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Abstract

This thesis considers the problem of detecting when a person is eating during everyday life

by examining daily patterns of wrist motion with recurrent neural networks. Our novelty is analyzing

an entire day of data to classify and segment meals with a model we call the “daily pattern classifier”.

Previous research has only analyzed short windows on the order of seconds or minutes long that

miss larger day-to-day patterns. The goal of this work is to utilize daily contextual indicators to

improve eating episode detection and reduce false detections that occur throughout the day.

The wrist motion data used in this work was from the Clemson All-Day (CAD) dataset

collected in previous work [32]. This dataset consists of 354 day-length recordings of wrist motion

data from 351 participants for a total of 1,063 meals and 4,680 hours. Previous work used a sliding

window approach and a convolutional neural network classifier to process this data and generate a

continuous probability of eating, or P (E), from a day-length recording [30]. We call this model the

“windowed eating classifier”. The day-level classifier proposed in this work operates on the P (E)

sequences, also called “daily samples”. In order to train and evaluate the daily pattern classifier,

we required a larger set of daily samples than the number of recordings in the dataset. For data

augmentation, the windowed eating classifier was used repeatedly to generate a sizable set of daily

samples for this purpose. Genuine noise from the volatility of the model differentiated samples from

the same actual recording. To reduce the necessary model complexity and generation time, the daily

samples were downsampled before further processing. After downsampling, the daily samples and

the corresponding ground truth eating events were saved together to files for subsequent training

and evaluation with the daily pattern classifier.

The daily pattern classifier proposed in this work utilizes a recurrent neural network (RNN)

architecture. This was advantageous due to the memory attributes, masking abilities, and time

series applications of RNNs. Training this model required all inputs to be the same length. Since
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the daily samples varied in duration, they were all padded to the same size. These padded values

were later masked out in the model, so they did not affect training. The daily pattern classifier

was trained and evaluated using 5-fold cross validation. Before metrics were measured, a single-

value thresholding algorithm was used for post-processing the output of the daily pattern classifier.

Lastly, both time and episode evaluation metrics were measured to determine how well the classifier

categorized individual timesteps as well as entire eating episodes respectively.

In our results, the daily pattern classifier significantly filtered background noise, which im-

proved the separation between strong meal peaks and other noise in the P (E) signal. Our approach

achieved an eating episode true positive rate (TPR) of 85% with 0.8 false positives per true positive

(FP/TP). This was a 4% decrease in episode TPR, but a 53% improvement in FP/TP when com-

pared to the windowed eating classifier in previous work [30]. The time weighted accuracy of our

approach was 85%, which is 5% higher than the windowed eating classifier indicating better overall

datum-by-datum classification of eating and non-eating. In conclusion, we found evidence that a

recurrent neural network can learn day-level contextual patterns and utilize them for better eating

episode detection.
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Chapter 1

Introduction

1.1 Overview

This thesis considers the problem of detecting when a person is eating during everyday life

by tracking their wrist motion using sensors found in a typical smartwatch. The motivation for this

work is to help people track their energy intake, which is critical for weight loss and treating obesity.

The following paragraphs outline the background for this work, which is covered in more detail in

the rest of this chapter.

Obesity is an extremely challenging and widespread global health problem. Obesity can

develop when energy intake (food consumption) is consistently higher than energy expenditure.

Energy expenditure overall is much lower in the modern era since sedentary lifestyles are common

and transportation is largely motorized. Thus, tracking energy intake is a valuable tool in fighting

overweight and obesity. Traditionally, this is done with self-monitoring tools like food diaries, but

these methods are tedious and subject to self-reporting bias and inaccuracy. A system that could

automatically monitor energy intake would be more advantageous and effective.

Our group has been investigating methods involving wrist motion tracking to detect when

a person eats [7, 8, 9, 21, 30, 37]. Previous work used a Bayesian classifier to segment episodes of

eating from data collected with wrist-worn smartphones [9]. Later work used a convolutional neural

network and a sliding window approach that improved eating detection accuracy by almost 10% [30].

A limitation of both these approaches is that they examined small windows of time (on the order of

minutes) to determine if eating was occurring or not within that window.
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24 hr day

6 min window

Rest RestActivity Activity ActivityMeal MealMeal

Figure 1.1: Comparison of daily context (24 hours) and window context (6 minutes) to scale.

