a pixel-level segmentation of drusen, and one of five classifications

for the image: no drusen, fine few drusen, fine many drusen, large few drusen, or large

many drusen. The image-level classification provides a rough indication of the amount and

type of drusen present in the image that may be used for screening or diagnostic functions.

1.2 STARE Project

This work is part of the STARE (STuctured Analysis of the REtina) project. The overall

goal of STARE is to create a system which is capable of automated diagnosis of retinal

images. Additional project goals include the ability to detect and measure key features,

annotate the image contents, and to track manifestation change over time in individual

subjects.

The STARE project was started by Micheal Goldbaum, M.D., in 1975 at the Univer-

sity of California, San Diego, and is currently funded by the National Institutes of Health

(U.S.A.). Over thirty people have contributed to STARE, with backgrounds ranging from

medicine to science to engineering. Images and clinical data have been provided by the

Shirley Eye Center at the University of California, San Diego, and the Veterans Adminis-

tration Medical Center in San Diego.

An ophthalmologist is a doctor who specializes in the structure, function, and diseases

of the human eye. Ophthalmologists rely on visual examination of the retina to detect and
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diagnose disorders. Retinal imaging provides a permanent record of a patient’s eye that can

be consulted at any time for diagnostic reasoning. A retinal image is aquired by imaging the

inner surface of the eyeball through the patient’s pupil using an optical camera. A retinal

image generally shows the optic nerve, fovea, surrounding vessels, and the retinal layer.

Previous efforts in the STARE project have resulted in numerous publications2. Some

efforts concentrated on vessel segmentation [13], optic nerve localization [12] [14], image

registration [9], the measurement of vessel tortuosity [11], and generic lesion detection

[10]. This thesis presents the first effort under the STARE project directly targeted at de-

tecting and classifying drusen.

1.3 Related Work

The varying characteristics of drusen prevent simple image processing methods from seg-

menting arbitrary drusen. Color and intensity based thresholding methods can not distin-

guish between drusen, other lesions, the optic nerve head and other features. The bound-

aries of drusen are vague and difficult to define, making edge detection ineffective. The

size and shape of drusen vary greatly, making template matching methods impractical.

There are very few works published specifically on automated drusen detection and

segmentation in retinal imagery. Sbeh et. al. [22] approach the problem using a new

morphology operator to detect the brightest points (peaks) within individual drusen. Ra-

pantzikos and Zervakis [20] approach the problem using an adaptive local histogram to

identify an appropriate local threshold for segmenting each druse. Thaibaoui et. al. [25]

use a fuzzy logic approach to classify pixels as drusen or non-drusen based on intensity

levels. The results shown in each of these papers are promising, but unlike our work, their

2Full publication list available at http://www.parl.clemson.edu/stare.
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methods were applied only to image sub-areas that contained drusen. The specific areas in

each image were selected manually prior to processing.

Other works in drusen processing have concentrated on image enhancement [24] or

interactive approaches to segmentation [4] [8]. In [24], the effect of stereo viewing on

the ability of an ophthalmologist to correctly classify drusen is explored. The effect of

other standard image enhancements such as image contrast is also tested. Donohoe et. al.

[8] present a system which allows an ophthalmologist to efficiently label drusen. This is

done by the human user manually selecting a pixel location and then manually adjusting

a region growing threshold so that the entire region is labelled. The system then has the

capability to measure properties of the labelled regions in the image such as region sizes

and total region count. While enhancement is not the focus of our work, we do present a

preprocessing technique which can greatly aid the visualization of drusen. Our technique

is not intended as an interactive tool, but it could be applied to refined human interaction.

More work has been done in the general field of retinal image segmentation. Some reti-

nal image processing problems include blood vessel segmentation [13] [16] and detection

of the optic nerve [12] [14]. Hoover et. al. [13] approach blood vessel segmentation via

matched spatial filtering at different orientations. Leandro et. al. [16] use wavelet trans-

forms for blood vessel segmentation. As in our work, they take advantage of the ability of

the framed wavelet transform to describe shape at multiple scales. Hoover and Goldbaum

[12] [14] develop a method to locate the optic nerve which takes advantage of the fact that

all retinal blood vessels converge on the optic nerve. Work has also been done on iden-

tifying and segmenting disease manifestations other than drusen. Ballerini [3] introduces

a method to measure the properties of the foveal avascular zone and detect irregularities

which could indicate diabetic retinopathy. The method uses active contours to define the

borders of the foveal avascular zone and detects irregularities using region properties such
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as moments and gradients. Our work could benefit each of these efforts by recognizing

drusen and eliminating them from consideration prior to processing.

The idea of multi-level, or multi-scale, segmentation has been approached in a number

of different ways. Scale-space models [2] [15] [19] form the basis of the most common type

of multi-scale segmentation. These models seek to represent the original image at varying

scales. This allows image features to be segmented at scales appropriate to their size. For

example, at scales where each pixel represents a large part of the original image, large

image features are easier to segment. Zhang et. al. [29] introduce an interesting neural net

approach to multi-level segmentation of medical images. A top level neural net provides the

coarsest segmentation, and each top level segmented element is passed to lower level neural

nets which perform successively finer segmentations. The idea of modelling the image at

the pixel, region, and area level presented in this thesis is not commonly used. A similar

method for analyzing mammograms is presented by Yu and Guan [27]. In their paper,

wavelet-based feature vectors are used for pixel classification and properties of individual

regions and groups of regions formed by the pixel-level segmentation are analyzed.

