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ABSTRACT

We introduce a device capable of detecting in real time information concerning bites tagn during
a meal. The device can count the total number of bites the user has taken and provide theate of
bites taken (bites per minute) of the user. The device could nd use in a number of applicatbns,
including helping a user with obesity, eating disorders, or eating rate problems. We ha built three
prototypes of a bite detector device. Each is based on a di erent sensor for detecting thenotion
of the wrist, with particular emphasis given to the rolling motion of the user's wrist. During use,
information gathered can be utilized to provide real-time feedback to the user. Inérmation can
also be stored to review the motion events as well as to evaluate the perforance of the device.
Experiments have been conducted to determine the accuracy of the invention. The sensitityi of the

device can reach as high as 91%.
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CHAPTER 1

INTRODUCTION

This thesis introduces a wrist-worn device capable of detecting in real time inform#don with
regards to bites taken during a meal. Eating occurs in a variety of environmentsjncluding homes,
restaurants, places of business, and other social gathering spots. It is very dicult to monitor
food intake at all these locations using manual methods. Furthermore, while pople eat they may
simultaneously engage in a variety of other activities, including talking, reading, watching television,
and working. These activities distract from e orts meant to monitor food intake. For example, when
105 participants were asked to manually count the number of bites taken during edt meal in a 24-
hour period by using an index card and slash system, 43 participants lost count dung the meal or

forgot to count the number of bites entirely [40].

1.1 Background and motivation

A bite detector device could be used in several applications. First, our proposed bitdetector could
help overweight or obese people to manage their body weight. Overweightand obesity are a growing
concern in the United States. Body weight can be classi ed by the body mass index (BM\, which

is weight (in kilograms) over the square of height (in meters). A personwhose BMI is between 25
and 29.9 is overweight; if the BMI is more than 30, the person is obese; the BMI is above 40, the
person is extremely obese [47]. According to this classi cation and data fronthe National Health

and Nutrition Examination Survey (NHANES), in 2003-2004, 66.3% of USadults were overweight,
32.2% of US adults were obese and 4.8% of US adults were extremely obese. Ifaaged by sex,
in 2003-2004, 70.8% of US men and 61.8% of US women were overweight,134 of US men and
33.2% of US women were obese, 2.8% of US men and 6.9% of US women were exétgnobese
[45]. In addition, the number did not change much between 2003-2004 and 2005-ZB@or men or
women [44]. The most recent assessment of global obesity and overweight Itige World Health

Organization (WHO, 2006) revealed that 1.6 billion adults (ages 15+ years)were overweight and

400 million adults were obese in 2006 according to BMI values [67].

1The term \overweight" is most often used as an adjective in ve rnacular English, but in the medical community,
it is also commonly used as a noun.



The reason that overweight and obesity are such a big concern is that they are stngly associated
with several major health risk factors. A number of health problems have beenihked to a rise in
body weight, including heart disease, hypoxia, sleep apnea, hernia, and arthritis. 65]. Table 1.1
shows a survey result that overweight and obesity are related to di erent health problems. It is
based on the largest telephone survey of adults in the United States, the Behavioral iBk Factor
Surveillance System (BRFSS), which is a cross-sectional telephone survey conducted by the Gers
for Disease Control and Prevention and state health departments. The secondow in the table
shows there were 195,005 people in this investigation. Using the BMI obdgide nition, 84,469 of
them are normal weight, 70,231 of them are overweight, 35,767 of them ambese and 4,538 of them
are extremely obese. The rst column shows di erent types of health problems. It incudes diabetes
(DIA), high blood pressure (HBP), high cholesterol (HC), asthma (AS), arthritis (AR) and general
health problems (GH). The data shows that both overweight and obesity are syni cantly associated

with diabetes, high blood pressure, high cholesterol levels, asthma, arthri§, and fair or poor health

status.
Total Normal Overweight Obesity Extreme Obesity
(N=195,005) | (n=84,469) | (n=70,231) | (n=35,767) (n=4,538)
DIA(%) 7.9 4.1 7.3 14.9 25.6
HBP(%) 25.7 15.9 27.8 40.9 50.9
HC(%) 31 235 34.1 39.4 36.2
AS(%) 11 9.9 10 13.9 22.6
AR(%) 23 17.7 23.7 32.1 442
GH(%) 15.2 11.8 14.1 22.5 37.6

Table 1.1 Relation between BMI and health problems (DIA: Diabetes, HBP: High blood pressure,
HC: High cholesterol, AS: Asthma, AR: Arthritis, GH: General health problem s). Taken from [43].

Flegal et al. [19] found that obese and extremely obese people were linked to incsead mortality
compared to the normal weight people. In 2000, costs for obesity in the U.S. ere estimated at more
than $117 billion [34]. So it is very important to successfully manage ouibody weight.

Terre et al. [63] reviewed several obesity treatments such as pharmacotherapyery low-calorie
diets and surgery. They also mentioned the disadvantage of these methods. For irestce, these
treatments were costly, had side e ects and had disappointing long term results.

A second use for the proposed bite detector could be for helping eating disorders. Eatirtisorders

have also become a serious problem among people. There are two common eating difgss: anorexia
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and bulimia [18]. \Individuals with anorexia nervosa are unwilling or unable to maintain a body
weight that is normal or expectable for their age and height [49]." The activities of anorexia can
lead to a variety of medical complications. These include increased physical actiwt depression;
obsessional preoccupation with food; reductions in heart rate, blood pressure, and medialic rate;
increased cortisol production; and decrease in the production of estrogen (or, in mas, testosterone)
[64]. On the other hand, \individuals with bulimia nervosa regularly engage in discrete periods of
overeating, which are followed by attempts to compensate for overeating ando avoid weight gain
[48]." Bulimia nervosa is also associated with a lot of health risk fators, including constipation,
tooth decay, irregular menstrualcycles, extremely low blood pressure, depression, anglibstance
abuse [7].

Many methods are suggested to treat eating disorders. Garner et al. [22] discussesveral
treatments such as psychodynamic, feminist, family approaches, hospital methds, drug treatments
and educational approaches. However, Zandian et al. [68] pointed out that the outcom has not
improved signi cantly over a long term and all these treatments are based on vey weak evidence
and results.

A third use for the proposed bite detector is to control eating rate. Although resarch has not
conclusively shown that slowing down eating rate would reduce food intake [41keveral experiments
have shown that eating slowly was of great bene t. Otsuka et al. [50] and Sasakét al. [55] both
found that eating fast had a signi cant positive relationship with BMI. Stua rt [60] mentioned that
controlling eating rate could help not only reduce the amount of food intake but ako help people

enjoy the taste.

1.2 Related work

1.2.1 Food intake detection
In a more general view, the goal in all of these problems (the overweight problenthe eating disorder
problem, and the eating rate problem) is to balance consumption and expenditure. Current}, there
are no widely used tools for monitoring food intake.
The most common way to monitor food intake is to manually track the food eaten and calculate
the number of the food calories. Beidler et al. [8] established a system, calledePsonal Nutrition

Assistant Project, which provided web-based tools using a search engine inteda to the USDA
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database for clients to get their intake analysis. Clients could select their ddy diet entry in the
database. Then, they could go to the next browser to enter diary entry with measurement urts.
Siek et al. [58] presented a study about electronic intake monitoring applicationfor chronic kidney
disease patient who had low literacy and low income. The application, Barcode Ed, wadesigned
with an o -the-shelf Palm OS Tungsten T3 PDA and Socket In-Hand SDIO card scanner. In this
three-week study, participants scanned barcode or voice recorded what, when, and how they ate.
The result of this study showed barcode scanning would be helpful for recently diagnosed CKD
patients in learning about diet entry strictly. However, these types of systens force the user to
input, scan, or voice-record food eaten into a system. People often forget or dike doing this sort
of task after every meal.