This thesis considers the possibility that additional context exists in a longer window, specif-

ically an entire day, that can improve recognition accuracy. Figure 1.1 demonstrates our motivating

principle. People tend to eat 3-4 meals a day at regularly spaced intervals. People also tend to eat

right after a long period of rest (sleep). These patterns, as well as others in daily activities, could

potentially be learned by a new classifier.

The remainder of this introductory chapter includes the background and context for this

thesis. Section 1.2.1 explores the details and causes of the obesity epidemic facing much of the

world population. Sections 1.2.2 and 1.2.3 discuss the field of mHealth and how it can impact

personal health along with the concept of automated dietary monitoring (ADM). Section 1.2.4 briefly

describes the wrist-worn motion tracking devices used to collect the original eating data. Section

1.2.5 includes background information in recurrent neural networks and deep learning, which are used

to analyze the day-to-day patterns of eating behavior in this work. Next, section 1.3 looks at other

relevant work in the field of eating detection and energy intake monitoring. Penultimately, section

1.4 encapsulates the motivation for this work and describes the use of daily contextual indicators

for segmenting eating episodes. And lastly section 1.5 outlines the novelty of this thesis and the

questions this work strives to answer.

1.2 Background

1.2.1 Obesity

Obesity is not just a challenging health problem; it is an epidemic. As of 2016, over 1.2

billion adults (18 and older) worldwide are overweight and over 650 million are obese [38]. In the

United States, 42.4% of people over the age of 20 are obese with a body mass index (BMI) [kg/m2]

exceeding 30 according to a 2017-2018 report from the Centers for Disease Control and Prevention

(CDC) [15]. It is estimated that by 2030, most of the American population will qualify as overweight
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and nearly half the population will be obese [36]. Although many researchers debate the validity

of BMI for measuring body fat percentage and obesity [12, 25, 28], the relative increase in these

measures is alarming.

Worldwide obesity has tripled since 1975 and childhood obesity (ages 5-19) has increased

ten-fold in that same time [26, 38]. This dramatic growth is attributed to poor diets high in fat and

sugar, increased inactivity, and widespread sedentary lifestyles. Obesity is associated with increased

risk of cardiovascular diseases (heart disease and stroke), diabetes, and some cancers, among other

diseases and health conditions. More specifically, there is sufficient evidence of increased risk of

colon, kidney, liver, and pancreatic cancer with obesity [20]. The recent COVID-19 pandemic has

increased sedentary time, reduced physical activity, and increased unhealthy eating habits further

amplifying the conditions that lead to unhealthy weight gain and obesity [23].

Nevertheless, obesity is almost entirely preventable [38]. It comes down to balancing energy

intake and energy expenditure, both commonly measured in the unit of calories. If energy intake is

greater than energy expenditure, the human body will store energy in the form of fat as a physio-

logical response anticipating future food scarcity. If an imbalance exists, energy intake and energy

expenditure could become balanced through greater energy expenditure in the form of physical ac-

tivity or exercise. However, this is not as efficient or effective for weight loss as reducing energy

intake [34]. Fundamentally, the easiest way to maintain a healthy energy balance is to reduce exces-

sive energy intake and overconsumption of food. Although this may sound simple, drastic lifestyle

changes are required if overconsumption has been the status quo for some time.

1.2.2 mHealth

Worldwide health and life expectancy have greatly improved in the last century. As a result,

the most common causes of death have transitioned to chronic conditions and noncommunicable

diseases (NCDs), or diseases that are not directly transmissible between people. According to a

2020 report by the World Health Organization (WHO), over 70% of deaths worldwide are caused

by NCDs including cardiovascular diseases, cancer, and diabetes [39]. Most, although not all, of

these NCDs are associated with certain lifestyle risk factors like unhealthy diet, overconsumption,

and a deficiency of physical activity. This means that many NCDs are entirely preventable causes

of death.
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Figure 1.2: Apple Watch Series 6 smartwatch and fitness tracker [3].

Good personal health is paramount in reducing the risk of these diseases. Consequently,

healthcare overall will need to shift from a paradigm of reactive care to one of proactive care. The rise

of personal electronic devices like smartphones and wearables like fitness trackers and smartwatches

has ushered in a new age of possibility for health tracking to assist with this shift. Using mobile

devices and especially wearable devices to monitor personal health is known as mobile health or

mHealth. And although electronic devices have contributed to a more sedentary lifestyle in some

ways, the field of mHealth also offers ways for them to improve personal health in the battle against

overweight and obesity.