The ability of the wavelet transform to represent an image at multiple scales has also

been used previously for segmentation. Wavelet based filtering has been applied success-

fully to problems such as blood vessel detection in retinal images [16]. Zayed et. al. [28]

develop wavelet-based feature vectors to segment fetal ultrasound images. A number of

variations on the wavelet-based feature vector technique have been used to detect breast

cancer as well [5] [27] [30]. As in our work, Yu and Guan [27] use a feed-forward neural

network to classify pixels based on wavelet feature vectors. This work differs from ours

however in that an orthonormal transform is used. This produces a very small feature vector

whose resolution would be insufficient for drusen segmentation.



Chapter 2

Multi-level Analysis

Our approach consists of five steps: preprocessing, pixel-level classification, region-level

classification, area-level classification, and image-level classification. The preprocessing

step equalizes the grey-level average intensity and contrast of features both within the im-

age and between images. The pixel-level step uses wavelet based analysis to identify candi-

date drusen pixels. The region-level step analyzes each connected group of candidate pixels

to determine whether it meets the criteria of an individual druse. The area-level step, which

analyzes clusters of regions, proceeds in two phases. The first pass, hereafter referred to as

the area-level filtering pass, is used to eliminate obvious false positives at the area level so

that statistics gathered in the second pass are as accurate as possible. The second area-level

pass attempts to give each region an exact classification. The image-level classification is

based on area-level statistics. Figure 2.1 outlines the multi-level approach.
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Preprocessing

Pixel-level classification

Region-level classification

Area-level filtering 

Area-level classification

Image-level classification

Figure 2.1: Overview of multi-level analysis

2.1 Preprocessing

The preprocessing phase consists of two steps: intensity based equalization, and wavelet-

based equalization. For our methods we use only the green band of a color retinal image

since most of the drusen detail lies in that band.

The intensity based equalization algorithm shifts the local average intensity toward mid-

grey (e.g. 128 in an 8 bit image) using a sliding window approach. This has the effect of

making the image background uniform without sacrificing local detail. The intensity based

equalization algorithm is fully described in [14] and is illustrated in Figure 2.2.

The wavelet-based equalization step was developed to compensate for the varying con-

trast in the test image set. This caused background variations in sharp images to have

positive responses to the pixel-level classifier and actual drusen in the smoother images

to be missed. Since the pixel-level classifier uses wavelet based analysis, we sought to

somehow normalize the images in the wavelet space.
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Figure 2.2: Example of intensity based equalization. Notice that the non-uniform illumi-
nation is corrected.

The algorithm works by transforming the image into a wavelet space by using an or-

thonormal wavelet transform. In our case we use a high order coiflet [7]. Next, each

dilation band’s wavelet coefficients are shifted up or down so that the average coefficient

value over the entire band is equal to some predetermined constant. The image is then

inverse transformed and the preprocessing phase is complete.

To make our images compatible with the orthonormal wavelet transform we pad them

with zeros to produce a 1024 by 1024 matrix. When transformed this yieldslog21024− 1,

or 9, dilation bands. We number these bands from zero to eight with zero being the largest

dilation, and therefore the lowest frequency, and eight being the highest frequency.

The value of the predetermined constantcn for each dilation band is determined by

cn = b ∗m−n (2.1)

whereb determines base dilation band energy,m determines the rate of change, andn is the

dilation band number. Them value can be thought of as tuning low versus high frequency
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n Figure 2.4(a) Figure 2.4(b) Target
0 12179 11999 12000
1 3385 3383 3000
2 700 696 750
3 178 179 188
4 50 62 47
5 14.4 20.7 15.6
6 4.4 7.7 5.2
7 1.2 2.2 1.7
8 0.32 0.6 0.58

Table 2.1: Average dilation band values before wavelet-based equalization for images in
Figure 2.4. The target values are average dilation band values after equalization. Notice
that in the high frequency bands (n = 5 through n = 8) the low contrast image values are
consistently under the target while the high contrast image values are consistently over the
target.

ratios and changing the overall smoothness or sharpness of the output image. In our work

we found that varyingm could produce favorable results. For our image set, we used anm

value of 4 for the low frequency half (n=0 through n=4) of the dilation band and anm value

of 3 for the high frequency half (n=5 through n=8). This produces output images that are

relatively smooth at low frequencies and sharp at high frequencies. Figure 2.3 illustrates

these effects.