Another method to measure the amount of food intake is to weigh the amount offood before
and after eating. So the di erence of the weight is the amount of food intake. Wesgrterp-Plantenga
[66] monitored food intake using an electronic built-in table with a weighing scale under the plate.
The food intake details, the amount eaten, the eating time, the average eating ate, the average
bite size, and the average bite frequency, were recorded by a digital computer that was naected
to the scale. They developed cumulative food intake curves that can be used as adequdi®ols to
analyze the dietary and clinical interventions on meal size. Chang et al. [13] propsed a dining table
which could measure the food intake. The table consisted of weighing sensors andaéio Frequency
Identi cation (RFID) sensors. The food should be placed in the container which dso had a RFID
tag. Dierent foods should be placed in di erent table cells so that the RFID sensas would be able
to identify it. By recognizing the RFID tag on the container and the existed database, the table
could analyze the food intake by weighing the container. However, these methods camly monitor
people when they eat at the instrumented table, and for example it can not be used to motor
people when they dine at a restaurant or at a friend's house.

In other methods, instead of weighing the pre-eaten food and post-eaten food, peopleka photos
before the eating and after the eating and use image processing to tell the amountf dood intake.
Takeda and colleagues [62] [20] [54] discussed such a concept. First, they took iges of the dish
before and after intake. Second, they used thresholds to convert the image into blacknd write
images. Third, they applied a network algorithm to measure the intake calorie. Zhu et al. [69]

also used image processing to evaluate the amount of food intake. They used a ROwith a camera
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inside. After taking a picture of the food, the user needed to label the food manually. Then the

system would analyze the food by image segmentation, feature extractionral image classi cation

and measure the amount and nutrient of the food. However, these sorts of systesirequire carefully
constructed environments similar to the dining tables with built-in scales. The foods measured
must also be restricted due to the di culty of using image processing techniques to detectpre and

post-eaten di erences.

Some researchers studied the sound made by chewing the food. Drake [17] recorded the cimgw
sound and crushing sound through a microphone and a sound recorder-reproducer. Then he used
tools such as spectrum recorder, voltmeter, attenuator, oscillograph and audi generator to analyze
the amplitude, frequency and duration of the sound. He also compared chewing sounds made by
di erent foods and chewing sounds produced by di erent people. DeBelie et al. [9] also stuéid the
sounds made by chewing food. They recorded the chewing sounds of four di erent dry-crisp snagk
(potato chips, prawn crackers, corn akes and low calorie snacks) and they compad them using
FFT analysis and multi-way data analysis. They found that di erent people had di erent chewing
sounds. After calibrating the sound of di erent people, they could almost distinguish the sound
from di erent types of food though it is hard to identify the potato chips beca use of their irregular
shape. Amft et al. [3] discussed the chewing sounds and the best position to put the mriophone.
They concluded that when they put the microphone in an inner ear, they could get high chewing
signal intensity but low speech signal intensity. After getting the signal of the chewing sound, they
used chewing segmentation and classi cation to tell di erent food products apart. However, these
methods have poor precision in di erentiating many kinds of food due to low signal to noise ratio.
Furthermore, the recording procedures are very expensive.

The sound caused by swallowing food has also been investigated. Logan et al39] analyzed
the spectrograms of four kinds of sounds, deglutition, respiration, voluntarycough, and vocaliza-
tion. Sound was ampli ed from a microphone and recorded on a tape recorder for later argsis.
It was found that deglutition sounds performed a particular spectrographic pattern which was dif-
ferent from those three. Limdi et al. [38] used the electrodes near the neck to record theugface
electromyography. After amplifying and ltering the signal, they could detect the swallowing rate.
If the rate was too high, they would give feedback to the user. Recently, Amft et al [4] put a

microphone sensor on the neck to record the sound and used gel electrodes to transduce the scefa
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electromyography. With the continuous data, they detected the swallowing events B using a sliding-
window and bottom-up algorithm and a feature similarity search. Because of he same problem as
analyzing chewing sound, these methods are inaccurate and costly.

Other technologies have also been involved. Some studies have been undertaken to meastre t
fat content of meat using near-infrared (NIR) spectroscopy [33] and nuclear maggetic resonance
(NMR) imaging [24] [6]. These methods are targeted towards meat and foochspection rather than

individual user consumption. In addition, most of these methods require the use of larg equipment.

1.2.2 Wrist worn device

All of the methods discussed so far are not applicable for general, everyday-use fardd intake mon-
itoring. The device should be able to be worn casually, and its feedback and recondly capabilities
should not embarrass the user. Towards this goal, we now look speci cally at wst-worn devices
and what they have been used to measure in previous works.

Wrist-worn devices can be used for many applications. Sharples and Beale [57] rewed a
variety of monitoring devices that could be worn, including many that are wrist-worn. Such devices
have been proposed or built to measure environment and health properties, including teperature,
barometric pressure, altitude, and heart rate.

Many applications are concerned with some aspects of health. Harland et al. [2@]escribed a
wrist-worn device for ambulatory monitoring of the human electrocardiogram (ECG). They used
two wristwatch style sensors to acquire high resolution ECG and displagd it on a laptop computer
through a wireless transceiver. Gagnadre et al. [21] proposed a wrist-worn d@&e using an optic
ber sensor to measure heart rate, breathing frequency, blood pressure variations and bathing
amplitude. With these parameters, they could detect di erent sleep phases. Ching et al. [14]
designed a circuit connected to a microphone on the wrist to calculate heart rate. From awgvey of
the subject including gender, age, body weight and the linear relationship between the heartate
and oxygen consumption, they could tell if the subject was in bad health. Sugimoto et al. [61]
had the same idea as Ching et al. [14]. They presented a wrist-worn device which caneasure
the heart rate. By sending the data wirelessly through a Bluetooth technology, they c&ulated the
oxygen consumption, and estimated the energy expenditure. Ouchi et al. [52] [51] used a ist~worn
device which mainly comprised of four di erent sensors, pulse meter, thermometer, daanic skin

re ex electrodes and 3-axis accelerometer, to acquire pulse wave, skin temperature, ppisation and
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movement. Sending these measuring data to a PDA through a Bluetooth connection, they could
estimate the user's health condition.

Wrist-worn devices have also been used in non-health-monitoring applications. Heil etla [27]
used a wrist-worn light to document that indoor lighting for a particular day-s hift work environment
could serve as the primary light exposure dosage for humans. Maurer and collgaes [42] [59]
developed an E-watch. This E-watch had a lot of applications. It can be used as a mmal watch to
show the current time. It could also use light sensors and a microphone to recognizéé location and
use a temperature sensor to detect the temperature. In addition, it had a calendar functionwhich
could communicate with a cell phone or a computer. Blasko et al. [10] used a small v&t-worn
projector and projected a large image onto surfaces.

A very important reason researchers prefer putting a non-invasive device on the vist instead of
on other parts of the body is because the wrist-worn devices can be used to study hand timn and
gesture recognition in various domains. Howard et al. [29] designed a liggtove, a virtual typing and
pointing system, which was worn around the wrist. This wrist-worn device sent out beams of fan
shape light directing from the wrist. While descending a nger into the light beam, there was a key
closure generated that provided the host system with visual feedback to complete thenput. This
keyboard/mouse mimicry visual control mitigated constraint of posture and position and allowed
other hand operations. Ogris et al. [46] used ultrasonic sensors, accelerometensdagyroscopes to
measure the distance and the motion to determine the gesture of a pre-de ned bicycle repair &k.
Schmidt et al. [56] conducted a study about a wrist-worn computer and platform, named eVdtch,
which could detect light and acceleration data. The analysis of velocity and gestus recorded by the
eWatch was similar to analysis of orchestra beating. They con rmed that the eWatch was a suitable
input device for acceleration based gesture recognition for the virtual orchestraystem. Chambers et
al. [12] used accelerometers to detect the acceleration and used a hidden Markov model to rgoize
the gestures. Lementec et al. [37] used sensors to recognize the arm gestures. They usmdt f
sensors in di erent parts of the body: upper part of the left arm, upper part of the right arm, the
left wrist, and the right wrist. They de ned three states: the steady state, the oscillation state and
the unclassi ed state. They also de ned ve positions: high, medium-high, medium, medium-low
and low. With the combination of the sensors states and positions, they could @ssify the di erent

motion gestures. Amft and colleagues [2] [32] used wrist-worn sensors in cbination with sensors
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on the upper arms, head, and ears, to classify an eating action taken by a perso.heir methods
searched for pre-de ned patterns in the signals conveyed by all the sensors in order to dsify a
motion pattern as one of drinking, using a spoon, using cutlery, or using ngers to et In contrast,
we are interested in a simpler problem. We use a single wrist-worn sensor to datt a bite taken by

a person regardless of the type of food or motion involved in the bite.

