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ABSTRACT

In this project we research issues involved in the design of a robust automated
medical diagnostic system. We take a decision theoretical approach to diagnosis. We
construct a system to reason about the diagnosis of evidence obtained from a retinal
image. The beliefs used to diagnose the evidence are given by an expert physician, in
the form of probability values. In this study, we explore several theoretical questions.
We consider the use of three mathematical formulations in the reasoning process. We
explore the effects of three methods of evidence selection in the reasoning process. We
consider the possible responses of the system to the diagnostic question. We examine
the use of frequencies in place of expert given beliefs. Finally, we explore the case

difficulty of the images contained in our test set.
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CHAPTER 1
INTRODUCTION

In this work we construct an automated diagnostic system. The ultimate goal
of automating the diagnostic process is to achieve repeatable performance superior
to a human expert. For example, a system built by deDombal and his colleagues to
diagnose acute abdominal pain [4, 5] performed with an overall diagnostic accuracy
of 91.8%. This percentage was significantly higher than that of the most senior
member of the clinical team to see each case (79.6%). However, modern automated
systems only achieve superior performance when the diagnostic question is relatively
simple, such as a single present /absent question. In the more general case, where the
diagnosis may be one of tens or hundreds of possibilities, automated methods have
yet to achieve performance comparable to human experts.

In recent times the term decision support system (DSS) has replaced the term
expert system in the automated diagnostic literature [8]. The emphasis in the terms
denotes a subtle change in the goal of the work. Instead of replacing the human expert,
the system is intended to assist the expert. For example, a DSS could help a human
expert save time in some cases, by eliminating some possibilities. A DSS could also
review decisions and help eliminate potential errors. In the system built by deDombal
[4, 5] it was observed that the clinician’s own diagnostic accuracy improved while
using the system. However, a recent study by Elstein et al.[2] provides contrasting
evidence. They experimented with a system called ILIAD, developed at the University
of Utah, to determine if it affected the diagnosis reached by users with varying levels of
expertise. They found that in 70% of the cases the DSS did not change the diagnoses
concluded by the human experts.

In this work we pursue complete automation in a complex domain, recognizing
that we are as yet unable to achieve performance comparable to a human expert. Our

short term goal is to improve upon the potential for complete automation.



Automated diagnostic systems may be classified into three categories: case based
expert systems, model based expert systems, and evidential based expert systems.
A case based expert system or case based reasoning system is one where the system
solves a problem by trying to find previous cases matching the present one. This
solution can be seen as one driven by analogy. A model based reasoning system
summarizes the underlying mechanisms in the system in a model and uses the model
to solve a problem. An evidential reasoning system reasons from the evidence provided
to it. In this study we will look at the working of an evidential reasoning system.

Most of the early evidential diagnostic systems were heuristic in nature. The
process of diagnosis was guided by a set of rules formulated to model the problem
domain. One of the earliest heuristic diagnostic systems built was MYCIN [20],
a probabilistic expert system. Built in the 1970’s at Stanford, MYCIN diagnoses
and recommends treatment for bacterial infections of the blood. It approximates the
physician’s diagnosis in cases with partial information. MYCIN is coded in LISP. The
knowledge about the problem domain is represented in IF-THEN form. A certainty
factor is associated with each of the rules. It is a goal directed system that uses the
backward chaining procedure. MYCIN is unable to separate the knowledge contained
in the database from the results of the rule based chaining process. This leads to
inconsistencies in the database. There are other expert systems, like EMYCIN, PUFF
and NEOMYCIN [1], that were developed along the lines of MYCIN.

In recent times researchers have been exploring the use of decision theory as a
framework for knowledge representation and inference. Decision theory allows us to
describe evidence and reason about a decision. Probabilities are used to describe a
person’s beliefs. An expert system built using decision theory is also referred to as
normative expert system. An example of a normative expert system is Pathfinder [11].
It assists surgical pathologists with the diagnosis of lymph-node disease. Pathfinder
has knowledge of over 60 diseases and 100 disease findings. It uses similarity networks
to build the belief networks, and partitions to assess the probabilities associated with
the belief networks.

In this work we take a decision theoretical approach to diagnosis. We construct



a system to reason about the diagnosis of evidence obtained from a retinal image.
The beliefs used to diagnose the evidence are given by an expert physician, in the
form of probability values. In this study, we explore several theoretical questions.
We consider the use of three mathematical formulations in the reasoning process. We
explore the effects of three methods of evidence selection in the reasoning process. We
consider the possible responses of the system to the diagnostic question. We examine
the use of frequencies in place of expert given beliefs. Finally, we explore the case

difficulty of the images contained in our test set.
STARE

This thesis is part of the STARE project. The acronym STARE refers to STruc-
tured Analysis of the REtina. The ultimate goal of the STARE project is to create
a system that can automatically diagnose a retinal image. Additional goals for the
project include the capabilities to measure key features, to annotate the image con-
tents, and to compare manifestations in images of a subject taken at different times.

The STARE project was conceived and initiated in 1975 by Michael Goldbaum,
M.D., at the University of California, San Diego. Since then, over thirty people with
backgrounds in medicine, science and engineering have contributed to the project.
Images and clinical data have been provided by the Shiley Eye Center at the Uni-
versity of California, San Diego, and by the Veterans Administration Medical Center
in San Diego. The STARE project, including the work presented in this thesis, is
currently funded by the National Institutes of Health (U.S.A.).

An opthalmologist is a medical doctor who specializes in the structure, function,
and diseases of the human eye. During a clinical examination, an opthalmologist
notes findings that are visible in the eyes of the subject. The ophthalmologist uses
these findings to reason about the health of the subject, and to conclude a diagnosis
in the case of ill health.

The process of retinal imaging provides a permanent record of the patient’s eye
that can be consulted at any time for diagnostic reasoning. A retinal image is acquired

using an optical camera to see through the pupil of the eye to the rear inner surface



of the eyeball. A retinal image generally shows the optic nerve, fovea, surrounding
vessels, and the retinal layer.

Figure 1.1 shows an example retinal image. The optic nerve is visible on the far
left side of the image. In full color, the optic nerve appears bright red or white. The
blood vessels (arteries and veins) in the eye emanate from this spot. The optic nerve
supplies the retina with blood, and conducts visual stimuli to the brain. The image in
Figure 1.1 shows two findings that are important for diagnostic reasoning. First, there
are several lesions. These are the bright spots (yellowish in full color) in the center of
the image. Second, the blood vessels are very tortuous. This refers to their twisted
and winding appearance. The lesions and the tortuous blood vessels are evidence of
some abnormality. An ophthalmologist uses these findings from the observation of the
eye (or the retinal image) to reason about the health of the patient. The physician
then reaches a conclusion regarding the reason for the anomalies. In our example, the
findings of lesions and tortuous blood vessels might lead to a diagnosis of background
diabetic retinopathy.

Figure 1.2 illustrates the complete process of diagnosis as undertaken in the
STARE project. The three key steps are retinal imaging, image annotation, and
evidential-based reasoning. Other parts of the STARE project have concentrated
on the image annotation process. A few examples are [9], [12], [13] and [14]. This
thesis concentrates on the evidential-based reasoning process. We assume that the
information observable in the retinal images is available as input. This information is
identical to the findings that an ophthalmologist would note during a clinical exam-
ination of the eye. The main output of our system is a diagnosis that is formulated
to mimic the conclusion that an ophthalmologist would reach about the health of the

patient.

System Description

Our system is capable of making thirteen diagnoses. The thirteen diseases and
their abbreviations used in this thesis are listed in Table 1.1.

The presence of each of these diseases causes abnormalities to appear in the eye.



Figure 1.1 An example of a retinal image used for diagnosis.
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These abnormalities are referred to as manifestations. In our system we identified
thirty nine manifestations relevant to the thirteen diagnoses that are being considered.
Each of the manifestations is characterized by a set of discrete states. The number
of states can vary from two to seven depending on the manifestation. The first state
signifies the normal or absent state of the manifestation. The remaining one to six
states signify abnormal or present states of the manifestation in varying degrees of
severity. Table 1.2 lists two example manifestations, RPED and artery narrowing, to
illustrate how the states for a manifestation can vary. All thirty nine manifestations
in all possible states are listed in Appendix A.

The reasoning process of the physician is replicated by mathematical formula-
tions. In a clinical setup, the physician reasons about the abnormalities seen in the
image based on his past experiences. In order to mimic this reasoning process, the
physician’s knowledge about the relationships between the various diseases and man-
ifestations is modeled. This knowledge is tabulated in the form of a belief table. The
entries in the belief table are probability values, of the form P(M = S/D). Each
entry specifies the probability of the presence of a manifestation M in a state S given
the presence of a diagnosis D. The interpretation of a probability as a degree of belief
is referred to as the subjective or Bayesian interpretation. The mathematical formu-
lations we explore are therefore based upon the Bayesian approach to probability.

The process of observing the abnormalities in the retinal image is actually the
process of observing each manifestation’s state. This identification of each manifes-
tation’s state is referred to as the process of annotation. The ultimate goal of the
STARE project includes the capability to produce image annotations automatically.
In this thesis we use annotations that have been hand drafted by an expert physician.
These annotations allow us to focus on the diagnostic portion of the problem. They
also allow us to assume that we have an annotation process that works as well as can
be expected, so that any diagnostic error can be attributed entirely to the reasoning
process.