Figure 2.4 (a) and (b) shows two intensity equalized images with significantly different

contrast levels. Table 2.1 shows the average dilation band values for the two images before

equalization as well as the target values given by Equation 2.1. As expected, the high

contrast image has relatively large values in the high frequency dilation bands while the

low contrast image has relatively small values. Figure 2.4(c) and (d) shows the images

after wavelet-based equalization. The contrast levels are similar in each image.
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(a)m = 4 (all frequencies)

(b) m = 3 (all frequencies)

(c) m = 4 (low frequencies) andm = 3 (high frequencies)

Figure 2.3: Wavelet-based equalization with varyingm. Usingm = 4 produces a smooth-
ing effect. Usingm = 3 produces a sharpening effect. Usingm = 4 for low frequencies
andm = 3 for high frequencies sharpens detail while smoothing background variations.
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(a) (b)

(c) (d)

Figure 2.4: Images before and after wavelet-based equalization. The low contrast image
(left) is sharpened while the high contrast image (right) is smoothed.
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A similar algorithm has been used to enhance radiological images [26]. Our purpose,

however, is different. We are trying to equalize detail levels between images rather than

enhance them. Any enhancement that aids human viewing is a secondary benefit.

2.2 Pixel-level Classification

For pixel-level classification we apply the idea of a “wavelet signature”. The idea is that a

pixel within a druse should exhibit a characteristic response to a wavelet transform regard-

less of the size, shape, or texture of the druse.

Our initial drusen detection work focused on the idea that drusen should produce a high

energy peak in the Fourier space corresponding to their approximate average size. We used

Fourier band-pass filters to attempt to extract drusen from the image. Fourier filtering met

with limited success primarily due to the non-repeating and spatially localized nature of

drusen. Drusen clusters are not continuous sine waves, but individual peaks of varying size

and amplitude. The best result Fourier filtering could produce was a blur in the general

area of a drusen patch, but of course, similar blurs were produced by other features as well.

Figure 2.5(a) shows the effect of Fourier filtering drusen.

Next we tried the wavelet transform. The wavelet transform offered two big advantages

over the Fourier transform: spatial localization and basis function flexibility. There were

several basis functions for the orthonormal wavelet transform which were similar in shape

to a typical druse. Using these basis functions we tried band-pass filtering the images.

This technique was capable of enhancing drusen in the images but was not capable of

producing a useful pixel level segmentation. Orthonormal wavelet transforms, like the

discrete Fourier transform, produce data only at powers of two. Close examination of the

wavelet space revealed that drusen did not stand out in any of the dilations represented by
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(a) Fourier filtering (b) Wavelet filtering

Figure 2.5: Preliminary work in drusen detection. (Original image is shown in Figure 1.1a.)
(a) Fourier filtering (blood vessels are removed manually prior to processing) (b) Wavelet
filtering using the Daubechies 4 basis function (blood vessels not removed).

the orthonormal wavelet trasform. Figure 2.5(b) illustrates the effect of wavelet filtering

drusen using an orthonormal wavelet transform.

In order to increase our resolution in scale-space and allow more flexibility for our

basis wavelet we turned to the framed wavelet transform. The framed wavelet transform

is simply a discretized version of the continuous wavelet transform (see Appendix A for

an overview of wavelets). Our approach uses the Mexican hat wavelet, which has a basic

shape similar to that of an individual druse [7]. Figure 2.6 shows the Mexican hat wavelet.

Framed wavelet transforms can provide a non-destructive representation of a signal if

every integral dilation is represented. Since we don’t need a complete representation of the

image we can sample the wavelet space only in the dilation range we are interested in. We

found empirically that a dilation range of 10 to 100 pixels works well for drusen detection,

and sampling only multiple of ten dilations within that range provides adequate resolution.
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Figure 2.6: The Mexican hat wavelet.
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We additionally simplify the computational complexity of our approach by sampling

the wavelet space of one dimensional slices through the pixel we are interested in. To form

the wavelet signature for a given pixel we compute four one dimensional wavelet responses

centered around the pixel at each dilation: one horizontal, one vertical, and one for each

diagonal. Each one dimensional response is computed by convolving the one dimensional

slice of the image with the Mexican hat wavelet. Once the four one dimensional responses

are computed, their product is then used as a measure of the similarity about the pixel and

at the given dilation to the Mexican hat wavelet. The set of these similarity values for all

dilations forms the pixel’s wavelet signature. This wavelet signature vector, as expected,

has a nice smooth peak for any pixel near the center of a druse or other blob-like feature.

Non-druse pixels tend to produce a wavelet signature that either has an amplitude that is

out of the expected range or peaks in the wrong dilation range. Figure 2.7 shows example

wavelet signatures for fine and large drusen. Figure 2.8 shows several non-drusen features

that can be confused with drusen.

Once we have a pixel’s wavelet signature we classify it as drusen or non-drusen using a

feed forward neural network with sigmoidal activation functions. The neural net has three

layers structured as follows: 11 inputs (wavelet signature plus bias), 10 hidden units, and

2 output units. The two outputs are trained to represent the degree of certainty the pixel

is druse and the degree of certainty the pixel is not druse. The neural network was trained

over approximately 1000 sample pixels of which about half were drusen and half were non-

drusen. The neural network is then used to classify each pixel in a given image. The final

output is a labelling on the preprocessed image. If the degree of certainty that a pixel is

druse is greater than the degree of certainty the pixel is not druse then the pixel is labelled.