1.2.3 Related patent

There are some patents related to our bite detector device. Some devices can be used to ntoni
the amount of food and calorie intake that one consumes during a given day.

U.S. Patent No. 4,321,674 to Krames et al. [35] described such a system. R#e entered the food
items into the device, and the device would calculate the total calories and the nuttional values.
If the calories exceeded the daily calorie limit, a warning would be shown.

U.S. Patent No. 4,686,624 to Blum et al. [11] described a device to calculatené calorie of the
food input by the user as well. Furthermore, this device included the time when the user recorded
the food and the device could transfer the data to a remote computer so it could be reeiwed by the
doctor.

U.S. Patent No. 4,575,804 to Ratcli [53] and U.S. Patent No. 4,911256 to Attikiouzel [5] also
developed a device with the same idea. In addition, their device included a weighing scale. Wi
the weighing scale and the food items input by the user, the device could calculate the caie and
protein value.

Unfortunately, such devices usually lack the ability to provide real time feedbackto a user. Also,
many of these devices require the user to enter information into a computer which tkes time and
eort. It is a tedious job to manually track or note in a diary every meal consumed, and manual
tracking provides obvious opportunities for bias and misreporting. Moreower, devices developed for
clinical or hospital or research monitoring of food intake are not applicabé for everyday use by an
average person.

Devices that o er real time feedback to a user have also been described. For instance, U.S.
Patent No. 5,398,688 to Laniado [36] described a device that could detect changes jainysiological
variables such as heart rate, stroke volume, and blood pressure corresponding ittitiation of eating.
A detected change in a physiological variable started a timer and after a predeterimed amount of

time had passed, the device would notify the user to stop eating.
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U.S. Patent No. 5,864,518 [23] to Geiser described a device and method for apzaing a swimmer's
swim stroke. He used two metallic sensors in the watch to count the strokeWhen the hands were
in the water, it would form a short circuit. When the hands were out of the water, it would form a
open circuit; therefore it was counted as one stroke.

U.S. Patent No. 5,563,850 [25] to Hanapole described a device that alerthié user when it was
acceptable to take another bite based upon the time interval between individual bites.The device
utilized a wrist motion detector that activated a timer upon wrist motion.

U.S. Patent No. 6,135,950 [1] to Adams described a device that included a rst sens@laced
on a user's throat to monitor swallowing and a second sensor that was placed neah¢ user's heart.
Feedback from the two sensors allowed better quanti cation of the amount of fad ingested.

Other sensors have been developed to monitor other bodily functions. For instance, U.S.dagent
Application Publication No. 2005/0245793 [28] to Hilton, et al. described an apparatus and method-
ology that may be used to measure and store physiological parameters indicae of sustained activity

by a user including walking, sleeping, exercising, or other activities.

1.3 New solution - the idea of a bite detector

While the above methods o er improvements in the art, room for additional improvements exist.
What is needed is a non-invasive, inexpensive, easy to operate, and discreet device that carasure
food intake. Thus, we envision a bite detector device that is worn like a wath and can detect
individual bites and count them when the person wearing it eats. We demonstrate three dierent
prototypes of the bite detector. Each device is placed on the person's wrist and connead to an
external computer. During use, the device can gather and interpret information with regard to the

motion of the user's wrist during a meal, with particular emphasis given to the rolling motion of

the user's wrist. Information gathered can be utilized to provide real-time feedback to the user.
Information can also be stored to maintain a long term record of eating,so as to better examine the
user's eating habits over time. The following chapter will introduce the bite detecta device, the bite

detection algorithm, the experiments conducted, and the performance of the bite detectorn detail.



CHAPTER 2

METHODS

2.1 Overview

This chapter covers in greater detail the actual implementation of our bite detector devce. First,
we introduce three sensor prototypes we built for our bite detector. They are based oithe wired
InertiaCube3 sensor, the wireless InertiaCube3 sensor and the STMicroelectronics LIS32AL sensor
respectively. Each sensor can detect the orientation data in degrees in real time. df the rst two
prototypes, we just need to directly connect the sensors to the computer's RS-232 port dSB port
via a wired or wireless connection. For the third prototype, we need to design a circwiboard and
then connect the LIS3LO2AL sensor to the computer through an analog input-to-digital I/O board.
Second, we introduce our algorithm of bite detection. It includes collecting the orientaton data,
controlling the record frequency, selecting the useful orientation, dealing with the lmund problem,
smoothing the signal, calculating the derivative, de ning the coordinate system of wist motion, and
de ning the bite period. Then we will describe the video capture scene and we will develop two
graphical user interfaces (GUI) for our bite detector device. The rst graphical user interface is used
to detect the bite information and give feedback to the user in real time. The second gphical user
interface can be used to review the stored information of sensor data and synobnous recorded video.
It can detect the bite o ine with regard to di erent parameter settings. It can als o evaluate the bite
detector after marking the ground truth bite manually by reviewing the data and the synchronous

video. At last, we will discuss how to evaluate our bite detector.

2.2 Sensor prototypes

We have built three prototypes for the bite detector device. Each uses a di erent sensordr detecting
the motion of the wrist. The sensor is used to calculate the motion of the uses wrist in order to
identify individual bites during a meal. These sensors can sense the angular rate of Itp pitch

and yaw. The three dierent kinds of sensors are the wired InertiaCube3 sensor, the iseless
InertiaCube3 sensor and the STMicroelectronics LIS3LO2AL sensor. Figure 2.1 sh@wva picture
of two of the sensors. Both InertiaCube3 sensors are the same size (the leftls of Figure 2.1), the

di erence being that the one pictured uses a wire to connect to a computer while the other is wiredss
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but needs a battery. The STMicroelectronics sensor in the middle is much smaller comparedtthe

other two.

Figure 2.1 The InterSense InertiaCube3 sensor and the STMicroelectronics LIS3LO2Akensor

2.2.1 Wired InertiaCube3 sensor

The rst prototype is based upon a wired InertiaCube3 sensor produced by InterSense Gporation

(InterSense, Inc., 36 Crosby Drive, Suite 150, Bedford, MA 01730, www.isenssmm). The wired
InertiaCube3 sensor is an inertial 3-DOF (Degree of Freedom) orientation traking system. It is
based on micro-electro-mechanical systems (MEMS) technology. It contains an accetaneter, a
gyroscope and a magnetometer on each of the 3 axis so it can provide 360 degreeasurement in
all three orientations: pitch, yaw and roll [30]. The whole sensor packagencludes the orientation
sensor, the RS-232 serial interface, the AC power cable and the AC/DC +6VDC powersupply. All

of these parts are shown in Figure 2.2.

To get the orientation data from the wired InertiaCube3 orientation sensor, we need to link
the sensor to the computer. First, we attach the orientation sensor to the RS-32 serial interface
connector. Then we plug the serial interface connector into a personal computer's RS-232op.
After that, the AC to DC power is connected to the main power and the +6VDC power is connected
to the RS-232 serial interface connector.