The Apple Watch and Fitbit are among the most popular fitness trackers from the past 8

years [35]. These devices make tracking personal health and weight management approachable and

straightforward. For example, the latest Apple Watch (shown in figure 1.2) is equipped with several

biological instruments including a heart rate monitor, FDA-approved electro cardiogram (ECG), and

blood oxygen sensor [3]. The device uses these various sensors to track caloric energy expenditure

during workouts, resting heart rate over time, irregular heartbeat, and much more. This data can

even be securely shared with an individual’s doctor or physician if the user chooses to do so with the

latest software [4]. This is an example of the shift to proactive healthcare that is needed to detect

conditions before they become life threatening or even before they develop. Nonetheless, for weight

loss, the smartwatches and fitness trackers on the market today only monitor energy expenditure.
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1.2.3 Automatic Dietary Monitoring

There are several ways to monitor energy intake. Perhaps the easiest is through self-

monitoring, where an individual records what foods they eat throughout the day and when they

consume them. This may take the form of paper or electronic food diaries or even calorie logging

smartphone apps. A literature review of 15 studies focused on dietary self-monitoring found a sig-

nificant relationship between self-monitoring and weight loss [5]. A mixture of paper and electronic

food diaries were used in the studies. It was noted that there was a decrease in the degree of

self-monitoring completeness as the studies progress. Additionally, the individuals who maintained

higher self-monitoring compliance throughout the studies experienced greater weight loss. This re-

search demonstrates that the barrier to effective weight loss may be associated with the difficulty

and tedium associated with maintaining dietary self-monitoring for a long period of time.

Furthermore, self-monitoring approaches are subject to human error and bias as they rely

on an individual’s ability to accurately report, or worse, recount, what they ate and how much they

ate. According to a study, both common people and dietitians alike underreport the amount of

calories they consume in a day [6]. The goal of the field of automated dietary monitoring (ADM) is

to log energy intake automatically, so it can be accurately tracked [2]. Based on previous studies [5]

this could aid individuals in weight loss and decrease the prevalence of obesity. Beyond supporting

weight loss, ADM could also assist elderly individuals, especially those with Alzheimer’s disease or

dementia, maintain an accurate record of their meals.

Numerous devices already exist to accurately track energy expenditure, but a wearable

device that can accurately track energy intake does not exist yet. We believe this is an important

part of the puzzle. The goal of our research group is to develop a system that can be used to monitor

food intake. Previous work has shown that it is possible to track ingestion events (bites) with wrist-

worn devices [7]. However, these systems are quite sensitive to false detection events that resemble

eating like brushing teeth or self grooming [30]. The goal of this work and others (see section 1.3) is

to build a way to automatically recognize eating so the other, more sensitive bite counting systems

can only be triggered when needed. This could be used to accurately predict the amount of food

consumed by an individual in their everyday life and help with weight loss, eating disorders, and

even eating speed [7].
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Figure 1.3: Shimmer3 wearable IMU sensor device.

1.2.4 Shimmer3 Device

The wrist motion data for the CAD dataset was recorded on Shimmer3 devices [32]. This

device, shown in figure 1.3, is a wearable piece of hardware that contains an inertial measurement unit

(IMU) to measure and track motion. The IMU in each device was equipped with an accelerometer,

gyroscope, and magnetometer (not used), to record a total of 6 axes of motion - linear acceleration

and rotational acceleration with respect to the x, y, and z axes.

The large, circular, orange button on the front of the device was used as a way for the

participant to record when they started and stopped eating. The LED lights on the front indicate

the status of the device as well as different operational modes. The LEDs flashed in a regular

pattern to notify the individual it was actively recording data. Data was recorded to an onboard

microSD card. When data collection was completed for a day, the device was connected to a dock

via the port on the bottom of the device (not shown). Data was imported from the device using the

Shimmer Consensys software installed on a computer and then exported to a CSV file for subsequent

processing. The entire procedure of processing the data for the CAD dataset is included in [30].