We refer to pixels labelled by this step as “candidate pixels” and the labelling is passed to
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(b) Large Drusen

Figure 2.7: Typical wavelet signatures for large and fine drusen.
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(a) Lesion (amplitude out of tolerance)
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(b) Choroidal Vessels (dilation range out of tolerance)
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(c) Optic Nerve (both amplitude and dilation range out of tolerance)

Figure 2.8: Wavelet signatures for various image features which can be confused with
drusen.
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Figure 2.9: A preprocessed image and its pixel classification.

the region-level classifier to be further refined. Figure 2.9 shows an example result from

this step.

2.3 Region-level Classification

For region-level classification, we use the output of the pixel-level classifier as a labelling

on the preprocessed image. Groups of 4-connected, labelled pixels form regions. We

measure properties of each region in the preprocessed image to see if the region qualifies

as a druse. We define the following properties for individual regions:

• region area:a

• region average intensity:iave

• region maximum intensity:imax

• border average intensity:bave
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• border maximum intensity:bmax

• border minimum intensity:bmin

• border average gradient:gave

• border gradient standard deviation:gσ

• horizontal density:µh

• vertical density:µv

Gradients are calculated using a 5x5 Sobel operator. The border properties are com-

puted using pixels on the perimeter of the region. The density measures are calculated as

follows:

µh =

∑a
k=0 |rk − xc|pk

iavea
µv =

∑a
k=0 |ck − yc|pk

iavea
(2.2)

where(xc, yc) is the centroid of the region,rk andck are the row and column of the kth

pixel in the region, andpk is kth pixel’s intensity. The density measures are low when the

region is symmetric, compact, and has its intensity concentrated in the center. When these

criteria are not met the density measures increase.

Simple rules are now developed based on the region properties to eliminate observed

false positives from the pixel-level classifier. The classification rules are listed in Table 2.2.

If a region does not pass all of these rules it is eliminated. Regions passing all tests are

referred to as candidate regions and are passed on to the area-level classifier. The specific

values used for each rule were selected through repeated experimentation.

The first region-level rule eliminates stray pixel responses. We define a stray response

as less than four connected candidate pixels. Stray pixel responses tend to occur in areas

where the image has a grainy texture.
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Equation Description

1 a ≥ 4 Eliminate stray pixel responses

2
µh < 3.5, µv < 3.5,

µh + µv < 5.5
Regions must be relatively round with brightness con-
centrated toward the center

3 gave/gσ > 1.8 Gradient must be relatively uniform around entire re-
gion

4 bmin > 50, bmax < 160 Eliminate false positives induced by very bright or
dark nearby non-drusen objects (vessels, lesions, op-
tic nerve, etc.)

5 30 < gave < 190 Drusen gradients fall within a certain range. High gra-
dients often indicate lesions and low gradients often
indicate nothing is really there

6
if a < 30
theniave − bave > 6

Eliminate background noise induced false positives

Table 2.2: Rules for region-level classification. A region will be eliminated as a potential
druse if it does not pass all of these tests.

The second region-level rule uses the moment based density measures to eliminate

elongated, skewed, and non-compact regions. We expect a druse to be relatively round and

compact with its intensity concentrated near its center and uniformly balanced around its

centroid. Elongated regions often occur parallel to blood vessels or along the edge of the

optic nerve. Skewed regions usually occur near lesions or other high energy non-drusen

features. The intensity of the region tends to slope away from the high energy feature,

causing the measures in Equation 2.2 to increase. Non-compact regions can be induced by

choroidal vessels or other irregularly shaped bright patches in the image. Figure 2.10 shows

examples of false positive regions from the pixel-level classifier which are eliminated by

this rule.

The third region-level rule eliminates regions having an average border gradient that is

not uniform. The rule targets false positives induced by nearby strong gradients such as
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Figure 2.10: False positives eliminated by region-level rule two. The image on the right
shows false positives produced by the pixel-level classifier which are eliminated at the
region level due to elongation, skew or lack of compactness.

blood vessel edges as well as regions which are part of a larger feature such as a lesion.

Rules two and three are complimentary, and can overlap in the false regions eliminated.

The fourth region-level rule takes advantage of the fact that drusen do not normally oc-

cur adjacent to very bright or very dark retinal features, but false positives with drusen-like

appearance often do appear adjacent to very bright or very dark retinal features. Figure 2.12

shows the effect of this rule. The fifth region-level rule constrains the gradient range of a

candidate drusen. This rule eliminates bright compact false positives which are only dis-

cernable from drusen by their excessively high gradients as well as false positives induced

by the cloudy appearance of choroidal vessels. Figure 2.13 shows the effect of this rule.

The sixth region-level rule further helps to eliminate small false positives induced by back-

ground image textures. A final region-level classification result, after all rules are applied,

is shown in Figure 2.14.
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Figure 2.11: False positives eliminated by region-level rule three. The image on the right
shows false positives produced by the pixel-level classifier which are eliminated at the
region level due gradient variation.