The InterSense company also provides a library le ISENSE.DLL and a header le ISENSEH
so that the user can initialize and retrieve data from the wired InertiaCube3 sensp by using

development software Microsoft Visual Studio C++ 6.0. To initialize the sensor, the function

11



Figure 2.2 The components of the InterSense wired InertiaCube3 Sensor
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ISD_OpenTracker in the ISENSE.H header le should be used. If the function return value is
TRUE, it means the sensor has been opened successfully through the RS-232 port. Aftehdt,
we can use the function ISDGetData to get the orientation data in yaw, pitch, and roll from the
con gured sensor. At last, we can use the function ISDCloseTracker to shut down the sensor, close

the communication port and release all the resources allocated by the sensor.

2.2.2 Wireless InertiaCube3 sensor
The second prototype is mainly based on a wireless InertiaCube3 sensor which idsa produced
by the InterSense Corporation (InterSense, Inc., 36 Crosby Drive, Suite 150Bedford, MA 01730,
www.isense.com). The wireless InertiaCube3 sensor is also an inertial 3-DOF @gree of Freedom)
orientation tracking system as the wired InertiaCube3 sensor. The main dierence between these
two sensors is that the wireless InertiaCube3 sensor can connect to the computer wirelésand it
allows up to 16 di erent channel selections [31]. It consists of a wireless IneiCube3 sensor and
an InertiaCube3 receiver which uses the same channel. The wireless InertiaCube3 sensodahe

InertiaCube3 receiver are shown in Figure 2.3.

9V

Battery Wireless

InertiaCube3

Figure 2.3 The components of the InterSense wireless InertiaCube3 Sensor

To get the orientation data from the wireless InertiaCube3 sensor, we attalh a 9 volt battery

to the wireless InertiaCube3 sensor and connect the receiver to the computer through a USB plor
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After that, we use the software \DeviceTool" provided by the InterSense companyto con gure the
wireless InertiaCube3 sensor and the InertiaCube3 receiver. The software will sezn for all linked
receivers and the paired wireless InertiaCube3 sensor. After the link is establishedhé green LED
on the battery will stay on steady. As said in [31], if the voltage is below 5.2 Volts, the green
LED will ash until the voltage goes back to at least 5.5 Volts. If the v oltage is below 4.5 Volts,
the communication will be disconnected. At last, we can use the same library ISENSIPDLL and
the same functions as the wired InertiaCube3 sensor to read the orientation datdrom the sensor

wirelessly.

2.2.3 STMicroelectronics LIS3LO2AL sensor

The third prototype uses a MEMS inertial sensor LIS3LO2AL produced by STMicroelectonics Cor-
poration (STMicroelectronics, 39 Chemin du Champ des Filles, C.P.21, CH 122 Plan-Les-Ouates,
Geneva, Switzerland, www.st.com). The sensor is shown in the middle of Figure 2.

The LIS3L0O2AL is a 3-axis linear capacitive accelerometer. Itis small, has lw power consumption
and has a bandwidth of 1.5 KHz.

Figure 2.4 shows the circuit design for a STMicroelectronics LIS3LO2AL sensor thawe built.
The design guide is taken from the user manual of the LIS3LO2AL sensor [16]. Aqwer supply
decoupling capacitor (100 F ceramic or polyester + 10 F aluminum) should be connected to the
Vdd leg of the device. The LIS3LO2AL allows to band limit Voyt,, Vour, and Vo, through the
use of external capacitors. The frequency range should be less than 1.5 KHz. The equatidor the

cut-o frequency (f;) of the external Iter is given using Equation 2.1:

1

f. =
t 2 Rout CIoad (x;y;z)

2.1)

Rout has a nominal value equal to 110k, so we can simplify the Equation 2.1 into Equation

2.2.

. C|ot;;4(€:<;§;2) izl @2

In our design, we have chosen a 22 nF capacity a8ioaq (X), Cioad (¥), and Cioaq (2), thus calcu-
lating from Equation 2.2, the cut-o frequency of the external lter is 66 Hz. We hav e also built the
test mode of the circuit. In Figure 2.4, if the wire from ST is connected to Vdd, it is in test mode;
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otherwise it is in normal mode. The nal STMicroelectronics LIS3LO2AL sensor circut is shown in

Figure 2.5.
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Figure 2.4 Circuit design for the STMicroelectronics LIS3LO2AL sensor

We have attached the LIS3LO2AL sensor to an analog input-to-digital 1/0 board in a computer.
We used the PCI-DASO08 produced by Measurement Computing Corporation (Measurement Gmput-
ing Corporation, 10 Commerce Way, Norton, MA 02766, USA, www.measurerantcomputing.com).
The analog input-to-digital I/O PCI-DAS08 board is shown in Figure 2.6.

The PCI-DASO8 is a multifunction measurement and control board designed to operge in com-
puters with PCI bus accessory slots. All hardware con guration options on the PA-DAS08 are
software controlled. There are no switches or jumpers to set [15]. The bodruses a 37-pin male \D"
connector. The main connector pinout of the analog input-to-digital I/O PCI-DAS08 boar d and the

connection with the STMicroelectronics LIS3LO2AL sensor are shown in Figure 2.7

2.3 Bite detection algorithm

The key ability of the bite detector device is to detect a bite in real time during a meal. In this
section, we describe the algorithm of bite detection. We have developed the bite detectioalgorithm
in Microsoft Visual C++ 6.0. Figure 2.8 shows the ow diagram of our bite det ection algorithm.
Before the loop, we initialize Bite _Count as 0 and two time parameters,T1 and T2, also as 0 where

T1 is the old time and T2 is the current time. When we update the time from the system, if the
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Figure 2.5 Circuit board for the STMicroelectronics LIS3LO2AL sensor
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Figure 2.6 Analog input-to-digital I/O PCI-DAS08 board
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Figure 2.7 Main connector pinout of the analog input-to-digital I/0 PCI-DAS08 board and the
connection with the STMicroelectronics LIS3LO2AL sensor
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current time is more than % second plus the old time, we replace the old time with the current
time and get one sensor orientation data from the sensor. After that, we handlehe bound problem,
then smooth the data, calculate the derivative data, and judge if a bite has happenedtahis speci ¢

time. If so, the parameter Bite _Count will increase by 1 and then we get the current time again.

Otherwise, we just get the current time again. All the steps are discussed in detailri the following

T1 T2 in seconds
T1=T2=0

Bite_ Count =0

I >< Get Time T2 <<

No
a Record in 60Hz

Yes

v
T1=T2

!

Get Orientation Degree

No ‘

Handle Bound Problem

}

Smooth Data

'

Calculate Derivative

Is this a Bite? Yes=p Bite_Count ++%

Figure 2.8 Flow diagram of bite detection algorithm

subsections.

2.3.1 Data collection and orientation selection

All data streams are recorded at 60Hz. We have observed that the sensor can updatée data at
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approximately 100Hz without any time control. The issue of data rate will be discussed more later

in the next chapter.

To record sensor data stream at 60Hz, the following algorithm is performed:

start = clock(); %time in milliseconds
data_count = 0;
loop:

update sensor data;

data_count++;

while ((clock() - start) < data_count * 1000 / 60);

Next, it needs to be decided which data is useful. For each meal, all three prototypeensors
can record the movement of the wrist in three orientations: pitch, yaw, and rdl. Figure 2.9 shows
the data of three orientations recorded by three di erent people on three di erent days 11-17-2007,
11-18-2007 and 11-24-2007 respectively. From Figure 2.9 the data look meagless in time domain,
so we perform the DTFT (Discrete Time Fourier Transform) of the original data to transfer the data
into frequency domain. The transformed data is shown in Figure 2.10. We can sefeom this gure
that although the DTFT of the original data is still very noisy, unlike the o ther two orientations, the
roll data has some peaks other than 0. For example, the rst subject has some peakaround 0.18
Hz, 0.24 Hz and 0.35 Hz, the second subject has a peak around 0.14 Hz and the third gebt has a
peak around 0.2 Hz. It means the subjects have rolled their hands periodically every feweconds.
From these data in frequency domain, we can make the hypotheses that although we canhdetect
a bite only depending on the orientation frequency, we can use the roll data while diseding the
yaw data and the pitch data to detect bites during a meal. As a result, we will only usethe roll

orientations to develop the bite detection in our algorithm.