Figure 1.3 overviews our approach to the reasoning process. The first step is to

decide on the evidence to be used. This refers to the choice in manifestations to be



Diagnosis Abbreviation
1 | Emboli Emboli
2 | Branch retinal artery occlusion BRAO
3 | Cilio-retinal artery occlusion CRAO
4 | Branch retinal vein occlusion BRVO
5 | Central retinal vein occlusion CRVO
6 | Hemi-central retinal vein occlusion | Hemi-CRVO
7 | Background diabetic retinopathy BDR
8 | Proliferative diabetic retinopathy | PDR
9 | Arteriosclerotic retinopathy ASR
10 | Hypertensive retinopathy HTR
11 | Coats’ disease Coats’
12 | Macroaneurism Macroaneurism
13 | Choroidal neovascularization CNV

Table 1.1 List of the diagnoses that are recognized by our system and their
abbreviations used in this thesis.

Manifestation | States

RPED Absent

Present

Artery narrow | Normal

Focal,one or more segments
Moderate,branch or single
Moderate,global
Extreme,global

Table 1.2 Two manifestations and their possible states.

considered during reasoning. For example, we can use only those manifestations that
have been noted as present in some state in the annotation, or we could use both
the presence and absence of manifestations as diagnostic indicators. The topic of
evidence selection is discussed in Chapter 2.

Given a set of evidence, we explore three mathematical formulations to reach a
diagnostic conclusion. These three formulations are based upon the Bayesian proba-
bilistic approach. We discuss two known formulations, their drawbacks, and present
a third novel formulation. Chapter 3 discusses these three formulations.

The simplest output of our system is a single diagnosis from the set of thirteen di-
agnoses considered. However, in some cases there may be multiple diagnoses present,

or an unknown disease, or no disease at all. The topic of system response is discussed



in Chapter 4.

One way to obtain knowledge about a problem domain is to gather beliefs from a
physician. Obtaining these beliefs is time consuming, and potentially prone to errors.
Chapter 5 explores the alternative use of frequencies in place of expert beliefs.

Throughout this work we have assumed that the test images used for evaluation
are “good” examples of the thirteen diagnoses in our set. In Chapter 6 we explore
the classification of the “goodness” of our examples, and examine the performance of

our system based upon case goodness.

Related Work

Bayesian belief networks are being increasingly used as a knowledge representation
for reasoning under uncertainty. In 1990 Heckerman et al.[10], designed a normative
expert system, Pathfinder, which assists surgical pathologists with the diagnosis of
lymph node disease. The issues explored are the graphical representations of condi-
tional independence and the use of similarity networks and partition representations.
In 1995 Pradhan et al.[19], examined the effect of imprecision in the probabilities on
diagnostic performance in a Bayesian belief network. They examined the effect of
varying the mapping from qualitative frequency weights into numerical probabilities
and the effect of simplifying quaternary domains for manifestations to binary domains
on diagnostic performance. The noisy MAX and noisy OR formulations were used in
diagnosis.

This thesis applies a Bayesian belief network to the domain of retinal images.
To our knowledge, this is the first time that this medical domain has been explored
in automated diagnosis. We describe a novel formulation that outperforms the noisy
MAX formulation in our system. In addition to examining the diagnostic performance
based on these formulations, we also examine the effect of evidence selection, the use
of frequencies instead of beliefs and the system performance on diagnoses unknown

to the system.



Eye

Chapter 5
looks at
the
possibility
of using
frequencies
] instead of
Beliefs beliefs.
h 4
> Retina Evidence . System
Image Selection | Reasoning Response
v v v
Chapter 2
Chapter 6 discusses
discusses various Chapter 3
if the evidence discusses
imagesin the selection three Chapter 4
database are schemes mathematical looks at the
good and formulations desired
examples their effect used to system
of the onthe mimic responses.
ground system’s an expert's
truth ability to thinking.
diagnoses. diagnose.

Figure 1.3 Organization of this thesis.

10



CHAPTER 2
EVIDENCE SELECTION

Each disease can cause a particular set of manifestations to appear. The evidence
provided by all the manifestations observed, taken together, should indicate a unique
diagnosis. The problem of evidence selection is to decide which set of manifestations,
including those that are absent, should be used in the reasoning process.

Each manifestation is associated with a set of diagnoses that can cause that man-
ifestation. These associations can be represented using links. In our system the
number of links for a manifestation varies from one to eleven. Table 2.1 shows two
manifestations and their linked diagnoses. The links for all thirty nine manifestations

are listed in Appendix A.

Manifestation | Links
RPED CNV
CME CNV, NPDR, PDR, BRVO, CRVO,
Hemi-CRVO, Coats, Macroaneurism

Table 2.1 Two manifestations and their causal diseases.

The links between the manifestations and the diagnoses can be represented graph-
ically. Each of the thirty nine manifestations and the thirteen diagnoses is represented
by a node. Each link is represented using an arrow. The direction of the arrow shows
the direction of the dependence. This representation is called a directed graph. In
the domain of reasoning it is also called an influence diagram, or a causal network.

Figure 2.1 shows the influence diagram for one of the manifestations in our system,
ghost blood vessels. The ellipse represents the manifestation, and each of the rectangles
represents a diagnosis. In Figure 2.1, the two diagnoses emboli and CNV are not
connected to the manifestation. This implies that the presence of either of these two
diagnoses does not, cause the manifestation ghost blood vessels.

Figure 2.2 shows the influence diagram for all thirteen diagnoses and all thirty

nine manifestations in our system. The complexity of retinal diagnosis is apparent
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in the density of the links'. This complexity is largely due to the fact that a single
manifestation may be caused by multiple different diagnoses.

In Figure 2.1 and in Figure 2.2, the states of the manifestations have not been
represented. Each of the manifestations is assumed to be either absent (normal), or
present in one of its abnormal states.

We constructed our influence diagram using the assumption of causal indepen-
dence. This assumption implies that no manifestation can cause another manifes-
tation; only a diagnosis can cause a manifestation. This assumption simplifies the
design of the automated system.

Additional diagnoses and manifestations can be added to our system so long as the
assumption of causal independence is held. The methods we describe herein should

scale nicely to hundreds of diagnoses, although we have not tested this hypothesis.

Choice of Evidence

In any image, each manifestation may be said to have a specific state, whether
absent or present. The entire set of specific states of manifestations is referred to
as the evidence. The evidence comprises the input to the system. The evidence
presented to the system is specific to each individual image.

We consider the evidence in three different contexts: all, linked and annotated.
Fach context defines a different subset of the total evidence. In the context of all
evidence, a specific state for every manifestation is considered during the reasoning
process. In the context of linked evidence, only those manifestations which might be
caused by each disease contribute to the consideration of the presence of the disease.
The fact that an unrelated manifestation is absent is not considered. In the context
of annotated evidence, only those manifestations which might be caused by each
disease, and are annotated as present, contribute to the consideration of the presence
of the disease. The fact that an unrelated or related manifestation is absent is not

considered.

!There are hundreds of unique diagnoses of the retina, so that even our influence diagram for
thirteen diagnoses does little justice to the complexity of the problem.
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Figure 2.1 Influence diagram for a single manifestation (ghost blood vessels).
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We explore the contexts of linked and annotated evidence to determine if a nar-
rower view of the available evidence improves diagnosis. We hypothesize that in some
cases, considering all the evidence “overloads” the system. In some cases a narrower
focus may improve the overall diagnostic ability.

Figure 2.3 demonstrates the three contexts of evidence. In this example, the
manifestations inner retinal infract, cherry red spot, artery color and cotton wool spots
are observed to be present. Two of the relevant diagnoses (emboli and ASR) and their
links are pictured. Using the context of all evidence, all thirty nine manifestations
are considered while diagnosing the image as having either emboli or ASR. Notice
that thirty two of the manifestations are not linked to either diagnosis, so that their
usefulness in distinguishing between the two given diagnoses is questionable. Using
the context of linked evidence, only the manifestations cotton wool spot, inner retinal
infract, cherry red spot and emboli are considered to find the belief in the presence of
emboli. Similarly only the manifestations artery color, bv specular reflex, av change
and cotton wool spot are used to find the belief in the presence of the diagnosis ASR.
We observe that although the manifestations cotton wool, emboli, bv specular reflex
and av change are not present in the given image they will still contribute to the
reasoning process.

Using the context of annotated evidence, only the manifestations linked to each
diagnosis, and observed to be present, are considered to determine the belief in the
presence of the diagnosis. In our example, only the manifestations cherry red spot
and inner retinal infract are used to diagnose the presence of emboli. This is because
these are the only manifestations that are present and are also linked to the diagnosis
emboli. Similarly only the manifestation artery color is used to diagnose the presence
of ASR. This is because it is the only manifestation that is present and is also linked
to the diagnosis ASR.

Throughout this work we consider all three contexts of evidence. Chapter 4

presents the specific results of how well our system performs using each context.
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Figure 2.3 An example influence diagram. The manifestations inner retinal infract,
cherry red, artery color and cotton wool spots are observed as present in some state.
The evidence can be considered in three contexts: all manifestations, only those
linked, or only those present.



CHAPTER 3
FORMULATIONS FOR DIAGNOSIS

This chapter discusses three mathematical formulations to mimic reasoning. The
reasoning problem involves examining the evidence provided in order to conclude a

diagnosis. The process of diagnosis can be formalized as

Dout = F(P(M = S/D), Mipu) (3.1)

where D,,; refers to the diagnostic output of the system, or system diagnosis. The
knowledge used during reasoning is given by probability values P(M = S/D). Each
P(M = 8/D) is the probability of a manifestation M being present in state S given
a diagnosis D. The evidence used during reasoning is given by an annotation file
Mipnput, which describes the state of each manifestation in a given image. The function
F' denotes the mathematical formulation used to process the evidence to conclude the
output diagnosis.