1.2.5 Neural Networks

Neural networks fall into the broad field of artificial intelligence (AI) that has exploded in

the past decade. At a high level, an artificial neural network is a collection of neurons or nodes

that each have an input, output, and perform a node function. There are additive biases for each
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Figure 1.4: Rectified linear unit (ReLU), sigmoid, and tanh activation functions.

node and weighted connections between the nodes known as weights. A neural network is defined

by these parameters (weights and biases) and the connections between nodes. A collection of nodes

with the same input and output that are performing the same function are known as a layer. The

node function mentioned previously is more commonly known as an activation function. Activation

functions control the output of a node. There are many common activation functions used in neural

networks, but we will only introduce the rectified linear unit (ReLU), tanh, and sigmoid functions

since they are used in this work. The ReLU activation function serves to clip any negative values.

The ReLU functions is defined as ReLU(x) = max(0, x), where all values less than 0 are clipped

to 0. The tanh activation function is simply the hyperbolic tangent function, i.e. the hyperbolic

analogue of the circular tangent function using in trigonometry, tanh(x) =
ex − e−x

ex + e−x
. The sigmoid

activation function produces an output in the range from 0 to 1. It is defined as σ(x) =
1

1 + e−x
.

Plots of all three activation functions – ReLU, tanh, and sigmoid – are shown in figure 1.4

In order for a neural network to “learn” the best parameters for a specific problem, it

undergoes training. For training, the network is initialized in some manner and then the input

is provided. The network uses the weights and biases of the nodes to compute an output and this

output is scored for accuracy. The accuracy of the output is used to determine how much the weights

and biases should be adjusted. A complete cycle of training with all of the training data is called

an epoch.

There are three types of training: supervised, unsupervised, and reinforcement learning. In

supervised training, the data processed by the network is also labeled with a correct set of outputs

known as the ground truth or GT. The network is then able to process the input to generate an output
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and directly compare it to the desired results. Supervised learning is typically used for classification

or regression tasks. When using supervised training with a neural network, it is important that the

network is not trained and tested on the same data. If this were to occur, the model would likely

achieve high accuracy but not transfer well to other data as it could just “memorize” the testing

data. Unsupervised training is performed with data that has no labeled ground truth training

data. This technique is used when ground truth data may not be available or the goal is to reveal

latent features that are not apparent from the raw data. Lastly, reinforcement learning does not

have labeled training data, but instead associates rewards or penalties with different actions. For

example, reinforcement learning is used when training neural networks to play video games.

The error between the network output and the desired output is also known as the loss.

The function that quantifies this value is the loss function. Basically, the loss function indicates how

well the model performs with the current parameters. There are many different loss functions used

in neural networks, but we will only focus on those used in this thesis. Others are beyond the scope

of this work. The curious reader is encouraged to look to other literature or the Internet for more

information on loss functions.

There are two classes of loss functions: regression and classification. Regression loss func-

tions calculate the extent of inaccuracy when the network is predicting continuous values, while

classification loss functions compute the error when predicting a discrete value like a category. For

example, mean absolute error (MAE) and mean squared error (MSE) are regression loss functions.

MAE is calculated as the average absolute value of the difference between the predictions (xi) and

ground truth values (yi) and MSE is calculated as the average square of this difference (see equations

1.1 and 1.2). Classification loss functions include categorical cross-entropy and binary cross-entropy

(discussed later in chapter 2).

MAE =
1

n

n∑
i=1

|yi − xi| (1.1)

MSE =
1

n

n∑
i=1

(yi − xi)2 (1.2)

Gradient descent is used to find the best set of parameters for a neural network. It is the

process of calculating derivatives and slowly moving along a function to approach local or global

minima (see figure 1.5). The amount to change the parameters with each set of training samples

is specified by a parameter known as the learning rate η and the direction is found by calculating
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Figure 1.5: Example of gradient descent on a 3D surface with 3 different starting points.

the negative gradient of the error. The negative gradient is used since the positive gradient would

indicate the direction of the steepest increase in error. The steepest decrease is needed instead

because the goal is to reach the global minimum error and produce an output that most closely

matches the correct output. The learning rate is a small number 0 < η < 1 that regulates the size of

the steps taken by gradient descent. The basic weight update equation for gradient descent is shown

in equation 1.3, where w is a matrix of the network weights, η is the learning rate, and ∇E[w] is the

gradient of the error.

w = w − η∇E[w] (1.3)

There are three types of gradient descent: gradient descent, stochastic gradient descent, and mini-

batch gradient descent. Standard (or batch) gradient descent updates the weights only after all of the

training samples have been considered by summing the error for each. Stochastic gradient descent

updates the weights after each individual training sample is considered and mini-batch gradient

descent is a balance of both. Mini-batch gradient descent computes gradients and updates weights

after groups or batches of training samples are considered. This is the preferred method because it

reduces compute time and gives a good approximation of the overall gradient while mitigating noise

in the data.