2.3.2 Bound problem

Note that when the sensor records the orientation data, the orientation rangeis from 180 to
180 . If the data goes past 180, it will suddenly change to 180, and vice versa. Because of this,
the signal may be discontinuous. In order to smooth the data signal in the nextstep, we have to

transform this discontinuous signal to a continuous signal. We use a commoapproach (for example,
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Figure 2.9 Original pitch, yaw, and roll orientation data in three di erent meals recorded by the

InterSense InertiaCube3 sensor
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Figure 2.10 Discrete time Fourier transform of the original pitch, yaw, and roll orientation data in

three di erent meals recorded by the InterSense InertiaCube3 sensor
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[37]). Considering that a person cannot rotate his or her hand 180in a very short time (less than

0.1 seconds), a simple and e ective way is shown below:

if (R_t - R_(t-1) > 180)
new_R_t = R_t - 360;
else if (R_t - R_(t-1) < -180)
new R t = R_t + 360;
else

new R t = R_t;
Where R_t is the roll data at time t and R_(t 1) is the roll data at time t-1.

2.3.3 Smooth the roll data

As in Figure 2.9, the raw sensor data is noisy. To remove the noise, we havepplied a Gaussian-
weighted window. A normalized Gaussian distribution is shown in Figure 2.1. The midpoint of the
window corresponding to the peak of the Gaussian is centered on the current measuremeso that
only a half of a Gaussian distribution is used for smoothing. This half of theGaussian distribution
is marked as in Figure 2.11. Equation 2.3 shows how we compute the smoothed roll data. nl
this equation, O; is the original roll orientation measured at time t and S; is smoothed data at
time t, N is the Gaussian-weighted window size an®R is the Gaussian standard deviation. In our
implementation, the default value of N and R are 120 and 20 respectively.
X e Lmd-

= Otvi — 2.3
St - I E— (2.3)

e 2r?
x=0
2.3.4 Compute the derivative of smoothed roll data
Di erent people may wear the sensor at a di erent angle. If we use the absolute vale of the roll
data, it is di cult to de ne a bite period. Therefore, we compute the derivative of the s moothed

roll data. Using the derivative data, the behavior of rotation by di erent people will be the same.

The derivative is computed simply as the di erence between consecutive smoothed measurentsn

d=s st Q (24)
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The default value of Q is 120. To calculate the derivative data, we just simply use the Equation
2.4 whered; is the derivative data and s; is the smoothed data at time t. Because the defaulQ is 120
and our data collection frequency is 60 Hz, the value fod,=2 is the roll velocity (degrees/second).
In order to smooth the original roll data and compute the derivative of the smoothed roll data, the
computer must bu er the most recent Q measurements. The contents of the bu er are updated

after each new measurement, shifting out the previously stored oldest measurement.

2.3.5 Bite detection

We have discovered that while eating, the wrist of a person undergoes a charactetiis rolling motion

that is indicative of the person taking a bite of food. Referring to Figure 212, the roll motion
takes place about the axis extending from the elbow to the hand. We de ne a positive rth as
clockwise direction motion if viewed from the elbow looking towards the had, and negative roll as
a counterclockwise motion. This coordinate system is de ned for a right hand; the ame coordinate

system could be applied to a left hand but with the roll directions reversed.

Figure 2.12 Coordinate system for de ning wrist motion

The characteristic motion involves a cycle of the roll motion that contains an interval of positive
roll followed by an interval of negative roll. Figure 2.13 shows the baracteristics of the motion.
If the velocity of the roll is measured over time, then three events de ne the motion that cor-

responds to a bite. First, the velocity must surpass a positive threshold (10degrees/second in our

24



ZULVW
UROO
YHORFL
GHJ VH

VWDUW QH[W VYV

Figure 2.13 Roll motion corresponding to a bite
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gure). Second, a speci ed period of time must elapse (2 seconds in our gure). Third, the velaity
must surpass a negative threshold (-10 degrees/second in our gure). The detection of thedbree
events provides a strong evidence that a person has taken a bite of food.

This characteristic roll is important because it di erentiates wrist or arm motions caused by a
variety of activities, such as moving food around a plate or engaging in non-gimg-related activities,
from a motion that can be directly associated with taking a bite of food. The detection of this
characteristic roll is indi erent to the time taken between bites. Thus, we have discovered methods
to build an actual bite detector.

An algorithm for implementing the detection of a bite via the characteristic wrist roll can be

implemented as follows:

bite_start = 0
loop:
Let v_t be the measured roll velocity at time t
If v.t > T1 and bite_start = 0 then
bite_start = 1
Let s =t
If v.t < T2 and t-s > T3 then
Bite detected

bite_start = 0

The variable bite_start notes the rst event of the cycle of roll motion. The thresholds T1 and
T2 de ne the roll velocities that must be exceeded to trigger detection of the rst and second eents
of the roll motion. The threshold T3 de nes the interval of time that must elapse between the rst
and second events of the roll motion. In our default setting, T1 is 10 (degrees/second)T 2 is -10
(degrees/second) andT 3 is 2 seconds.

For a typical person, the positive roll happens when a person is raising foodrom an eating
surface (such as a table or plate) towards the mouth. The negative roll happens whethe hand
is being lowered, or when food is being picked up by ngers or placed on a utensil. The actlia
placing of food into the mouth usually occurs between the positive and negativealls. However,

even when a person does not follow this particular pattern, the cycle of motion (psitive to negative
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roll) is almost always witnessed during the taking of a bite of food. We preent data to support this
conclusion later.

Figure 2.14 shows three images demonstrating the two events de ning the roll motin corre-
sponding to a bite. In the rst image, the subject's wrist has exceeded the threshold forpositive
roll; in the third image, the subject's wrist has exceeded the threshold for negatie roll; the second

image shows the bite of food taken in between.

Figure 2.14 Images of a subject demonstrating the wrist roll events that corespond to eating a bite

Figure 2.15 shows the wrist roll data that was recorded simultaneously to theimages shown in
Figure 2.14. The square shows when the positive roll velocity threshold wa rst exceeded, and
corresponds to the image on the left. The right-most line shows when the negatés roll velocity
threshold was rst exceeded, and corresponds to the image on the right. The rectanglenibetween
those marks corresponds to when the subject rst placed food into his mouth, as showin the middle

image in Figure 2.14.

Figure 2.15 Wrist roll velocity over time, showing the events that correspad to eating a bite
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2.4 Video capture

A Canon HG10 video camcorder is used to record the meal. This enables the experimenter teview
the video with the synchronized sensor data after the meal. The camcorder is placed indnt of a
subject in order to capture the subject and the food he or she eats. The camcorder start® record
before the subject begins to eat. It keeps recording until the subject nishes eating. The \deo is

saved in a MTS le format and it can be transferred to a personal computer throuch a USB port.

2.5 Graphical user interfaces

Two user interfaces have been developed for this project. Both use the WIN32 API irMicrosoft

Visual C++ 6.0.

2.5.1 User interface of bite detection in real time

The rst user interface is used to display the raw sensor and the bite informationin real time. It
includes the bite counts and the bite speed, for instance bites per minute. It gives feedbackbaut
the amount of the food eaten to the subject. Figure 2.16 shows the interface wieave developed. On
the top is the time elapsed. When a bite is detected by the computer, the line in the axisricreases
by 1 and the total number of bites is shown on the line. In the middle part of the userinterface, it

gives the feedback of the bite speed (bites per minute) and the raw sensor data.

2.5.2 User interface of bite review

The second type of graphical user interface is used to review the stored informatn. This graphical
user interface is shown in Figure 2.17.