Using Equation 3.1, the diagnosis in part depends on the probability values given
in a belief table?. The use of probabilities to express beliefs is a Bayesian technique.
Bayesian techniques are popular in the field of automated medical diagnosis (see for
example [6, 10, 11, 18]). In the next section we look at the Bayesian approach and
its applicability to our system.

Baye’s Rule

The Bayesian treatment of beliefs is based upon conditional probability. Whenever
a statement of the probability of an event is given, denoted P(A) , it is conditioned by
other known factors. For example, the belief that “Given the event B, the probability
of the event A is 27 is written as P(A/B) = .

In the formulation of our diagnostic system the values in the belief table are given

by P(M = S/D). They represent the probability of manifestation M being in state

2For now, it is assumed that the belief table is supplied by a human expert. Chapter 5 discusses
this issue in detail.
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S given the presence of diagnosis D. Since the beliefs in our system are conditional
probabilities, we explore the application of Bayes’ Rule to the reasoning process.

Bayes” Rule is based on conditional probability and is derived from
P(A/B)x P(B) = P(A, B) (3.2)

where P(A,B) is the probability of the joint event A and B. By symmetrically substi-

tuting B and A in Equation 3.2 we may write
P(A,B) = P(A/B)* P(B) = P(B/A) x P(A) (3.3)

Solving for one of the conditional probabilities in terms of the other yields Bayes’

Rule
P(A/B)* P(B)
P(A)

By letting B represent a diagnosis D and A represent a manifestation M, Bayes’

P(B/A) =

(3.4)

Rule can be applied to our system as follows:

P(M/D) x P(D)

P(D/M) = =545

(3.5)

The term P(M/D) represents the belief about the presence of the manifestation
M given the disease D, and is known a priori. The term P(D) represents the belief
about the presence of the disease in the population, and is known a priori. The term
P(M) represents the belief about the presence of the manifestation in the population,
and is known a priori. Equation 3.5 concludes the presence of the disease given the
manifestation, represented by the term P(D/M).

Equation 3.5 considers only one diagnosis. The formulation can be expanded to

consider multiple diagnoses as follows:

P(DZ/M) _ P(M/Dz) * P(Dz) (3.6)

- P(M/D,)

where ¢ = 1...I refers to each one of the total I diagnoses being considered. Note

that there is a different and unique output belief P(D;/M) in the presence of each
diagnosis. Since multiple diagnoses are being considered the total probability of the

presence of manifestation M is given by the sum of the probabilities of its presence
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given all the I different diagnoses. This sum of probabilities is denoted in Equation
3.6 by the denominator term.
Equation 3.6 considers only one manifestation as evidence. The formulation can

be expanded to include multiple manifestations as evidence.
J
[T, P(M;/Dy)| + P(Dy)

Hj:l Zizl P(Mj/Dm)
where j = 1...J refers to each of the total J manifestations being considered. Since

P(D;/M;) = (3.7)

multiple manifestations are being considered the total probability of the presence of
the set of manifestations M is given by the product of the probabilities of each of
the individual manifestations ;. Both the numerator and denominator terms in
Equation 3.6 contain products.

Finally, Equation 3.7 assumes that each manifestation can be present in only two
states, absent or present. In our system each manifestation can take on an arbitrary
number of discrete states. For each manifestation j let k represent the state of the
manifestation. Then the formulation can be written as follows:
([T]2 P(M; = $/Dy)| + P(D)

Hj:l Zizl P(Mj = Sk/Dy)

where k = 1...K; refers to each of the total K states of the j* manifestation. This

P(D/M; = 5) = (3.8)

formulation can be interpreted to mean that the probability of a diagnosis being
present given a manifestation in a particular state is equal to the probability of the
manifestation in that particular state given the presence of the diagnosis multiplied
by the apriori probability of the diagnosis and scaled by the overall probability of the
manifestation being in that particular state given all of the I diagnoses.

Equation 3.8, based upon Bayes’ Rule, provides a method to compute a belief in
each of the I diagnoses. The I values represent the system’s beliefs in each of the I
diagnoses, where the largest belief could be chosen to indicate the system diagnosis.
Strict application of Bayes’ Rule as derived above is problematic. We can identify
three problems:

1. The belief table typically contains many zeros. This is because the physician

believes that certain manifestations would never appear given a particular disease.
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Equation 3.8 is a multiplicative combination of all the evidence. If the evidence
presented to the system has even one manifestation with a zero conditional prob-
ability, it can invalidate the evidence provided by the other manifestations. For
example, suppose that it is believed that emboli never causes manifestation Mjz, so
that P(Ms/emboli) = 0. If the evidence considered includes manifestation Mjz, then
P(emboli/M;ppe) = 0.  This problem has also been referred to in the work on
Pathfinder. Heckerman states that “... the expert was too cavalier when assigning 0
to the probability of many events. In preliminary evaluations of Pathfinder, we found
that over 10 percent of the cases were diagnosed incorrectly, because the correct dis-
ease was ruled out by a feature that was unlikely (but not impossible) to be seen in
that disease....”[10, pg. 106]. To overcome the presence of the zeros in the belief table
we substitute all zeros with a very small non-zero number.

2. A patient may have multiple diseases or conditions. Roughly one-third of
the images in our test set have more than one ground truth diagnosis. This implies
that multiple diagnoses could influence the manifestations present in a retinal image.
Equation 3.8 does not account for the influence of multiple diagnoses on the presence
of a manifestation. We explore using the noisy MAX formulation [19] to determine
the probability values for a manifestation given multiple diagnoses. The noisy MAX
formulation allows the propagation of the influence of multiple diagnoses on a partic-
ular manifestation. The noisy MAX formulation also allows us to find the probability
values for the presence of two or more diseases. We will look at this formulation in
detail in the next section.

3. The belief table consists of a large quantity of values (1,469 in our sys-
tem) whose relative ratios are assumed to be globally uniform. For example, if
P(M3/Dys) = 0.3 and P(Mss/D4) = 0.3, then these beliefs are assumed to be
equal. However, as an expert fills such a table, we believe that the relativity varies.
In the work on Pathfinder they found that “ .... the expert was not comfortable with
many of the probability assessments that he provided ... Specifically, he assessed the
probability matrix required by the simple Baye’s model, p (feature/disease, x) for all

diseases and features, by fixing a disease and assessing probabilities across all features.
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In an analysis that followed the completion of the knowledge base, we found that he
strongly preferred making assessments by fixing a feature and assessing probabilities
of that feature across all diseases....” [10, pg. 106] . We explore a novel formulation,
which we call normalized sums, to disregard the assumption of global relativity in
the belief table. This formulation is explained after the description of the noisy MAX

formulation.

Noisy MAX

The presence of the manifestations in an image need not be a result of just one
disease. The manifestations could be the result of multiple diseases. Each of the val-
ues in the belief table is the probability of a manifestation given a single disease. In
accounting for the presence of multiple diagnoses we need to find the combined prob-
ability values for all the manifestations in all the possible states, given combinations
of diseases.

There is a disjunctive interaction between the manifestations and the multiple di-
agnoses causing the manifestations. Disjunctive interaction occurs when any member
of a set of conditions is likely to cause a certain event and this likelihood does not
diminish when several of these conditions prevail simultaneously. For example if a
retinal image has diseases emboli and BRAQO, then the likelihood of observing the
manifestation emboli is increased. This is because both the diseases are causes for
the presence of the manifestation emboli. If the same retinal image also has diagnosis
CNV, a diagnosis that does not cause the manifestation emboli, then the probability
of observing the manifestation emboli is not altered. In [3] and [18] a mathematical
model called noisy OR is described to compute disjunctive interactions.

The noisy OR is a model of probabilistic causal influence between a binary effect
variable and a set of binary variables that represent its causes. In our problem the
effect variable, the manifestation, is not a binary variable. Therefore we use the noisy
MAX formulation that is a generalized version of the noisy OR. The noisy MAX
formulation accounts for the multiple states of the manifestations. This formulation

has been looked at in detail in [19]. This formulation is also used by the commercial
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software package Hugin [16] to propagate beliefs in a causal network.

In this work the noisy MAX formulation is used to evaluate the probability of a
manifestation in a particular state under the influence of multiple diagnoses. These
combined probabilities are denoted as the noisy MAX probabilities. The noisy MAX

formulation for two diagnoses D, and Dy is

P(M = Sp/Da&Dy) = | Y P(M =S,/Da) = Y P(M=5,/Dp)| —A  (3.9)

n=0 n=0

A =P(M = Sj_1/D.&Dy)

where k represents the state of the manifestation for which the combined probability
is being found. The terms ZZ:O P(M = S, /D) and ZZ:O P(M = S,/D,) represent
the sums of the probabilities for a range of states. These terms require that the states
be ordered in increasing severity, from normal (absent) to the worst case of abnormal
(present).

The noisy MAX formulation is recursive. The term A in Equation 3.9 represents
P(M = Sk_1/D,&Dy), the joint probability of the manifestation in its next less severe
state. For the least severe case, when k£ = 0, the term A = 0.