A simple fully-connected or dense neural network is shown in figure 1.6. A fully-connected

network has an input layer, output layer, and one or more hidden layers. This is perhaps the most

basic form of a neural network.
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Figure 1.6: Simple fully-connected neural network architecture with one hidden layer.

Deep learning is a subset of machine learning and artificial intelligence that uses neural net-

works with many hidden layers known as deep neural networks. Training deep neural networks makes

use of a technique called backpropagation to update the weights in the network. Backpropagation

is needed since the desired values are not known for intermediate hidden layers in the network.

There are several different types of neural networks. First, there is the fully-connected

neural network described earlier. In this type of network, every node is connected between two

adjacent layers (see figure 1.6). Fully-connected networks can be made “deeper” by increasing the

number of hidden layers. This concept applies to other types of neural networks as well.

A convolutional neural network (CNN) is a type of artificial neural network that uses convo-

lution with filters learned during training to generate an output. CNNs are most common in image

and speech processing, but they have applications in other one-dimensional (1D), two-dimensional

(2D), and even problems with higher dimensionality. Since the convolutional filters or kernels that

move across the input use shared weights, these networks usually require drastically fewer parame-

ters. There are even some common, specialized architectures built using these techniques in tandem

with other notable approaches like residual connections as in U-Net [27].
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Figure 1.7: Simple recurrent neural network with inputs xt, outputs yt, hidden states ht, and
activations at for each timestep t.

For this work, the neural networks were built in a Python library called TensorFlow. Ten-

sorFlow is an open source machine learning platform that was developed by Google in 2015 [1]. Both

TensorFlow and the high-level Keras application programming interface (API) built-in to Tensor-

Flow were used.

1.2.6 Recurrent Neural Networks

A recurrent neural network (RNN) is a neural network where the neurons are arranged in

a sequential manner and the input is parsed in the same fashion. Each neuron has an input and an

output like normal neurons, but also a hidden state. The hidden state information from previous

neurons is used as an input to subsequent neurons. A diagram that depicts the relationship between

nodes in an RNN is shown in figure 1.7. There are several different categories of RNN. A one-to-

many RNN has one timestep in the input and many timesteps in the output. Many-to-one and

many-to-many RNNs are also named accordingly. The type of RNN used in this work is a many-to-

many RNN (shown in figure 1.7) where both the input and output have multiple timesteps, which

is a paradigm commonly used for machine translation. Moreover, an RNN can also be bi-directional

(shown in figure 1.8). In this case, a forward pass of the input is completed first and then the data is

flipped for a reverse pass. This allows the RNN to learn attributes of the sequence in both directions.

It is also important to note that instead of vanilla backpropagation, backpropagation through time

(BPTT) is needed to train an RNN which can be loosely explained as backpropagation back through

each of the timesteps of the network.
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Figure 1.8: Bidirectional recurrent neural network with inputs xt, outputs yt, and activations at for
each timestep t.

The weights and biases in an RNN are shared among all timesteps. This means that in-

creasing the length of the input does not increase the number of parameters in the network. By

sharing weights, the number of parameters is drastically reduced and the backpropagation process

is simplified.

The two common types of neurons used in RNNs are long short-term memory units (LSTMs)

and gated recurrent units (GRUs). An LSTM cell is a special type of neuron that includes 3 special

gates. A diagram of an LSTM cell is shown in figure 1.9a. The 3 gates are the input gate, forget

gate, and output gate. The input and output gates regulate whether the input or output is allowed

to pass in or out of the cell respectively. The forget gate controls whether or not the value currently

in the memory cell is erased. Each gate processes its designated inputs through a sigmoid function

σ(x) involving learned weights to produce an output. The general formula for a gate Γ is depicted in

equation 1.4, where xt is the input, ht−1 is the previous hidden state, W and U are weight matrices,

and b is a bias matrix.