As shown in Figure 2.17, the lower part is the sensor data. The top left part § the corresponding
video. There are ve buttons beside the video, which are used to play forward, rewindpause and
stop the video. The instruction is on the top right part. The green square is the current point, the
blue rectangle is the manual bite detection and the red line is the automatic bite detedon by the
computer. The rst line in the right center section is the index of the sample data; it corresponds
to the point where the green square is. The second line is the corresponding time agding to the
green square and the third line is the value of the sensor data. The user interface bahree main

functions. We will discuss them in the following subsections.
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Figure 2.16 The graphic user interface to detect the bite information in real time

Figure 2.17 The graphic user interface to review the eating video and recorded data, dett the bite
o ine with regard to di erent parameter settings, and evaluate the bite detector
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2.5.2.1 Review the sensor data and the synchronized video

First, we must extract the frame from the video and show it on the user interface. Canon HG10
video camcorder was used to record the meal and the format of the video le is MTS, whie is the
AVCHD video le format. Because the publicly available library can only read MP EG-1 les, we
use the following steps to convert the MTS le to a MPEG format:

1. Use the software \Avchd_Convert_V5" to convert the MTS le to ve separate les (AC3,
AVC, DGA, PCM and AviSynth Script)

2. Use the software \VirtualDub" to convert these les to JPEG image sequence.

3. Use command \djpeg" in Linux operating system to convert JPEG image segence to PPM
image sequence.

4. Use command \ppmtompeg" in Linux operating system to convert PPM image sequence to
the MPEG-1 le.

5. Use the library \mpeg2raw" to display the frame of eating video (MPEG-1 format) on the
user interface. Note that the frame rate of the MPEG le is 30Hz after conversion.

Second, we must synchronize the sensor data and the eating video. In our experiment, theddo
camcorder has always been opened before we run the bite detection program, and we Ivalso ask
the subject not to move his or her hand before the bite detection program starts running To make
the video and the data synchronous, we should rst nd out a time where a video frame ispoint
to the corresponding sensor data. We watch the sensor data to nd out the rst time the sensor
data has some waves instead of a horizontal line, for example if it is th& th sensor data then we
watch the video and nd out which frame is the rst frame the subject move his or her hand, for
example, it is the F th frame. The F th frame and the S th sensor data we nd should be almost
synchronous. Note that video frame rate is always 30 Hz. Suppose that our recding sensor data is
T Hz (The default value is 60 Hz, but we can change the sample rate easily which wibe discussed
in the next chapter), thus the X th sensor data should correspond to theY th video frame where

Y can be computed by Equation 2.5:

_ T

Then we can review the video and the sensor data again. If we nd they are not synchronizing
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exactly, we just need to change the valuegF in a small range to nd the best consequence.

After synchronizing the video and the sensor data, we can play the eating video as menmtned
before. We have ve buttons on the right side of the video. From the left to the right, they are
fast back, slow back, start/pause, forward, fast forward. By pressing he fast back button, the video
goes back 10 frames; by pressing the slow back button, the video goes back 1 frarbg;pressing the
forward button, the video goes forward 1 frame; by pressing the fast forwadt button, the video goes
forward 10 frames. After clicking the buttons, the video will play, and the corresponding data in
the low part of the graphical user interface will also play. In addition, the sample index, the current

time and the value of the data shown in the middle right section will also beupdated.

2.5.2.2 Detect the bites o ine

We can run our bite detection algorithm o ine to review the bite counts or bite speed (bites
per minute). We can also change the record frequency and setting parameters in the guhical user
interface to improve our bite detector. The setting parameters including the Gaussia-weighted
window size, the Gaussian-weighted window variance, the derivation window size, thenierval of
time that must elapse between the rst and second events of the roll motion and the hresholds
which de ne the roll velocities that must be exceeded to trigger detection of the rst and second

events of the roll motion. The results will be discussed in the next chapter.

2.5.2.3 Mark the ground truth bites and evaluate the bite detector device

We can also manually mark the ground truth time of a bite taken. As mentioned in the rst
chapter, we de ne a bite as when a person puts food in his or her mouth. Because every second
has 30 video frames, it is hard to tell which frame is exactly the ground truth bite. In this thesis,
we de ne a reasonable way to mark the ground truth bite. For example, Figure 2.18 ad Figure
2.19 shows continuous 30 frames of a subject during his eating. The process includes thégct
picking up the food, putting the food in his mouth, eating it and putting the utensil down. We can
approximately tell that in frame 10, the food rst reached the subject's mouth and in frame 23,
the food rst left the subject's mouth which means from frame 10 to frame 22 the food is in the
subject's mouth. As a result, we mark the middle frame of 10 and 22 as the timavhcih a ground
truth bite happened. This frame is frame 16.

Using this method, we can mark all the ground truth throughout the whole eating proces. For
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Figure 2.18 Continuous frames of a subject during eating (part 1)
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Figure 2.19 Continuous frames of a subject during eating (part 2)
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each frame of the ground truth bite, we will input the corresponding sample index (inmilliseconds)
in sequence into a .txt le. If we nish this step, we can load the ground truth bite . txt le to see all
the actual times of bites during a whole meal. We can also use our evaluation methoih the next

section to calculate the sensitivity of the bite detector.

2.6 Evaluation of bite detection algorithm

We have also developed a simple evaluation to assess our bite detector; Firsye manually mark
the ground truth bites. Then, we calculate the correspondences of computer-detected wrist matih
cycles to manually marked bites taken. Figure 2.20 shows an illustration bhow detections were
classi ed. For each wrist motion cycle detected, a single bite taken within its cycle was classi ed as
a true detection. Any additional bites taken within that cycle are classi ed as undetected bites. A
wrist motion cycle detected in which no bites occurred is classi ed as a false detectio Sensitivity
of the device was calculated for each subject as Equation 2.6:

total true detections

sensitivity = . . 100% 2.6
y total true detections + total undetected bites 0 (2.6)

I ¥
Undetected ] Computer Detect

True Bitp

roll velocity
o

Figure 2.20 Methods for classi cation of computer detections versus actual bites
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CHAPTER 3

RESULTS

We have conducted trials to determine the accuracy of our invention. In our experimentshere
were 10 subjects for the preliminary test. They used di erent hands and di erent utensils. Eight of
them used their right hand to eat, and two of them used their left hand to eat. Five of them used
forks to eat, three of them used spoons to eat, and two of them used their ngers to eat.

The rst experiment tests the raw roll degree data recorded by both the InertiaCube3 sensor
and the STMicroelectronics LIS3L02AL sensor and compares both the noise and the perimance.
The second experiment measures the number of bites taken during the meal. The third expenient
calculates the average and variance of time between a bite period. It also meass the number
of times bite is taken between +/- roll or between -/+ roll. The fourth experimen t measures the
performance of the bite detector based on 10 subjects. The fth experiment will anafze the reason
for false detections and undetected bites. The sixth section will bring in 10 di erent bite patterns
to better evaluate a person's eating behavior. At last, we will try down-sanpling and setting the

new parameter due to the nature of the processor and the memory.

3.1 Comparison of InertiaCube3 sensor and STMicroelectronics LIS3LO2AL sensor

In the rst experiment, we test the raw roll sensor data recorded by both the InertiaCube3 sensor and
the STMicroelectronics LIS3LO2AL sensor. Both sensors were worn at the saménte, recording the
same motion. As can be seen in Figure 3.1, the data recorded by the STMicroelecmis LIS3L02AL
sensor is much noiser than the data recorded by the InertiaCube3 sensor. However, aftapplying
our methods for smoothing and calculating the roll velocity from the raw roll data, both signals are
almost the same. This demonstrates that a small STMicroelectronics LIS3L02ALsensor is capable
of detecting the motion events that corresponding to the motion of taking a bite.

To further verify our conclusion, we calculate the performance of our bite detector on hese two
di erent sensors. Table 3.1 shows the performance of our bite detector using Inert@ube3 sensor
and STMicroelectronics LIS3LO2AL sensor at the same time, recording the same mian. We nd
that the true bite detections and the undetected bites are the same. When the STMicroelectronics

LIS3LO2AL sensor is used, we detect three less false detections. That means even though teeorded
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Figure 3.1 Noise comparison between the InertiaCube3 sensor and the LIS3LO2Adensor
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raw roll data of the STMicroelectronics LIS3LO2AL sensor is much noiser than thelnertiaCube3
sensor, after applying our bite detection algorithm, the result is very close. Thisconclusion will

enable us to develop an embedded device in the future.