Figure 2.12: False positives eliminated by region-level rule four. The image on the right
shows false positives produced by the pixel-level classifier which are eliminated at the
region level due to adjacency to very bright or dark features.
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Figure 2.13: False positives eliminated by region-level rule five. The image on the right
shows false positives produced by the pixel-level classifier which are eliminated at the
region level due to out of tolerance gradient strength.

Figure 2.14: Pixel-level classification results from Figure 2.9 and the refined segmentation
after region-level classification.
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2.4 Area-level Classification

Area-level classification is done on the preprocessed image using the region level output as

a labelling. Area-level classification uses a100× 100 pixel window to define an individual

area. The window is centered on the centroid of each region in the image rather than

convolved through the entire image. Each area-level classification label is only applied to

the region in the center of that area.

Area-level classification is done in two passes: a filtering pass and a classification pass.

The filtering pass is used to eliminate obvious false positives so that the area level statistics

are as accurate as possible for the classification pass. The best pixel-wise drusen labelling

comes out of this step, however, the second area-level pass and the image-level classifica-

tion steps are needed to provide a global classification.

The classification rules for area-level filtering are listed in Table 2.3. If an area does

not pass all of these rules, the region at its center is eliminated. The region properties

introduced in the previous step are used once again, but we look at their averages and

standard deviations over all regions in the area. The standard deviation of the background

intensity, σbg, and the average background gradient,gbg, are also used. We define the

area background as all unlabelled pixels in the area. As with the region-level classification

rules, specific values used in each test for both area-level classification passes were selected

through repeated experimentation.

The first area-level filtering rule is based on the assumption that drusen should be the

only feature present in a drusen cluster. If there is a large amount of variance in the unla-

belled pixels then non-drusen features are probably inducing false positives. Figure 2.15

shows an example of the effect of this rule.
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Equation Description

1 σBG < 16.5 High variance of non-labelled pixels indicates pos-
itive responses were caused by a non-drusen fea-
ture such as a lesion

2 īmax − b̄max > 6 Most regions in the area are significantly brighter
than their surroundings

3 σa < 1.5 ∗ ā We expect clustered drusen to have similar size
4 ḡσ < 0.5 ∗ ḡave A stricter version of the region-level gradient vari-

ation rule applied to the averages across an area
rather than individual regions

5 µ̄h < 2.6, µ̄v < 2.6 A stricter version of the region-level density rule
applied to averages for the area

6 150 > ḡave > 35 A stricter version of the region-level average gra-
dient rule applied to averages for the area

Table 2.3: Rules for area-level filtering. This pass eliminates obvious false positives at the
area level so that area level statistics will be more accurate in the classification pass.

Figure 2.15: False positives eliminated by area-level filtering rule one. The image on the
right shows false positives produced by the region-level classifier which are eliminated at
the area level due to high background variance.
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Figure 2.16: False positives eliminated by area-level filtering rule two. The image on the
right shows false positives produced by the region-level classifier which are eliminated at
the area level due to lack of difference from background intensity.

The second area-level filtering rule eliminates regions in drusen clusters where the av-

erage region intensity does not stand out from the background. This rule primarily targets

false positives induced by faint background fluctuations such as those caused by choroidal

vessels. Figure 2.16 shows an example of the effect of this rule.

The third area-level filtering rule relies on the assumption that clustered drusen should

be relatively similar in size. This rule also focuses on eliminating non-drusen abnormalities.

The remainder of the area-level filtering rules are simply stricter versions of region-level

rules applied to averages of region properties for all regions in an area. A sample area-level

filtering result is shown in Figure 2.17.

The classification pass looks at the properties of each area and attempts to give a specific

classification for the region at the center. This classification will be none, fine few, fine

many, large few, or large many. In this pass we take advantage of the different properties

of each of these five classifications.
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Figure 2.17: Region-level classification results from Figure 2.14 and the refined segmenta-
tion after area-level filtering.

This is the first classification step that is not tuned to err on the side of letting all drusen

pass since its goal is to provide statistics for image-wide classification. In this pass we have

a different rule set for each class. If none of the rule sets are passed, the region is classified

as a “none”. The rules for the classification pass are listed in Table 2.4.

A candidate region is first classified as a potential large many, fine many, large few, or

fine few based on the number and average size of the regions in its area. The region is

then subjected to tests specific to its class. Both of the many classes must pass only one

class specific test, a limitation on background standard deviation and average gradient. A

background standard deviation test is also applied in area-level filtering, but here we use

a stricter limit since additional false positives have already been eliminated in the filtering

pass.

The few classes can be subjected to stricter rule sets than the many classes because

we assume the individual drusen are well spaced and do not overlap. A stricter version

of the background standard deviation and average gradient rule used for the many classes
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Classification Rules

Large Many
regions ≥ 8, 20 < ā < 115

σbg < 15, gbg < 60

Fine Many
regions ≥ 8, ā ≤ 20
σbg < 15, gbg < 60

Large Few
regions < 8, 20 < ā < 115

σbg < 10, gbg < 35, ḡave/ḡσ > 2.5, īave − b̄ave > 7

Fine Few
regions < 8, ā ≤ 20

σbg < 10, gbg < 35, ḡave/ḡσ > 2.5, ḡave > 70.0, īave − b̄ave > 9,
False Positive All others.