Γ = σ(Wxt + Uht−1 + b) (1.4)

There is a large amount of complexity associated with a single LSTM neuron, so the GRU

is often used instead. A GRU cell is a simplified version of the LSTM cell that merges the cell state

and hidden state and combines the input and forget gates into an update gate. A reset gate is used

instead of a forget gate, but the functions are similar concerning how much past information affects
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(a) Long short-term memory (LSTM) cell with memory cell C, input gate Γi, output gate Γo,
and forget gate Γf .

Γz Γr

ht-1 ht

yt

xt

+

×

tanh

×

h
1-

(b) Gated recurrent unit (GRU) with hidden state h, update gate Γz and reset gate Γr.

Figure 1.9: Types of recurrent neural network neurons with input xt, hidden state ht, cell state ct,
and output yt.
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the output. As such, there is no control of a memory cell and the full hidden state is exposed to the

subsequent neuron. A diagram of a GRU is shown in figure 1.9b. Due to fewer gates and less complex

structure, GRUs are more computationally efficient than LSTMs. GRUs have also been shown to

outperform LSTMs for some tasks. More specifically, GRUs generally learn less prevalent patterns

better, while LSTMs learn highly prevalent patterns better [14]. LSTMs also tend to perform better

when deep understanding and long-term context is needed due to their memory. As a side note, in

many deep learning frameworks the number of “units” in a cell refers to the dimensionality of the

hidden state and cell state.

1.3 Related Work

A multitude of methods for tracking food consumption and ADM have been explored.

Researchers have had success with placing sensors on the throat, neck, ears, wrist, and even eyeglasses

to monitor energy intake. Amft et. al. used an in-ear microphone to analyze chewing sounds of four

different foods from four individuals [2]. This method enabled the authors to accurately classify when

the individual was chewing and the type of food they were eating, but only from the four preselected

foods. They later modified their approach to use a less invasive microphone placed outside the

ear and achieved slightly lower accuracy due to environmental noise. Makeyev et. al. proposed

the use of a throat microphone to reduce ambient noise as they exploit vibrations on the surface

of the skin instead of vibrations in the air [22]. The reported results for swallowing recognition

were quite good (>95% accuracy) in a lab environment, but ultimately the method was dismissed

due to the inconvenient sensor placement on the throat. Nguyen et. al. approached the problem

with a slightly different angle and utilized a recurrent neural network to detect and characterize

eating using the number of times a person swallows [24]. Data was collected from 10 subjects in a

controlled environment using a wearable necklace with two piezoelectric sensors and an IMU. The

long short-term memory (LSTM) network developed for this task achieved a reported 74% F1 score

for swallow detection.

More recently, Gao et. al. developed an ADM system to detect eating episodes with the

microphones in off-the-shelf Bluetooth headsets [13]. The authors used a traditional machine learning

approach with a support vector machine (SVM) classifier as well as a deep learning approach. In

a lab setting (N = 28), both approaches yielded 94-96% classification accuracy, but in a free-living
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environment (N = 4) accuracy fell. The deep learning approach was still able to achieve 76%

accuracy, showing better resilience to noise, but nonetheless a dramatic decrease. The researchers

noted that ambient noise is the biggest hindrance for free-living acoustic eating detection.

Since acoustic methods for eating detection are limited by the presence of background noise,

comfort, or socially awkward positioning of sensors and microphones, the form factor of eyeglasses

has also been tested. Farooq and Sazonov designed a device worn on eyeglasses that incorporated a

piezoelectric strain sensor positioned over the temporalis muscle and an accelerometer to detect food

intake [11]. Their approach with SVM classifiers and a decision tree resulted in an average F1 score

above 99%. Amft and Zhang later used a similar form factor equipped with an electromyography

(EMG) sensor to detect chewing and reported an F1 score of 95% [40]. Cameras have also been used

in some efforts to monitor energy intake. Doulah et. al. used this approach with glasses equipped

with an accelerometer, a strain sensor over the temporalis muscle, and a wide-angle camera for food

image capture (N = 30) [10]. It was designed to only take pictures when the individual was detected

to be eating and achieved an eating episode detection accuracy of 83%.