Sensor True detections False detections Undetected
InertiaCube3 62 12 11
sensor
STMicroelectronics 62 8 11
LIS3LO2AL sensor

Table 3.1 Performance comparison between the InertiaCube3 sensor and the STMicraetronics
LIS3LO2AL sensor

3.2 Number of bites taken during the meal

For the 10 people tested, we measure the number of bites taken during the meal. This numer varies
from 19 to 65. In order to evaluate our methods, we rst present data supporting the conclusion
that the taking of a bite of food can be characterized by the detection of the three notion events
as outlined in our methods. Table 3.2 shows the number of bites taken by each penspand the
relationships between bites taken and wrist roll cycles.

We can see from Table 3.2 that there are a total of 283 bites occurring 1:1 wltwrist roll cycle, 28
occurrences of> 1 bite in a wrist roll cycle, and 121 occurrences of 0 bite in a wrist roll cycle. This,
for 66% of the total roll cycles, exactly one bite occurs between a positive tband the subsequent
positive roll (a wrist roll cycle). For 6.5% of the total roll cycles, more than one bite occurs during
the cycle, and for 28% of the total roll cycles detected, no bites occur.

We can also see from Table 3.2 that there are a total of 347 bites for allte ten people. Thus, for
82% of the total bites, exactly one bite occurred between a positive roll and thesubsequent positive
roll (a wrist roll cycle). For 8.1% of the total bites, more than one bite occurred during the cycle,

and for 35% of the total cycles detected, no bites occurred.

3.3 Average value and variance of time between a bite period

Breaking it down further, Table 3.3 shows the statistics for the bites taken that corresponds directly
to the wrist roll cycles (the bites in column 3 of Table 3.2). As can be seen, therés a great deal
of variance on the time elapsed between the detected positive and negative roll rtion events. This

is why it is important to detect both events in order to verify a bite has been taken. However, the
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Bites occurring | Occurrences of| Occurrences of
Person | Total bites taken | 1:1 with wrist >1 bite in a 0 bites in a
roll cycle wrist roll cycle | wrist roll cycle
1 65 44 10 12
2 21 20 0 8
3 60 43 6 13
4 35 35 0 12
5 37 37 0 15
6 26 14 6 6
7 23 23 0 22
8 30 25 2 20
9 19 19 0 1
10 31 23 4 12
total 347 283 28 121
Average 34.7 28.3 2.8 12.1

last two columns of Table 3.3 show that in most cases the actual bite of foodsitaken between the

Table 3.2 Correspondence of wrist roll cycles to bites taken

positive and negative roll motion events.

Average and Average and Number of times | Number of times
Person | variance of time | variance of time bite is taken bite is taken
between +/- roll | between -/+ roll | between +/- roll | between -/+ roll
1 8.0 (57.32) 3.1(4.8) 40 14
2 8.7 (63.22) 5.8 (31.75) 14 6
3 7.9 (85.01) 4.9 (17.95) 44 5
4 4.3 (19.06) 8.5 (28.65) 31 4
5 6.3 (15.96) 4.3 (8.49) 35 2
6 9.6 (58.36) 3.7 (13.18) 17 3
7 7.0 (64.54) 8.8 (61.67) 19 4
8 4.0 (25.94) 9.0 (96.47) 21 6
9 6.2 (10.56) 3.9 (2.72) 19 0
10 6.7 (161.35) 8.0 (237.16) 18 9

Table 3.3 Statistics for single bites corresponding to wrist roll cycles

3.4 Performance of the bite detector

In order to evaluate the performance of our bite detector, we calculated the correspalences of
computer-detected wrist motion cycles to manually marked bites taken. Figure 2.20shows an
illustration of how detections were classi ed. For each wrist motion cycle detecéd, a single bite
taken within its cycle is classi ed as a true detection. Any additional bites taken within that cycle

are classi ed as undetected bites. A wrist motion cycle detected in which no bites occurredsi

classi ed as a false detection. Table 3.4 summarizes the performance of our bite dmdtor using these
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classi cations on the 10 subjects. The sensitivity of the device was 91% and onl9% of the actual

bites were undetected. In its current state, the device is sensitive, erring on the side ofver-detection.

Person | True detections | False detections| Undetected | Sensitivity
1 54 12 11 83%
2 20 8 1 95%
3 49 13 11 82%
4 35 12 0 100%
5 37 15 0 100%
6 20 6 6 77%
7 23 22 0 100%
8 27 20 3 90%
9 19 1 0 100%

10 27 12 4 87%

Table 3.4 Performance of our bite detector on 10 subjects

3.5 Reasons for false detections and undetected bites

Although the bite detector works quite well, we still want to nd out the reasons for the false
detections and the undetected bites. As a result, we reviewed the video and analyzed each bite of
these 10 subjects. Table 3.5 and Table 3.6 summarize the reasons for our faldetections and the

undetected bites.

Person 112 3|4 |5|6| 7| 89| 10| total
total false detections 1218|1312 156 |22]20| 1| 12| 121
grab the food, but don't eat 714|185 |14|2|16| 3 |1 2 62
do stu before the rst bite of the meal 1 1 3 5 10
use the napkin 2|6 11 4 23
rotate when resting 513]|1 11123 1 17
Sensor error 1 1
put down the utensil 1 1
for drink reason 3 3
rotate when eating 4 4

Table 3.5 Reasons for false detections

In Table 3.5 and Table 3.6, the rst column lists the reason for false detectons and undetected
bites, the following ten columns list the number of occurrence. From these two tableswe can see
that there are three main reasons for false detections. First, the subject grabthe food, but does
not eat it and puts the food back on the plate or container. Second, the subject uses a napkiwhile

eating. Third, after taking a bite, the subject tends to rest for a while before the nex bite, however,
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Person 1|23 |4|5|/6|7|8|9]| 10| total
total undetected bites 11{1|11|0|0|6|0(3|0]| 4 36
roll orientation doesn't rotate enough degrees| 3 1 3 2 4 13
bite more than once with one utensil's food 8 10 18
for drink reason 1 2 1 4
the rst bite of the whole meal 1 1

Table 3.6 Reasons for undetected bites

he or she keeps rotating his or her wrist during this period. All these three behaviorsill seem like
taking a bite to the bite detector so they will result in false detections. On the other hand, there
are two main reasons for undetected bites. First, a subject does not roll enough degrees dhy a
bite. In other words, a subject does not roll fast enough during a bite. Second, after the suleft
puts the food on the utensil, he or she does not eat all the food in one bite. Instead, he ghe bites
the food on the utensil several times until he or she nishes it. As a result, the bitedetector thinks

the subject only has taken one bite during the whole period.

3.6 Bite patterns

We have examined a set of \bite patterns” for our bite detector. Figure 3.2 shows he results. In
the gure, V" means when the subject raises his or her hand, \n" means when the subject puts
down his or her hand, \_____" means when the subject rests during the meal, and \*' means when
the subject takes a bite. We de ne a total of 10 patterns of the bites taken. They are:

1. The subject raises his or her hand, eats the food immediately, puts down his or her handd
rests for a while before the next bite.

2. The subject raises his or her hand, eats the food immediately, rests for a while, patdown his
or her hand and rests for a while again before the next bite.

3. The subject raises his or her hand, rests for a while, and then eats the food, after thaite, he
or she rests for a while again, puts down his or her hand and rests for a while befeithe next bite.

4. The subject raises his or her hand, rests for a while, and then eats the food, after thigite, he
or she puts down his or her hand and rests for a while again before the next bite.

5. The subject raises his or her hand, rests for a while, eats some of the food in theensil, rests
again, eats some more food in the utensil, after that, he or she rests for ahile again, puts down

his or her hand and rests for a while before the next bite.
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6. The subject raises his or her hand, eats the food immediately and puts down his or her hand
while still eating.