In order to calculate the noisy MAX probabilities we must consider all the possible
combinations of diseases. In our system we consider thirteen diagnoses, so that in
theory there are Zf’:l x! disease combinations. However, not all of the diagnoses in
our system can occur with each other. The diagnoses that are mutually exclusive are
shown in Table 3.1

By eliminating combinations containing mutually exclusive diagnoses, we obtain
867 possible diagnosis combinations. The maximum number of diagnoses in any
combination under these conditions was found to be seven for our system. Equation
3.9 can be expanded to compute the joint probability of a manifestation in a particular

state given an arbitrary number C' of diagnoses as follows:

k

P(M = S/{D}) = |[[D_ P(M = S,/D.)| — A (3.10)

c=1 n=0
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Diagnosis Pairs
BRAO and CRAO
BRVO and CRVO
BRVO and Hemi-CRVO
CRVO and Hemi-CRVO
BDR and PDR
6 | Coats and Macroaneurism

QY = | W DN —

Table 3.1 List of incompatible diagnosis pairs.

A=P(M = Sy1/{D})

where {D} represents the set of C' diagnoses in the combination, and D. represents
each member of the set {D}.

Equation 3.10 yields 867 probability values indicating the beliefs in the 867 diag-
nosis combinations. These output beliefs could be interpreted individually, but the
large quantity of numbers clouds distinction. Instead, we combine these 867 values
into thirteen values, where each value represents the belief in a single diagnosis. This
combination is done by summation as follows

867

P(D;/M = S) ~ Z:; (])D(w}“’/M = 51) ii gz €¢{{DD}fm (3.11)

where D; is each of the thirteen singular diagnoses and D, is each of the 867 sets
of combinative diagnoses. The resulting sum is no longer a probability which we
emphasize by using the similarity operator in Equation 3.11. However, the concept is
similar, so we maintain the notation P(M = Si/D;) to represent the system output
values.

The noisy MAX formulation is computationally expensive. Since it involves com-
puting all the possible diagnosis combinations, the computational complexity grows
exponentially as the number of diagnoses is increased. It is also unclear to us how to
improve upon our output combination scheme. In this scheme the final belief in the

presence of a diagnosis is increased if it occurs in many diagnosis combinations.
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Normalized Sums

The values in the belief table are assumed to be globally relative. As an expert fills
a belief table, it is assumed that the relative ratios between all values are consistent.
Given the quantity of values in a belief table, we question this assumption. It can take
hours for an expert to fill a belief table of the size used in our system. In addition, an
expert is typically not used to thinking about all possible manifestations and causes
in a single global scale. We develop the following approach, which we call normalized
sums, to disregard the assumption of global relativity in the belief table.

There are two steps involved in calculating the normalized sums values. In the first
step the probability values given in the belief table are normalized. The normalization

is done independently for each state of each manifestation across the set of diagnoses:

P(M = 5/D;) = ||[P(M = S/Di)|| (3.12)

This normalization preserves the relativity across all diagnoses for each manifes-
tation state. We believe this most closely resembles how the expert perceives the
importance of relativity when filling the belief table. The belief values are normalized

on a scale from zero to one. The normalization is done as follows:

P(M = S/D;) —min; (P(M = S/D;))
max; (P(M = S/D;)) — min; (P(M = S/Dy))

|P(M = 5/Dy)l| = (3.13)

where max; (P(M = S/D;)) is equal to the maximum of the belief values for manifes-
tation M in state S across all ¢ diagnoses. Similarly min; (P(M = S/D;)) is equal to
the minimum of the belief values for manifestation M in state S across all i diagnoses.

The following example demonstrates the normalization. In this example there is
a manifestation M which has two states S; and S;. The original belief table for this

manifestation is as follows:

Manif Diagnoses

M Dy | Dy | D3 | Dy| Ds | Dg | D7 | Dg | Do | D1g | D11 | Drg | Das
Sy 03] 1 |1 [ 1]07[08] 1] 1]1 1 1 1 1
S 07,01 0| 01]025/02 01| 010 0 0 0 0

Consider the manifestation M in state S;. Using Equations 3.12 and 3.13 the

normalized probabilities P(M = S,/D;) are computed. For M = S;, the maximum
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P(M = S,/D;) = 1 and the minimum P(M = S;/D;) = 0.3. Using Equations 3.12
and 3.13 the normalized values || P(M = S1/D;)|| become

Manif Diagnoses
M Dy | Dy | D3| Dy| Ds | Dg | Dy | Dg | Dy | Dig | D | D1a | D13
Sy O 1|1 |1(064]071] 1| 1]1 1 1 1 1

This procedure is repeated for the manifestation in state Ss. The new belief table

for manifestation M now looks as follows:

Manif Diagnoses

M Dy | Dy | Dy | Dy | Ds | Dg | Dy | Dy | Dy | Dy | D | D1a | Dy
Sh 0|1 11064071 1111 1 1 1 1
S 171010} 01(036(029| 0] 0] O 0 0 0

The normalized values are no longer strictly considered as probabilities. Instead,
we view them as indicators or contributors towards a causal diagnosis. In this sense,
the more contributors found in a given image, the higher the belief in a particular
diagnosis. This concept can be formalized as follows:

P(D;/M; = 8) « iP(Mj = S/D;) (3.14)

=1

where P(D;/M; = S) is the system output value for each diagnosis. This term is no
longer a probability, which we emphasize by using the similarity operator in Equation
3.14. However, we maintain the notation P(D;/M; = S) to indicate that the result
is similar to the belief in diagnosis given a set of evidence.

The following example demonstrates the formulation. In this example there are
two manifestations M; and M, both of which are in state S;. The belief table for

the two manifestations is as follows:

Manifs Dl Dg D3 D4 D5 D6 D7 Dg Dg DlO Dll D12 D13
My=S5,1041 0] 0| 0]01]05] 0] 0] O 0 0 0 0
My=S,1081 0] 0| 0]03]02]01] 0] O0 0 0 0 0

Since both the manifestations are present in state S,, only the belief values for
the two manifestations in that particular state are considered. The first step is to
find the normalized probability values. These are calculated similar to the example

shown above. For this example the normalized probability values are as follows:
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Manifs D1 D2 D3 D4 D5 _D6 D7 Dg Dg D10 DH D12 D13
My=S,108 0| 0| 0] 02 1 0(01]0 0 0 0 0
My= 55| 1 0|1 01] 0103870250 071]O0 0 0 0 0

These values are then used to calculate the normalized sums values. In this case
the normalized sum for each diagnosis is found by adding the normalized probability

values for manifestations M; and M,. The normalized sums values are as follows:

Normalized sums for the thirteen diagnoses
Dy | Dy | D3 | Dy | Ds | Dg | D7 | Dg | Dy | Dy | Din | Dia | D1
1.8/ 0| 0] 0 058125 0| 0] O 0 0 0 0

In this case diagnosis D; is the most likely diagnosis. Again note that these

numbers are no longer probability values. They do not range between zero and one.

Conclusions

In this chapter we have looked at three formulations to reason about the given
evidence. The formulations based upon Bayes’ Rule and the noisy MAX operator have
been implemented based upon known works. We have reviewed these two formulations
and examined their relevance to our system. The normalized sums formulation is to
our knowledge novel. We have been unable to find this approach in the existing
literature. In the next chapter we report the performance of these three formulations

in our system.



CHAPTER 4
SYSTEM RESPONSE

The goal of this work is to be able to identify the thirteen diseases under consid-
eration. However, the response of the system will not be a unique selection of the
thirteen possible diseases. It is possible for more than one disease to appear simulta-
neously in the retina. Therefore the response of the system will be a set of diagnoses,
naming one or more diseases.

In addition, we explore cases where the retinal image exhibits a disease outside
the thirteen diseases known to the system. In some cases, the image may exhibit one
disease that is known to the system, and one disease that is unknown to the system.
We explore the potential for the system to be able to recognize these unfamiliar or
partially familiar cases.

We also examine the normal case, where the retinal image exhibits no disease.
Although this case is not modeled in our belief table, we discuss possible methods to
diagnose an image as normal using heuristics based upon our formulation.

Finally, there is one more system response of interest. The system may be unable
to make a decision, in this case responding “I don’t know”. We did not pursue this
response in this thesis, but we note it here for the sake of completeness.

Figure 4.1 summarizes these possible system responses. This chapter details meth-
ods to compute these responses, and provides results on a set of test images. The
complete test set consists of 354 images, and is fully described in Appendix A. Vari-
ous experiments reported in this chapter make use of different subsets of the available
images. The importance of each subset and the criteria for selecting the relevant

images is discussed in each section.

Familiar Diagnoses

The primary response of the system is a set of one to three diagnoses from the

set of thirteen diagnoses that are familiar to the system. The range of one to three
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diagnoses was chosen based on the expert’s diagnoses of our test images. Out of 354
images, 250 had one diagnosis, 91 had two diagnoses, 13 had three diagnoses and one
had four diagnoses, which was the highest number of diagnoses per image.

The reasoning formulations presented in Chapter 3 result in thirteen values, one
for each of the thirteen familiar diagnoses. Each value is an indicator of the strength
of the belief in the presence of the disease, where a higher value indicates a stronger
belief. These values may be considered as belonging to two sets, where one set
indicates the diagnoses responsible for the evidence observed in the retina and the
other set indicates the diagnoses not related to the evidence observed. In order to
compute the separation of values into two sets, we apply Fisher’s linear discriminant
test. Appendix B reviews Fisher’s test and details its application to our system.

Of the 354 images in our test set, there are 198 images with all the ground truth
diagnoses within the set of thirteen recognizable diagnoses. These are referred to
as the familiar images. These images are used to test the ability of our system
to correctly diagnose familiar cases. Of these 198 images, 43 images have multiple
ground truth diagnoses.