Table 2.4: Rules for area-level classification.

is applied to the few classes. The few classes must pass a stricter rule limiting border

gradient variance as well as a rule which places a minimum requirement on the difference

between region average intensity and border average intensity. For the fine few class only,

a minimum is set for the average border gradient.

2.5 Image-level Classification

The last step in the process is image-level classification. In this step we use the count and

average size of each region class from the area-level classification step to give an overall

image classification. This takes place in two steps. First we classify large and fine drusen

seperately as none, few, or many. We then give an overall image classification as none, fine

few, fine many, large few, or large many. The rules for image-level classification are listed

in Table 2.5. As can be seen from the table, a hierarchy is used to resolve situations where

requirements are met for more than one image class.
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Classification Requirements

Large Many At least 15 regions classified as large many. More regions classified as
large many than false positive.

Fine Many At least 20 regions classified as fine many. More regions classified as
fine many than false positive.

Large Few At least 2 regions classified as most likely large few.
Fine Few At least 2 regions classified as most likely fine few.

None All others.

Table 2.5: Rules for image-level classification. The rules are evaluated from the top down
and the first rule passed gives the overall image classification.
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Results

The algorithm was evaluated on a set of 119 images, 62 of which contained drusen, 38 of

which were of healthy retinas, and 19 of which contained non-drusen abnormalities. Of

the drusen images, 20 were large many, 13 were large few, 10 were fine many, and 19 were

fine few. Sample results for each image class are given in Figures 3.1- 3.61. The results

were evaluated based on two criteria: percent correct (drusen versus no drusen) and percent

correct (exact classification). The percent correct (drusen versus no drusen) statistic is also

referred to as the drusen detection rate. Both statistics are based on comparison to a ground

truth provided by an ophthalmologist. A summary of the image classification results is

shown in Table 3.1.

As expected, drusen detection percentages for the many classes were very high. Only

one many drusen image in the set was misclassified as non-drusen. This failure occured in a

fine many image at the image-level classification step. The fine many regions in the image

were labelled correctly by the area-level classifier, but there were an insufficient number

of fine many regions to label the image fine many. This occurred because a single highly

1Area-level classification results not shown. Full results available at www.parl.clemson.edu/stare/drusen/
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(a) Preprocessed image (b) Pixel-level classification

(c) Region-level classification (d) Area-level filtering

Figure 3.1: Large many drusen image at each stage of processing. Image was correctly
classified as large many at the image level.
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(a) Preprocessed image (b) Pixel-level classification

(c) Region-level classification (d) Area-level filtering

Figure 3.2: Fine many drusen image at each stage of processing. Image was correctly
classified as fine many at the image level.
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(a) Preprocessed image (b) Pixel-level classification

(c) Region-level classification (d) Area-level filtering

Figure 3.3: Large few drusen image at each stage of processing. Image was correctly
classified as large few at the image level.
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(a) Preprocessed image (b) Pixel-level classification

(c) Region-level classification (d) Area-level filtering

Figure 3.4: Fine few drusen image at each stage of processing. Image was correctly classi-
fied as fine few at the image level.
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(a) Preprocessed image (b) Pixel-level classification

(c) Region-level classification (d) Area-level filtering

Figure 3.5: Normal image at each stage of processing. Image was correctly classified as no
drusen at the image level.
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(a) Preprocessed image (b) Pixel-level classification

(c) Region-level classification (d) Area-level filtering

Figure 3.6: Abnormal image at each stage of processing. Image was incorrectly classified
as fine many at the image level.
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Catagory Correct (D vs. ND) Correct (Exact Classification)

Normal 89% 89%
Large Many 100% 85%
Large Few 85% 54%
Fine Many 90% 40%
Fine Few 79% 47%
Abnormal 74% 74%

Overall 87% 71%

Table 3.1: Results (percentage of 119 images correctly classified)

compact cluster was present which appeared to be many drusen at the area level, but at the

image level not enough drusen were present to allow a many classification.

For normal images, the drusen detection rate was 89%, or 34 out of 38 images. Each of

the failures was due to misclassification as few drusen. Of these 4 misclassifications, 3 ap-

peared to possibly contain drusen. One of these ambiguous images is shown in Figure 3.7a.

Our method misclassified 2 out of 13 large few images and 4 out of 19 fine few images

as none. A fair number of these misclassifications also had debatable ground truths. One

of these debatable images is shown in Figure 3.7b. Our method failed most frequently in

the abnormal catagory, missing 5 of 19 images. All five of these failures were induced by

lesions. It should be noted however that there were five other lesion-containing images in

the abnormal set which were correctly classified.