7. The subject raises his or her hand, eats the food immediately, rests for a whilend puts down
his or her hand after rest.

8. The subject raises his or her hand, rests for a while, and then eats the food, after thaite, he
or she rests for a while again and puts down his or her hand.

9. The subject raises his or her hand, rests for a while, and then eats the food, after thaite, he
or she puts down his or her hand.

10. The subject raises his or her hand, rests for a while, eats some of the food ohet utensil,
rests again, eats some more food on the utensil, he or she rests for a whilgain and then puts down
his or her hand.

From the gure, we can see that some patterns happen much more frequently than the dters.
For example, pattern 1, pattern 4 and pattern 6 occur almost% of the total bites among these ten
subjects.

On the other hand, di erent people have di erent patterns. For example, as for the rst per son,
58% of her patterns are pattern 1, pattern 6 and pattern 7. While for the second persn, 89% of
her patterns are pattern 1 and pattern 2. Table 3.7 shows the two or three most usegatterns for
each person and the percentage of these patterns. Analyzing these bite patterns whielp the bite
detector development in the future. As a result, we can consider to develop individual-oriergd bite

patterns to increase the percentage of true detections greatly.

Figure 3.2 Ten bite patterns for ten subjects taken the experiment
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Person | Most used pattern | Percentage
1 1,5,6 58%
2 1,2 89%
3 1,4,6 62%
4 1 79%
5 1,2, 4 78%
6 3,6,8 68%
7 4,6,9 78%
8 1,6 78%
9 1,8,9 68%
10 1,4 67%

Table 3.7 Most used patterns for di erent subjects

3.7 Down sampling and changing the default parameters of bite detection algorithm

Although our default parameter setting and sample rate works quite well in our bte detection,
these default settings are based on our hypotheses. There may exist other good paraters. More
importantly, the nal envisioned embodiment of our bite detector device is a sensorof small size
which is wearable. This means we want to embody a device that can easily and comtably be
worn on the wrist, similar to a wristwatch. If we down-sample and changesome default parameters,
we can use fewer bu ers in the memory, which will both increase the speed of our abgithm and
decrease the size of the memory on the device. Our default values are the following:

1. Sample rate is 60Hz.

2. Gaussian-weighted window sizeN = 120.

3. Gaussian standard deviationR = 20.

4. Derivative window size Q = 120.

5. Roll velocities that must be exceeded to trigger detection of the rst events of theroll motion
isT1=10.

6. Roll velocities that must be exceeded to trigger detection of the second events of theoll
motion is T2 = -10.

7. Interval of time that must elapse between the rst and second events of the rollmotion is T3
= 2 seconds.

Table 3.8 shows the comparison between down-sampling and our default 60Hz data reclng
rate. We also have to change some parameters settings. When we down-sample &Hiz, we choose

N =20,R=3, Q=20,T1=10, T2 =-10, and T3 = 2 seconds. The data in the parentheses is
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the result sampled at 60Hz. There are a total 304 of true detections when sampled &0Hz, and
311 true detections when sampled at 60Hz; there are a total 128 of false detectiomghen sampled
at 10Hz, and 121 false detections when sampled at 60Hz; there are a total 43 of unéeted bites
when sampled at 10Hz, and 36 undetected bites when sampled at 60Hz. The result is quite slar.

When sampled at 10Hz, there are only seven less true detections, seven more false detett and
seven more undetected bites. Thus, if we are bounded by limited memory and limited proessing in
the device, considering down-sampling and use of fewer bu ers is an alternative way that add still

perform relatively well. As shown above, it will not a ect the results much.

Person | True detections | False detections| Undetected

1 54(54) 10(12) 11(11)
2 20(20) 9(8) 1(1)
3 50(49) 13(13) 10(11)
4 35(35) 13(12) 0(0)
5 36(37) 15(15) 1(0)
6 21(20) 7(6) 5(6)
7 22(23) 22(22) 1(0)
8 23(27) 24(20) 7(3)
9 19(19) 0(1) 0(0)
10 24(27) 15(12) 7(4)

TOTAL 304(311) 128(121) 43(36)

Table 3.8 Bite detection result comparison between down sample rate and the defaub0 Hz sample
rate (in parentheses)
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CHAPTER 4

CONCLUSIONS

4.1 Results discussion

In this thesis, we introduce a device for detecting and counting bites of food taken by person during
eating. This device can help people who are overweight or obese to manage their bodeight. It
can also control people's eating rate and help people with eating disorder.

We have introduced three sensor prototypes we used in our experiment. They are basea the
wired InertiaCube3 sensor, the wireless InertiaCube3 sensor and the STMicroelectrars LIS3L02AL
sensor respectively. We have developed our bite detection algorithm and discussed ana&ation
method for our bite detector device. To give the feedback of bite counts in real time tahe subject
and to review the eating procedure, we have also developed two graphical user interfaces.

We have conducted several experiments based on the bite detector device we invented. We
compare both the noise and the performance recorded by the InertiaCube3 sensor and tI&TMi-
croelectronics LIS3LO2AL sensor. We also measure the number of bites taken duringné meal and
compute statistic results including the average and variance of time between a bé period. With the
evaluation method, we measure the performance of the bite detector, analyze the reas for false
detections and undetected bites and bring in 10 di erent bite patterns to better evaluate peoples
eating behavior.

The result is quite promising. All three prototypes can be used for motion meaurement; our
bite algorithm can decrease the e ect of the noise and detect the bites very well. The sensitity of
the device is very high, it can reach as high as 91%. Down-sampling also results good outcome so
that we can save both the resources of the processor and the memory. The reasonm false detections
and undetected bites and the bite patterns applied on di erent people will also help the reseash in

the future.

4.2 Future

In the near future, we will improve some defects in the proposed bite detector device. Fexample,

the video conversion method is not only complicated but also time consuming; we wdno nd
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an easy way to convert the video. Another aspect of the device that needs improvement ishé
bite detection algorithm. We notice that there is still some high percentage é false detection that
exists. To reduce the number of false detections and undetected bites, there are several thsxgiorth
considering. For instance, we can use other methods to smooth the raw data, such as Kean lter.
We can also apply more factors on bite detection. For now, we only depend on the rblelocities
that must be exceeded to trigger detection of the rst events, roll velocities that mugt be exceeded
to trigger detection of the second events, and the interval of time that must elape between the rst
and second events of the roll motion. In the future, we can add more critical factos such as average
value, variance, pitch data, yaw data and so on. We can also develop di erent pattens for di erent
people. We already notice that di erent people have speci ¢ patterns while eating, so his may be
also a very e cient way to improve the performance of the bite detector.

In long term, we would like to develop the second generation of the bite detector deviceThis
device will be similar to the rst generation device in a way that it will be f ully self-contained,
including an orientation sensor, onboard computing, memory storage, and batry. However, this
device will also contain a feedback mechanism (actuator) that the device can use to tiéy the user
of salient events. For example, during a period of eating, while the device is couintg bites, the
feedback mechanism could be used to alert the user that a speci ¢ count of bites has been reached.
The purpose of the second generation device is to enable testing automated feedback (basgabn
bite count) to users during eating. Similar to the rst generation device, this version will look much
like a watch. It will be wearable on the wrist, taken on and o in a manner similar to a watch. It
will have a simple on/o switch that the user is intended to toggle before and after eating a meal.
Although this device will likely be somewhat larger than the rst generation device, due to the
inclusion of a feedback mechanism, we will try to keep the size as small as pdds.

We will also develop desktop software that is intended for the user of a bite detear device. This
software will allow the user to periodically download data from the device b a desktop computer,
and store the data in a bite log. The user will be able to view his or her historyof bites taken over
a period of days, weeks, or months. Statistics will be calculated and graphedush as the total time
spent eating, the times of day when eating was monitored, and the relationship beteen the total
bites taken and days of the week. The goal for this software is to provide the e with long-term

information for motivational purposes, and to identify problem bite behaviors.
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