We tested all three formulations to reason about the evidence discussed in Chapter
3. The evidence is considered in the three contexts of all, linked and annotated, as
discussed in Chapter 2. Crossing the formulations with the contexts of evidence yields
nine total system tests.

The system performance is evaluated in terms of diagnostic accuracy. The accu-
racy is measured by comparing the system diagnoses with the ground truth diagnoses.
We define two measures of accuracy as functions of the overlap between the ground

truth and system diagnoses. Formally, let GT={D,,,....} and MS={D,,, ...}, where

15
GT represents the set of ground truth diagnoses and MS represents the set of system
diagnoses. The system diagnosis is considered a match if GTNMS # @. The system
diagnosis is considered a perfect match if GT' = M S.

Results

The results of applying the three formulations in the three contexts of evidence

to the set of 198 images are shown in Table 4.1. The entries summarize the system
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performance in percentage of images matched.

Bayes’ Rule | Noisy MAX | Normalized sums
All Evidence 1% 63% 70%
Linked Evidence 7% 30% 22%
Annotated Evidence 7% 36% 75%

Table 4.1 Summary of system performance using the match criterion.

Bayes’ Rule | Noisy MAX | Normalized sums
All Evidence 0% 20% 15%
Linked Evidence 0% 0% 5%
Annotated Evidence | 0% 10% 23%

Table 4.2 Summary of system performance using the perfect match criterion.

Conclusions

An examination of Table 4.1 and 4.2 shows that the normalized sums formulation
out-performed the noisy MAX formulation. Although this result is for only one system
in one problem domain, it does offer empirical evidence to support our philosophical
reasoning about the nature of the belief table.

The normalized sums formulation showed a higher recognition rate in the context
of annotated evidence than in the context of all evidence. The noisy max formulation
did not show a similar performance ratio. This shows that the normalized sums
formulation is designed to make the most of positive indicators (evidence), while it
gains little from considering negative (absent) indicators.

The performance of the noisy MAX formulation in the context of all evidence and
the normalized sums formulation in the context of annotated evidence are broken
down by diagnosis in Table 4.3. These two systems were selected because of their
better performance. An examination of Table 4.3 shows that the performance varies
across the diagnoses. It is also interesting to note that the performance of the two
systems on a particular diagnosis is similar. For example both systems have high
recognition rates for CNV and low recognition rates for Emboli. The reason for

this variation has not been studied in detail. One reason might be the lack of good
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examples for certain diagnoses. Some diagnoses in our test set are only found in
images with multiple diagnoses. This might make it harder for the system to detect
these diagnoses. This possibility could be studied further in future work.

The perfect match criterion shows that our system is far from optimal. The best
system performance using the basic match criterion is 75%. The system is able to
recognize at least one of the diagnoses indicated in an image three out of four times.
However, the best system performance using the perfect match criterion is 23%. The
system is able to recognize all the diagnoses indicated in the image, with no extraneous

diagnoses, in only one out of four cases.

Diagnosis Formulations

Noisy MAX Normalized sums
All Evidence | Annotated Evidence

Emboli 15% 8%

BRAO 86% 1%

CRAO 50% 38%

BRVO 9% 18%

CRVO 64% 88%

Hemi-CRVO 50% 75%

BDR 60% 74%

PDR 67% 1%

ASR 29% 42%

HTR 33% 23%

Coats 57% 79%

Macroaneurism | 50% 88%

CNV 91% 100%

Table 4.3 Performance of the formulations by diagnosis.

Unfamiliar Diagnoses

In this section we consider the problem of recognizing retinal images exhibiting
diseases outside our set of thirteen diagnoses. Of the 354 images in our test set,
there are 56 images with all the ground truth diagnoses outside the set of thirteen
recognizable diagnoses. These images are referred to as unfamiliar images. There
are also 62 images with at least one of the ground truth diagnoses outside the set

of thirteen recognizable diagnoses, and at least one of the ground truth diagnoses
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Figure 4.2 Variation of the maximum system output for the familiar and unfamiliar
images.

within the set of thirteen recognizable diagnoses. These images are referred to as
partially-familiar images.

The method of partitioning the system output values into two sets depends upon
the values exhibiting a bimodal distribution. We assume that in images with an
unknown diagnosis, there is not enough evidence to support any of the thirteen diag-
noses within our set. Therefore in these images the system output values for all the
thirteen diagnoses within our set should be very low.

To test this hypothesis, we plot the highest system output value for each image.
The values are labelled as familiar or unfamiliar according to the ground truth di-
agnoses of the 254 images (198 familiar + 56 unfamiliar) in our test set. Figure 4.2
shows the variation of the maximum system output for the unfamiliar and familiar
images. The normalized sums with annotated evidence system is used to diagnose

the images.
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Figure 4.2 shows that images with unfamiliar diagnoses have lower system output
values. To categorize an image as familiar or unfamiliar, we set a threshold at the
valley between the distributions of the familiar and the unfamiliar images. In Figure
4.2, this threshold is at 1.2. Images with a maximum system output less than 1.2 are
classified as unfamiliar and images with a maximum system output greater than 1.2
are classified as familiar. Formally, we consider the unfamiliar diagnosis as a four-
teenth possible system output. However, this output can only be made in isolation,
and not in combination with the thirteen familiar diagnoses.

Results
We tested the method of recognizing the unfamiliar images on the set of 316

images (198 familiar + 56 unfamiliar+ 62 partially familiar). System performance

was measured using the match criterion. The results are given in Table 4.4.

Image Class Images In Class | System
Performance
Familiar 198 60%
Unfamiliar 56 1%
Partially Unfamiliar | 62 95%
[ All | 316 | 69% |

Table 4.4 System performance based on diagnosis familiarity.

Conclusions

We see from Figure 4.2 that there is considerable overlap between the distributions
of the familiar and the unfamiliar images. There are familiar images with a system
output less than 1.2. Therefore including the ability to recognize unfamiliar images
causes a decrease in performance. Examining Table 4.1 and Table 4.4, we observe
that the system’s ability to diagnose the familiar images has fallen from 75% to 60%.

It should also be noted that all the unfamiliar diagnoses are lumped together.
There is no way to distinguish between two different diagnoses outside our set of
thirteen familiar diagnoses.

The system performs with a very high accuracy on the partially familiar images.

The reason for this high accuracy has not been studied in this work.
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As an alternative to using the maximum system output value to distinguish be-
tween familiar and unfamiliar diagnoses, we also considered using the maximum value
from Fisher’s test. The idea is that if the distribution is not bimodal, the largest
value from Fisher’s test should be relatively small. However, we found this method

did not produce an adequate partitioning.

Normal cases

In this section we consider the problem of recognizing retinal images exhibiting no
disease. Of the 354 images in our test set, 38 have been diagnosed as normal. Looking
at the annotations, we found that 25 of these images did not have any abnormalities.
All the manifestations were either absent or normal. The diagnosis of these 25 images
as normal is trivial.

The remaining thirteen images were diagnosed as normal despite the presence of
one or more abnormalities. We examined these annotations for similarities. Presum-
ably there may be some manifestations that can appear in the retina without the
presence of a disease. We might recognize these as patterns. We also examined the
system output values for all the normal images. The idea is that we might be able to

identify a threshold to classify an image as normal.
Results

We could not discover a pattern in the annotations. No two annotations were

exactly alike. The system output values also did not exhibit a noticeable pattern.

Conclusions

We hypothesize two possible reasons for our failure to find a pattern or discrimi-
nant for the normal images. First, it is possible that with the thirteen images under
consideration, there was a problem in data collection. For example, the annotation
may be inaccurate, the diagnosis may be mistaken, or there may have been an error
during the recording of the data. Second, it is possible that more normal images are
needed to define a pattern. We did not explore this issue, and we leave it for future

work.



CHAPTER 5
FREQUENCIES VERSUS BELIEFS

The values in the belief table represent opinions. Each value is an expert’s belief in
the likelihood of a manifestation given the presence of a disease. Although the opinion
is well-informed, the beliefs are not actual measurements of probabilities. In this
chapter we study the effects of substituting the beliefs with frequencies. Frequencies
are actual measurements of the probabilities.

The difficulty in using frequencies lies in making the actual measurements. In
order to be statistically meaningful, the frequencies must be measured using “large”
populations. In our case, this could mean making measurements of the retinal health
of thousands (or millions) of people. This difficulty is why it is attractive to use an
expert’s beliefs in place of frequencies. Although it is time consuming and potentially
error-prone to obtain an expert’s beliefs, it is relatively more difficult to obtain actual
frequencies.

In the course of this research we have obtained hand drafted annotations and
diagnoses of hundreds of retinal images. The frequency of each manifestation in
the presence of a disease can be computed from this data. After computing these
frequencies, we can substitute them for the beliefs and rerun our system on the image
database. We are interested in discovering the performance differences, if any, between
the use of frequencies and beliefs.

The frequencies to be used to diagnose the retinal images have to be computed.
To compute a frequency, we count the number of times manifestation M in state S
has occurred in the presence of diagnosis D in all the test images. This count is then
scaled by the number of images in the set with diagnosis D.