Percentages for exact classification were significantly lower than drusen detection for

each of the drusen classes. Most of this performance decrease was due to ambiguity and

difficulty in the labelling of the training set. It is difficult for a human to be consistent

when using such qualitative descriptions as large, fine, many, and few. It is also possible

for an image to have multiple classifications, for example, the image shown Figure 3.8 has

relatively equal amounts of fine and large drusen. In fact, two images of this retina are
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(a) (b)

Figure 3.7: Examples of debatable ground truth classifications. The image on the left was
labelled normal in the ground truth but the system classified the image as fine few drusen.
Boxes indicate regions which appear to be drusen. The image on the right was labelled
large few in the ground truth but the system classified the image as none.

present in the ground truth; one is labelled large many drusen and the other is labelled fine

many drusen.

To fairly evaluate these results, we created a subjective third performance measure

called “reasonable”. In order to pass this measure, an image’s area-level classification

and image-level classification be consistent with how a human expert might classify the

image. Table 3.2 restates the results summary with the reasonable statistic included.
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Figure 3.8: Example of an image containing multiple classes of drusen. The box on the
left indicates the presence of fine drusen and the box on the right indicates the presence of
large drusen.

Catagory Correct (D vs. ND) Correct (Exact Classification)Reasonable

Normal 89% 89% 92%
Large Many 100% 85% 100%
Large Few 85% 54% 100%
Fine Many 90% 40% 90%
Fine Few 79% 47% 84%
Abnormal 74% 74% 79%

Overall 87% 71% 91%

Table 3.2: Results including the “reasonable” measure
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Conclusions

This paper presented a method to automatically detect drusen in a retinal image without

human supervision or interaction. We use a multi-level approach, beginning with classi-

fication at the pixel level and proceeding to the region level, area level, and then image

level. This allows the lowest levels of classification to be tuned to detect even the faintest

and most difficult to discern drusen, relying upon the higher levels of classification to use

an ever broadening context to refine the segmentation. We developed a wavelet based fea-

ture vector for pixel-level classification which uses discretized versions of the Mexican hat

wavelet. We tested our methods on a set of 119 images containing all types of drusen as

well as images containing no drusen or other potentially confusing lesions. Our overall

correct detection rate is 87% compared to a ground truth provided by an ophthalmologist.

Most failures occur in images that have non-drusen abnormalities such as lesions which

induce drusen-like patterns. A human analyzing retinal images can recognize these areas as

false positives by first recognizing the abnormality, but our algorithm has no such contex-

tual knowledge (it can only recognize drusen). The algorithm is also susceptable to normal

variations near the optic nerve and blood vessels. Normal intensity variations in this region
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can sometimes have a drusen-like appearance. The algorithm also tends to fail when drusen

are very close to the perimeter of the image. Without area context, perimeter drusen are

often missed.

Combining this method with other retinal segmentation algorithms could greatly im-

prove performance. Knowledge of the location of certain non-drusen abnormalities, the

optic nerve, and blood vessels could be used to exclude most of the false positives that

currently cause our method to fail.



Appendix A

Wavelet Transform Overview

Ingrid Daubechies, a pioneer in wavelet theory, summarizes the wavelet transform as fol-

lows: “The wavelet transform is a tool that cuts up data or functions or operators into

different frequency components, then studies each component with a resolution matched

to its scale” [7]. The wavelet transform is usually described as an extension of the Fourier

transform which adds the following benefits: space-frequency localization and flexible ba-

sis functions. These two properties of the wavelet transform make it an ideal tool for

analyzing the frequency content of natural or non-periodic data.

The most common use of the wavelet transform is as a data compression tool. The

wavelet transform’s ability to describe natural and non-repeating signals makes it ideal for

processing images, audio, and video. The jpeg2000 image compression standard replaces

the cosine transform with a discrete wavelet transform, attaining significantly higher com-

pression without noticable image degradation [6]. Wavelets have also shown promise as

signal enhancement tools. The wavelet-based equalization algorithm described in this the-

sis is an example of a wavelet based enhancement tool. Another area wavelets have only

recently been applied to is pattern recognition problems such as image segmentation. Our
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wavelet based approach to pixel-level classification is an example of wavelet based pattern

recognition.

There are two major types of wavelet transforms: continuous wavelet transforms (CWT),

and discrete wavelet transforms (DWT). Within the discrete wavelet transform we have two

major subclassifications: framed wavelet transforms and orthonormal wavelet transforms.

In this appendix we describe each of these classes of wavelet transform individually, start-

ing with the continuous transform and an overview of the theory behind wavelet analysis.

A.1 Continuous Wavelet Transforms and Introduction to

Wavelet Theory

The continuous wavelet transform (CWT) is the most fundamental wavelet transform and

forms the basis for the two discrete types. In this section we will show how the CWT is an

extension of the Fourier transform and explain how it works.