In order to obtain unbiased system diagnoses, we separate the entire set of images
into training and test sets. We use the well known method called “leave one out”.
One image is chosen to be the test image. The rest of the images are then used to

calculate the frequencies. Using these frequencies the test image is diagnosed. This
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method is repeated so that each image is the test image exactly once. Any image
that is to be diagnosed is excluded from the training set.
Results
We tested this methodology on the set of 198 familiar images (see Chapter 4).
We tested two systems, one using the noisy max formulation in the context of all
evidence, and one using the normalized sums formulation in the context of annotated

evidence. The results are tabulated by diagnosis in Table 5.1.

Diagnosis Normalized sums Noisy MAX
annotated evidence ||| all evidence
beliefs ‘ frequencies || beliefs | frequencies
Emboli 8% 15% 15% 23%
BRAO 1% 1% 86% 14%
CRAO 38% 50% 50% 13%
BRVO 18% 82% 9% 9%
CRVO 88% 84% 64% 32%
Hemi-CRVO 5% 83% 50% 42%
BDR 4% 88% 60% 54%
PDR 1% 76% 67% 62%
ASR 42% 38% 29% 4%
HTR 23% 33% 33% 24%
Coats 79% | 93% 5% | 57%
Macroaneurism || 88% | 88% 50% | 38%
CNV 100% | 91% 91% 55%
[ Total | 5% | 86% [ 63% | 51% |

Table 5.1 System performance on 198 familiar images by diagnosis, comparing
frequencies with beliefs.

Also, we compared the frequencies with the expert given beliefs to find the distri-

bution of variance. This distribution is plotted in Figure 5.1.

Conclusions
Figure 5.1 shows that the difference between each frequency and belief is less than
0.2 in most cases. The instances where the difference is larger can be studied in future
work.
The normalized sums system improved from 75% to 86% in diagnostic efficiency

using frequencies in place of beliefs. The performance of the noisy MAX system
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Figure 5.1 Differences between the expert given beliefs and the calculated frequencies.
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decreased from 63% to 51% in diagnostic efficiency using frequencies in place of beliefs.
These results appear contradictory. It is not clear to us why the performance of the
noisy MAX system decreased.

For the normalized sums system, the performance difference for most diagnoses
was less than +£15%. The one exception was BRVO, which improved by 64%. This
dramatic change might indicate a biased belief. In future work we would like to
reexamine this particular diagnosis.

We note that our sample population is still relatively small. A sample of hundreds
does not necessarily provide confidence that the improvement in performance of the
normalized sums system witnessed in this experiment is statistically significant.

The problem of frequency acquisition remains more difficult than belief acquisition.
For this project, the effort required to gather the data to compute the frequencies
took months, while the effort required to gather the beliefs took only days. None-the-
less, there may be an alternative to strict frequency acquisition. It may be possible to
gather frequencies based on smaller samples and provide them to an expert during the
acquisition of beliefs. In future work we plan to pursue the acquisition and evaluation

of such “frequency anchored beliefs”.



CHAPTER 6
CASE DIFFICULTY

It is possible to assume that all diagnostic cases are of equal difficulty. For our
system, this would imply that it is equally difficult to diagnose each image in our test
set. In this chapter we test this assumption. We hypothesize that the test set can
be divided into easy, moderate, and difficult cases. We define the ideal annotation
and the separable annotation in order to classify the diagnostic difficulty of each
image. The difficulty of each image is measured according to the difference of its
annotation from the separable annotation of its corresponding ground truth diagnosis.

We examine the performance of the system on these classes to verify the hypothesis.

Ideal Annotation

Each diagnosis is assumed to have an ideal annotation. The ideal annotation
consists of manifestations which strongly identify the given diagnosis. We call these
manifestations key indicators. Manifestations that only weakly identify the given
diagnosis are considered support evidence, and are excluded from the ideal annotation.

There are 39 possible manifestations in our system, having from two to seven
states each. Ignoring the absent or normal state of each manifestation, there are 75
total possible manifestation states. We ignore the absent or normal state of each man-
ifestation, for this experiment, because we are only interested in positive indicators
of disease.

We assume that the manifestations of a particular diagnosis may be considered
as belonging to two sets, key indicators and support evidence. The beliefs associated
with these manifestations should have larger values for the key indicators, and smaller
values for the support evidence. We use Fisher’s linear discriminant (see Appendix B)
to separate the 75 total possible manifestation states for each diagnosis into two sets.

The set of larger values identifies the key indicators, which form the ideal annotation.
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It is possible for two or more states of a single manifestation to have larger belief
values, so that multiple states of a single manifestation can be key indicators. The
result is that there may be more than one ideal annotation for a diagnosis.

The ideal annotations computed for each diagnosis are shown in Table 6.1. Num-
bers separated by a slash in a single box indicate multiple states of that manifestation
are key indicators for the given diagnosis. Blank entries indicate support evidence,
or manifestations that are not causally linked to the given diagnosis.

According to our definition, it is possible for more than one diagnosis to have the
same ideal annotation. In Table 6.1, diagnoses D5 (CRVO) and D6 (hemi-CRVO)
have the same ideal annotation. In this case it is necessary to use the support evidence
to distinguish between the two diagnoses. To account for this possibility, we define

the separable annotation.

Separable Annotation

Each diagnosis is assumed to have a separable annotation. The separable annota-
tion consists of manifestations which identify more strongly with one unique diagnosis
than with any of the other possible diagnoses. We call these manifestations strong
separators. Manifestations that equally identify with multiple diagnoses, whether
strongly or weakly, are considered weak separators, and are excluded from the sepa-
rable annotation.

Each state of each manifestation is considered independently during the compu-
tation of the separable annotations. There are thirteen possible diagnoses in our
system, so that there are thirteen possible belief values for each manifestation state.
We assume that the belief values of a manifestation state across the set of diagnoses
may be considered as belonging to two sets, strong separators and weak separators.
The beliefs should have larger values for the strong separators, and smaller values
for the weak separators. We use Fisher’s linear discriminant (see Appendix B) to
separate the thirteen belief values for each manifestation state into two sets. The set
of larger values identifies the strong separators.

This separation is repeated for the 75 abnormal manifestation states. For this
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experiment, we ignore the normal (absent) state of each manifestation because we
are only interested in positive indicators of disease. Since each manifestation state is
separated independently, it is possible for two or more states of a single manifestation
to be strong separators. The result is that there may be more than one separable
annotation for a diagnosis.

The separable annotations computed for each diagnosis are shown in Table 6.2.
Numbers separated by a slash in a single box indicate multiple states of that man-
ifestation are strong separators for the given diagnosis. Blank entries indicate weak
separators, or manifestations that are not causally linked to the given diagnosis.

According to our definition, it is not possible for more than one diagnosis to have
the same separable annotation. Although the separable annotation is less definitive
than the ideal annotation for a given diagnosis, its uniqueness provides for a more
precise measure of case difficulty.

In order to verify that the ideal and separable annotations are good (ideal) cases
of the diagnoses, we process them through our system. We expect that the system
should obtain near 100% diagnostic accuracy on these annotations. We test two
systems, one using the noisy MAX formulation in the context of all evidence, and one
using the normalized sums formulation in the context of annotated evidence. There
are 16 ideal annotations (three diagnoses have two ideal annotations each), and 25
separable annotations (6 diagnoses have multiple separable annotations). Table 6.3

shows the results.

Image classes

We hypothesize that it is possible to partition the 198 familiar images in our test
set into three classes of diagnostic difficulty: easy, moderate and difficult. We measure
the diagnostic difficulty of an image according to the difference between its annotation
and the separable annotation for its ground truth diagnosis. The manifestations
present in the separable annotation are referred to as strong separators. The image
annotation can have some or all of the strong separators missing. It can also have

manifestations other than the strong separators present. We assume these extra
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manifestations detract attention from any strong separators that are present.

We define ¢ as the ratio of the number of strong separators in the image anno-
tation to the number of strong separators present in the separable annotation. The
value of ¢; can range from 0 to 1. When ¢;, =0, it implies that all the strong separators
are absent from the image annotation, making the image hard to diagnose. When ¢,
=1, all the strong separators are present in the image annotation, making the image
easy to diagnose.

We define ¢4 as the ratio of the number of detractor manifestations in the image
annotation to the number of strong separators in the separable annotation. The range
of ¢4 is determined by the number of manifestations being considered. When ¢z > 1,
the detractor manifestations outnumber the strong separators, presumably making
the image more difficult to diagnose.

Figure 6.1 shows a plot of the values of ¢; and ¢4 for the 198 familiar images in our
test set. This plot shows that the distribution varies largely with ¢, but very little
with c4. Figure 6.2 shows a plot of the values of ¢, only for the 198 familiar images in
our test set. Since we hypothesized three classes of case difficulty, we identify three
ranges of values of ¢, suggested by this plot. Images with ¢, <= 0.6 are classified as
easy. Images with 0.6 < ¢, <= 0.95 are classified as moderate. Images with 0.95 < ¢,
are classified as difficult. Based on these boundary ranges, the 198 familiar images are
distributed as listed in Table 6.4. System performance on these images, distributed
according to class, is listed in Table 6.5. For this experiment the system used is the

normalized sums formulation in the context of annotated evidence.

Conclusions

Table 6.5 suggests that there are only two classes of images: easy and difficult.
Images with ¢, <= 0.95 can be classified as easy or moderate and those with ¢, > 0.95
can be classified as difficult. This suggests that for an image to be easily diagnosed it
must have at least one of the strong separators of its ground truth diagnoses. Images
which have no strong separators and rely only upon support evidence are harder to

diagnose.
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Table 6.1 Ideal annotations for the thirteen diagnoses.
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Table 6.2 Separable annotations for the thirteen diagnoses.
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Normalized sums Noisy MAX
annotated evidence | all evidence
match against ideal annotation 100% 94%
perfect match against ideal annotation 69% 88%
match against separable annotation 100% 96%
perfect match against separable annotation || 100% 96%

Table 6.3 System performance on ideal and separable annotations.

Image Class | Number of Imges
Fasy 58
Moderate 45
Difficult 95

Table 6.4 Number of images in each hypothesized class of diagnostic difficulty.

Image Class | Images In Class Images System
Correctly Diagnosed | Performance
Easy 58 55 95%
Moderate 45 42 93%
Difficult 95 52 55%

Table 6.5 System performance based on case difficulty.
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Appendix A

Domain Materials
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This appendix details the data used in this thesis. These materials are specific to

the domain considered in this work, retinal image diagnosis.

Diagnoses

Diagnoses Abbreviation
1 | Emboli Emboli
2 | Branch retinal artery occlusion BRAO
3 | Cilio-retinal artery occlusion CRAO
4 | Branch retinal vein occlusion BRVO
5 | Central retinal vein occlusion CRVO
6 | Hemi-central retinal vein occlusion | Hemi-CRVO
7 | Background diabetic retinopathy BDR
8 | Proliferative diabetic retinopathy | PDR
9 | Arteriosclerotic retinopathy ASR
10 | Hypertensive retinopathy HTR
11 | Coats’ disease Coats
12 | Macroaneurism Macroaneurism
13 | Choroidal neovascularization CNV

Table A.1 List of the diagnoses.



Manifestations
Manifestation States
1 | RPED Absent
Present
2 | CME Not visible
Visible
3 | ERM Absent or not visible
Present
4 | Subretinal fibrosis | Absent
Present
5 | CNV Not observable
Observable
6 | Drusen Absent
Fine, few
Fine, many
Large, soft, few
Large, soft,many
7 | Preretinal Absent
hemorrahge Present anywhere
8 | Subretinal Absent
hemorrahge Present anywhere
9 | Microaneurism Absent
or dot Few anywhere
hemorrahge Many anywhere
10 | VH Absent
Present anywhere

Table A.2 List of manifestations and their states.
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Manifestation

States

11

Small or

Absent

medium blot or

Low density, not regional

flame

High density, not regional

50

hemorrahge Low density,regional not crossing horiz. meridian
High density,regional not crossing horiz. meridian
Low density,regional crossing horiz. meridian
High density,regional crossing horiz. meridian
12 | Retinal or Absent
subretinal Low severity, no circinate
exudate High severity, no circinate

Low severity, circinate not surrounding fovea

High severity, circinate not surrounding fovea

Low severity, circinate surrounding fovea

High severity, circinate surrounding fovea

Macula data Absent

Present incomplete

Present 360 deg

ON collateral Absent

Present

ON swelling Absent

Low severity

High severity

ON hemmorahge | Absent

Splinter

Blob

ON palor Normal

Sector palor

Pale or white, whole nerve

Table A.3 List of manifestations and their states (continued).




Manifestation States
18 | ON color Normal
Sector erythema
Rosy or red, whole nerve
19 | NVD Absent
Less than one disk area
Greater than one disk area
20 | Artery oxygen Normal
Dark (deoxygenated)
21 | Artery color Normal

Copper wire

Silver wire

22 | Artery sheath Absent
Present

23 | Vein color Normal
Gray or white (ghost vessel)
Yellow (sheathed)

24 | Artery narrow Normal

Focal, one or more segments

Moderate, branch or single

Moderate, global

Extreme, global

25

Artery dilation

Normal

Tortuosity, branch or single

Tortuosity, global

26

Vein narrow

Normal

Tributary vein or single

Entire venous tree

27

Vein dilation

Normal

Tortuosity, tributary vein or single

Tortuosity, global

28 | Teleanglectasis Absent or not visible
Present, not crossing horizontal median
Present, crossing horizantal meridian
29 | Bv specular reflex | Normal

Wide and bright

Table A.4 List of manifestations and their states (continued).
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Manifestation States
30 | Macroaneurism Absent
Single
Multiple
31 | AV change Absent or not in picture
One or more examples
32 | TXRD schisis Absent
Present
33 | Cotton-wool spot Absent
Few
Many
34 | Inner retinal infarct Absent

Not involving the macula

Involving the macula (cherry red spot)

35

Cherry red spot

Absent

Present

36

Ghost bv

Absent

Present

37

NVE

Absent

Few or small

Many or large

Absent

38

Photocoagular scar

Fine (grid)

Large, in or near macula

Around five hundred fm,

round, arcade or peripheral, many

39

Emboli manifestation

Absent

One

More than one

Table A.5 List of manifestations and their states (continued).
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Causal Links

Manifestation Linked Diagnoses
1 | RPED CNV
2 | CME CNV, BDR,PDR, BRVO,CRVO,
Hemi-CRVO, Coats, Macroaneurism
3 | ERM BDR, PDR,BRVO,CRVO, Hemi-CRVO
4 | Subretinal fibrosis CNV, PDR, Coats
5 | CNV CNV
6 | Drusen CNV
7 | Preretinal hemorrhage | CNV, HTR, PDR,
BRAO,CRAO, BRVO,CRVO, Hemi -CRVO
Macroaneurism, Coats
8 | Subretinal hemorrhage | CNV, BRVO,CRVO, Hemi-CRVO ,
Macroaneurism, Coats
9 | Microaneurism HTR, BDR,PDR,BRVO,
CRVO, Hemi-CRVO, Coats
10 | VH CNV,PDR, BRVO,CRVO, Hemi-CRVO,
Macroaneurism, Coats
11 | Small or medium HTR,PDR,BDR,BRVO,CRVO,
blot hemorrhage Hemi-CRVO,Macroaneurism, Coats
12 | Retinal or subretinal CNV, HTR, PDR,BDR, BRVO,
exudates Hemi-CRVO,Macroaneurism, Coats
13 | Macula data CNV, HTR, PDR,BDR, BRVO,
Hemi-CRVO,Macroaneurism, Coats
14 | ON collateral CRVO, Hemi-CRVO
15 | ON swelling BDR, PDR, BRAO, CRVO, Hemi-CRVO,
HTR, Coats
16 | ON hemorrhage HTR, CRVO, Hemi-CRVO,Coats
17 | ON palor BRAO, Coats
18 | ON color PDR, BDR, BRAO, CRVO, Hemi-CRVO

HTR, Coats

Table A.6 List of manifestations and their causal links.
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Manifestation Linked Diagnoses

19 | NVD PDR, BRAO, CRAO, BRVO, CRVO,
Hemi-CRVO, Coats

20 | Artery oxygen BRAO, CRAO, Coats

21 | Artery color PDR, BRAO, ASR

22 | Artery sheathing Macroaneurism, Coats

23 | Vein color BRVO, CRVO, Hemi CRVO, Coats

24 | Artery narrowing HTR, PDR, BRAO, CRAO, Emboli,
BRVO, CRVO, Hemi-CRVO,
Macroaneurism, Coats

25 | Artery dilation BRVO, CRVO, Coats

26 | Vein narrowing PDR, BRAO,CRAOQO, Coats

27 | Vein dilation PDR, BRVO, CRVO, Hemi-CRVO, Coats

28 | Teleanglectasis BDR, PDR, BRVO, Hemi-CRVO, Coats

29 | Bv specular reflex ASR

30 | Macroaneurism HTR, Coats, Macroaneurism

31 | AV change ASR

32 | TXRD schisis PDR, Coats

33 | Cotton wool spot PDR, BDR, BRAO, Emboli, BRVO,
CRVO, Hemi-CRVO, ASR, Coats, HTR

34 | Inner retinal infract | BRAO, CRAO, Emboli

35 | Cherry red spot CRAO, Emboli

36 | Ghost bv HTR, PDR, BDR, BRAO,
CRAO, BRVO, CRVO, Hemi -CRVO
Macroaneurism, Coats, ASR

37 | NVE PDR, Coats, BRAO,CRAO,BRVO,
CRVO, Hemi CRVO

38 | Photocoagular scar CNV, PDR,BDR, Coats

39 | Emboli manifestation | Emboli, BRAO,CRAO

Table A.7 List of manifestations and their causal links (continued).
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Image Database

The images in the STARE database are designated imXXXX where XXXX is
a four digit number. The available images are numbered from 0001 to 0402. Five
numbers in this range are missing. Of the 397 available images, 43 images have
missing or incomplete annotations or ground truth diagnoses, as listed in Table A.8.
In these cases the expert physician felt that the image was impossible to diagnose
alone (a physician might use verbally acquired evidence from the patient, as well
as multiple images of multiple portions of the patient’s eye in order to conclude a
diagnosis). The remaining 354 images with annotations were used for experiments in

this thesis.

14, 22, 35, 42, 55, 56, 71, 75, 79, 99, 102,
107, 111, 146, 152, 153, 180, 181, 182,
183, 184, 261, 264, 272, 202, 294, 295,
303, 304, 307, 346, 374, 377, 386, 387
388, 389, 390, 391, 392, 393, 394, 395

Table A.8 Images with missing or incomplete annotations or ground truth diagnoses.

We define these 354 images according to four categories. A familiar image has all
its ground truth diagnoses within the set of thirteen recognizable diagnoses. An unfa-
miliar image has all its ground truth diagnoses outside the set of thirteen recognizable
diagnoses. A partially familiar image has at least one of its ground truth diagnoses
outside the set of thirteen recognizable diagnoses and at least one of the ground truth
diagnoses within the set of thirteen recognizable diagnoses. A normal image exhibit

no disease. Tables A.9-A.12 list the images according to these four categories.