The continuous Fourier transform may be written as

X(jω) =
∫ ∞

−∞
x(t) ∗ e−jωtdt (A.1)

and the continuous wavelet transform (CWT) may be written as

Ψ(τ, s) =
1√
s

∫ ∞

−∞
x(t) ∗ ψ(

t− τ

s
)dt (A.2)

In the CWT, the Fourier transform’se−jωt term is replaced by the functionψ( t−τ
s

). The

functionψ(t) is called the mother wavelet. The mother wavelet can be any one of a number

of eligible functions. One example is the Mexican hat wavelet described in this thesis.
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The variabless andτ denote scale and translation, soψ( t−τ
s

) is simply the mother wavelet

translated and scaled (dilated) to thes andτ for which the CWT is being calculated. In

summary, the CWT of a functionx(t) at scales and translationτ is the convolution ofx(t)

with the scaled and translated mother wavelet, normalized by1√
s
.

We can see from this comparison that the wavelet transform extends the Fourier trans-

form in two ways. We replace the Fourier transform’s sinusoidal basis function with a basis

function of our choosing, and we retain space-time information in the transformed signal.

The Fourier transform takes a signal inn dimensions of space and time and transforms it

into n dimensions of frequency. The CWT transforms the same signal inton dimensions of

scale (analogous to frequency) atn dimensions of translation, thus providing full frequency

information at every space-time location in the original signal.

Although an infinite number of mother wavelets are possible, there are certain proper-

ties the mother wavelet must satisfy. For the mother wavelet to act as a valid basis function,

it must integrate to zero over all real values:

∫ ∞

−∞
ψ(t)dt = 0 (A.3)

Another desirable mother wavelet property is compact support. This simply means that

the mother wavelet integrates to zero over some range less than−∞ to∞. For example,

the smallest range over which the Mexican hat wavelet integrates to zero is−5 to 5, we

therefore say that it has a compact support range of−5 to 5. Mathematically, compact

support is not required, but practically, the CWT is difficult to implement without it.
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A.2 Framed Wavelet Transforms

The framed wavelet transform is a discretized version of the continuous wavelet transform:

Ψ(τ, s) =
1√
s

∫ ∞

−∞
x(n) ∗ ψ(

n− τ

s
)dn (A.4)

The basic idea behind the framed wavelet transform is that one can approximate a non-

destructive transform of a discrete signal by computing the CWT with discrete approxima-

tions of the mother wavelet at every integral value of scale and translation. The framed

wavelet transform is rarely used as a non-destructive transform however, due to the enor-

mous computational cost of computing an accurate signal representation. The power of the

framed wavelet transform lies more in its ability to extract patterns from a signal.

When sampled at reasonable intervals of scale and translation, the framed wavelet trans-

form acts like a multi-scale matched spatial filter. Features which are similar in shape to

the mother wavelet at a given scale and translation produce a high output at that scale and

translation. This is the idea behind the pixel-level segmentation technique presented in this

thesis. In our method, we sample the image’s wavelet space at every integral translation

(each pixel) and at scales (dilations) from 10 pixels to 100 pixels.

A.3 Orthonormal wavelet transforms

Orthonormal discrete wavelet transforms are by far the most commonly used type of wavelet

transform. Orthonormal transforms provide fast, non-destructive, and compact image trans-

formations which are useful for data compression and enhancement. Like the fast Fourier

transform, the orthonormal wavelet transform is a one-to-one transformation that breaks

the original signal into scale components at powers of 2 up to the length of the signal. For
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Figure A.1: Wavelet space of a retinal image transformed via an order 10 coiflet.

example, if a discrete one dimensional signal contains 1024 data points, its orthonormal

wavelet transform will be composed of 512 coefficients representing the signal’s responses

at scale 2, 256 coefficients representing the signal’s responses at scale 4, etc. When a

second dimension is added, as in an image, a quadtree representation is used to store the

transformed signal. Figure A.1 shows an orthonormal wavelet transform of a retinal im-

age. The lower right corner of the image contains the wavelet coefficients for horizontal

scale 2 and vertical scale 2. As one moves from right to left across the image, horizontal

scale increases by powers of 2. Similarly, as one moves from bottom to top, vertical scale

increases by powers of 2. The transform shown in this figure is the same one used for the

wavelet-based equalization technique presented in the preprocessing section of this thesis.
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Only mother wavelets which form orthonormal basis functions can be used for or-

thonormal wavelet transforms. More specifically, the set of all functions satisfying

Ψm,n(x) = 2−m/2ψ(2−mx− n) (A.5)

for integral values ofm andn must together form an orthonormal basis. Equation A.5

defines the set of all possible functions formed by shifting the mother wavelet byn and

scaling it by2m. A number of useful wavelet families have been derived which satisfy

this condition. The wavelet families are usually chosen such that desirable properties are

optimized in addition to meeting the fundamental requirement of forming an orthonormal

basis. The coiflet, for example, seeks to maximize symmetry and minimize support width.

The order of an orthonormal wavelet basis determines the degree of precision with

which the mother wavelet is represented. As the order increases the mother wavelet repre-

sentation becomes smoother and usually meets its secondary requirements more optimally.

The downside of using high order wavelet bases is that computational complexity is signif-

icantly higher. High order wavelet bases produce transforms in which frequency seperation

is cleaner, which is useful for enhancement. High order transforms also tend to cause more

coefficients in the transformed signal to approach zero, which is useful for compression.
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