1,2,5,9, 13, 16, 17, 18, 19, 20, 21, 25, 26, 27, 28,

31, 33, 38, 40, 48, 49, 50, 51, 52, 57, 8, 60, 64, 65,

69, 70, 73, 74, 85, 87, 89, 90, 93, 94, 95, 96, 101,

103, 113, 114, 115, 116, 117, 118, 121, 122, 123,

124, 125, 126, 127, 133, 134, 135, 136, 137, 138,

139, 140, 141, 148, 150, 155, 156, 157, 158, 160,

161, 165, 166, 168, 169, 177, 178, 179, 186, 187,

188, 189, 191, 194, 195, 196, 197, 200, 201, 202,

203, 204, 205, 206, 207, 208, 209, 210, 211, 214,

215, 217, 218, 220, 222, 223, 224, 225, 226, 227,

228, 230, 232, 233, 246, 247, 248, 251, 257, 258,

259, 271, 274, 275, 276, 277, 279, 280, 281, 284,

293, 297, 299, 306, 308, 309, 311, 312, 313, 314,

315, 316, 317, 318, 319, 320, 321, 322, 323, 324,

325, 326, 327, 328, 329, 330, 331, 332, 333, 334,

335, 336, 337, 338, 340, 341, 342, 343, 345, 347,

348, 349, 350, 351, 352, 353, 354, 356, 357, 358,

359, 361, 362, 363, 364, 365, 366, 367, 368, 369,

371, 396, 397, 398, 399, 400

Table A.9 Familiar images.

3,6, 10, 12, 15, 23, 24, 29, 39, 41, 43, 44,
16, 63, 66, 67, 63, 72, 78, 86, 83, 97, 112,
128, 129, 130, 131, 132, 159, 173, 174, 175,
176, 185, 221, 250, 273, 282, 283, 285, 286,
287, 288, 289, 290, 291, 296, 298, 300, 301,
302, 305, 344, 360, 401, 402

Table A.10 Unfamiliar images.

4,7, 8, 11, 34, 36, 37, 45, 53, 54, 61, 62, 83, 84,
91, 92, 98, 100, 104, 105, 106, 110, 142, 143,
145, 147, 149, 151, 154, 171, 192, 193, 212,
229, 256, 260, 262, 263, 265, 266, 267, 268,
269, 270, 310, 339, 355, 370, 372, 373, 375,
376, 378, 379, 380, 381, 332, 383, 384, 385

Table A.11 Partially familiar images.

30, 32, 76, 77, 80, 81, 82, 119, 120, 162, 163, 164,

170, 190, 198, 199, 213, 216, 219, 231, 234, 235,

236, 237, 238, 239, 240, 241, 241, 243, 244, 245,

249, 252, 253, 254, 255, 278

Table A.12 Normal images.
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Annotations

A hand drafted annotation of the manifestations in each image was obtained from
the expert. When the annotations were obtained, the sets of diagnoses and manifesta-
tions under consideration were slightly different from the final sets used in this thesis.
Each annotation contains 44 manifestations, compared to the 39 manifestations used
in this thesis. Figure A.1 lists the two formats and highlights the differences.

The original annotation includes states for retinitis (16), optic nerve in picture
(17), retinal angioma (38), chorioretinal scar (40), grape clusters (42), nevus (43)
and geographic angioma (44), which are not used in this thesis. The manifestation
on color (21) was split into on palor (17) and on color (18) for this thesis. This lets
the states for this abnormality be listed monotonically increasing in severity, which
is a requirement for the noisy max formulation. Similarly, the manifestation artery
color (23) was split into artery oxygen (20) and artery color (21), the manifesta-
tion artery diameter (26) was split into artery narrow (24) and artery dilation (25)
and the manifestation vein diameter (27) was split into vein narrow (26) and vein
dilation (27). The manifestations small or medium blot hemorrhage (11) and reti-
nal hemorrhage (12) were combined to form the manifestation small or medium blot
hemorrhage (11). Similarly the manifestations retinal or subretinal exudate (13) and
circinate pattern (14) were combined to form the manifestation retinal or subretinal

exudate (12).
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Figure A.1 A comparison of the annotation format and the format used in this thesis.
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Appendix B

Fisher’s Linear Discriminant Test

Linear discriminant analysis is a well known statistical tool used to classify data
belonging to different classes or groups. This test finds the linear projection that
maximizes the squared distances between the group means. The distances are stan-
dardized by the sample variance. A new observation can be classified based on its
projection on the line. The linear discriminant tends to have good separation prop-
erties even in the case when the data is not normally distributed.

In this study Fisher’s linear discriminant test is used to find the system diagnoses.
Before applying Fisher’s test to the diagnostic probabilities, they are arranged in

descending order.
P(Dll), P(D22)7 P(DQI) such that P(Dzm) > P(D’Lx-H)

where ¢ = 1...I refers to each of the total I diagnoses and P(D;) refers to the
final diagnostic probability output by the system. After these probabilities have been
sorted in descending order they are partitioned into two sets A and B. The partitioning

is done I — 1 times as follows:

A={P(D,)..P(D;,)}, B={P(D;,)..P(D;)} forall f =1...] —1
(B.1)

Fisher’s linear discriminant is calculated for each partitioning as follows:

(NA - NB)2
Fr = o (B.2)
A B

where 4 and pp are the means of the two groups or classes, and 04 and op are the
variances of the two groups. The value of F} gives the “separateness” between the
two groups. We use the linear discriminant test to classify the final system output
values associated with each of the I diagnoses into two sets.

In order to diagnose an image we find F; for the different partitions of the system
output values associated with the diagnoses. The partition with the highest F is then
chosen. The diagnoses in set A for the partition with the highest Iy form the set of
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system diagnoses. The test gives us only those diagnoses in set A whose probability
values are higher and well separated from the other probabilities.
The following example demonstrates Fisher’s test. In this example the system has

output the following values:

Probability values for diagnoses
Dy | Dy | Dy | Dy | D5 | Dg | D7 | Dg | Dy | Drg | D1y | Drg | Das
011 0 [005] 0] 0| 01]015|07| 0 07| O 0 0

First, the P(D;) values are sorted in descending order.

Probability values for diagnoses
Dy | Ds | Dy | Di| D3 | Dy | Dy | D5 | Dg | Dy | Dyy | Dig | Dy
0.7410.7015{0.1[005] 0 | O | O] OO 0 0 0

The values are partitioned twelve times into 2 sets A and B using Equation B.1.
In the first partition set A contains Djy and set B contains all the other diagnoses.
The value of F} for this partition is then found using Equation B.2. This step is
repeated for all twelve partitions. The various Fy values for the twelve partitions in

this example are as follows:

F Fy Fs | Fy | F5 | Fe | F7 | Fs | Fo | Fio | F1 | Fi2
318.3 [ 14275.7 1 50.3 | 15.1 |92 6.5 |53 (4743 | 41| 39| 3.7

From this table we see that the second partitioning has the largest value from
Fisher’s test. In this partition set A will contain the first two elements of the sorted
list of diagnoses. Therefore, the system diagnoses are D1q and Dy.

In our system there are many images with multiple ground truth diagnoses. The
number of ground truth diagnoses for all the images in our test set range from one to
three. The number of system diagnoses is therefore also be restricted to a maximum
value of three.

Fisher’s test poses no restrictions on the number of elements in set A. The number
of diagnoses in set A can range from one to I — 1. Therefore we have imposed a
restriction on the number of elements in set A by limiting the value of f to be less

than or equal to three.
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Manifestation

Annotation
Belief Table

Ground truth diagnosis
System diagnosis

Link

Influence diagram
Formulation

Context of evidence
System

Familiar image

Unfamiliar image

Partially familiar image

Normal Image
Frequency

Key indicator
Strong separator
Weak separator
Support evidence
Ideal Annotation

Separable Annotation
Image Classes
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Appendix C
Glossary

Disease of the human retina.

Abnormality observed in the retina or retinal image.
List of each manifestation’s state in each image.

A probability table summarizing the physician’s beliefs
in the presence of each manifestation given the presence
of each disease.

The physician’s diagnosis of a retinal image.

The system’s diagnosis of a retinal image.

An indicator of a cause between a diagnosis and a
manifestation.

Graphical representation of the causal relationships
between diagnoses and manifestations.

Mathematical formula used to mimic the expert’s
reasoning process.

The evidence observed in the retinal image can be used
in three different contexts, all, linked or annotated.

A specific formulation and context of evidence used for
an experiment.

Image with all the ground truth diagnoses within the
set of thirteen recognizable diagnoses.

Image with all the ground truth diagnoses outside the
set of thirteen recognizable diagnoses.

Image with at least one of the ground truth diagnoses
outside the set of thirteen recognizable diagnoses, and
at least one of the ground truth diagnoses within the
set of thirteen recognizable diagnoses.

An image that exhibits no disease.

Number of times an event occurs.

Manifestation that strongly contributes to the belief in a
diagnosis.

Manifestation that contributes to the belief in only one
diagnosis.

Manifestation that contributes to the belief in two or
more diagnoses.

Manifestation that does not contribute very strongly to
the belief in a diagnosis, but does contribute

a little to the belief ina diagnosis.

An annotation with only key indicators.

An annotation with only strong separators.
Classification of images based on their distance from the
separable annotation.
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