It has been shown that eating activity can also be detected by monitoring wrist motion with

inertial measurement units (IMUs). Most IMUs include gyroscopes and accelerometers and some

include magnetometers. When worn on an individual’s wrist, these sensors provide information on

the orientation and movement of the hand being monitored. Unlike acoustic methods that employ

microphones or visual methods that employ cameras, wrist-worn devices do not threaten personal

privacy. Moreover, the watch form factor is approachable and many people are already accustomed

to wearing watches or fitness trackers. In fact, surveys have shown that a watch form factor is

preferred for diet monitoring technology by a sizable margin [16].

Dong, Hoover, and Muth found that there is a characteristic rolling motion in the wrist

that occurs when taking a bite of food while eating (see figure 1.10) [7]. The authors used this

information to develop a rule-based algorithm to detect and count the number of bites taken. They

collected wrist motion data from subjects in a controlled environment (N = 10) with an IMU device.

The subjects were permitted to eat a meal of their choice with their desired utensils. With their

method, the researchers reported a 91% true positive rate for bites detected serving as a proof of

concept for wrist-motion-based eating detection.

Dong et. al. were also the first to develop a method to detect periods of eating in normal,

day-to-day life as opposed to a laboratory setting. First, the researchers used a wired wrist-worn
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Figure 1.10: Characteristic rolling motion of the wrist corresponding to a bite, adapted from [7].

IMU device known as an InertiaCube3 connected to a laptop and a battery to track wrist motion

(N = 4) [8]. An activity classification accuracy of 91% was reported with a rule-based algorithm. A

state machine approach for eating detection was also developed with an 82% true positive rate and

70% precision. As a result of this work, the authors concluded that wrist motion could be used to

segment eating episodes in natural, day-to-day life.

Another work of Dong et. al. used wrist-worn smartphones (Apple iPhone 4) to record

accelerometer and gyroscope data from free-living participants instead of the previous apparatus (N

= 43, 449 hours, 116 eating events). Their method involved using periods of vigorous wrist motion

to bookend periods of eating, which they found typically have less wrist motion. Periods of eating

activity were segmented with a näıve Bayesian classifier that yielded a reported 81% accuracy. [9].

In recent years, deep learning has made advancements in many fields, including eating

detection from wrist motion for natural daily living. Stankoski et. al. used a combination of

traditional machine learning and deep learning to process smartwatch IMU data from free-living

participants (N = 12) [33]. Their research was focused on detecting eating segments rather than

ingestion events (i.e. bites). The authors studied the relationship between model performance and

cutlery type used for a meal as well as model performance with personalized models. The model

performed better when the subject ate with utensils (as opposed to hands) and personalized models

offered slight performance advantages on average. Overall, for their eating detection framework they

reported a true positive rate of 81% and precision of 85%.

Luktuke used a deep learning classifier, more specifically a CNN with residual connections,

to segment and categorize various eating gestures from wrist motion (N = 276) [21]. The model
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architecture, which resembled that of U-Net [27], achieved correct classification of 79.6% of ‘bite’

and 80.7% of ’drink’ gestures. Of all of the gestures in the publicly available Clemson Cafeteria

Dataset that was used, 77.7% were correctly classified.

Kyritsis et. al. proposed a bottom-up approach to automatically detect food consumption

by amalgamating bites into meals [17, 18]. Using data from an off-the-shelf smartwatch (N = 12),

the authors achieved a 79% weighted accuracy for eating episode detection with a neural network

involving convolutional and recurrent layers [19]. Yet, the authors’ latest approach was focused on

detecting meals where a fork and/or spoon was the eating utensil of choice. This results in limitations

based on the type of cutlery the individual uses (e.g. bare hands, chopsticks) and unpredictability

if the user drinks outside of a meal. We believe these to be limitations of a bottom-up approach in

general.

Sharma also used deep learning, but with a top-down approach to detecting eating on a

much larger dataset [30]. Instead of analyzing eating episodes by grouping bites, eating episodes

were segmented and classified based on overall wrist motion throughout the day, i.e. eating detection

instead of bite detection. The Clemson All-Day (CAD) Dataset consisting of 4,680 hours of wrist

motion data and 1,063 eating events collected from 351 participants was used for this research [32].

To our knowledge this is still the largest publicly available data set of all-day wrist motion data.

A sliding window approach, CNN, and hysteresis-based detector were used to detect and segment

eating episodes from the wrist motion data. The results of this work were 89% of all meals detected,

1.7 false detections for every true meal detected, and a time weighted accuracy of 80%. This thesis

is built upon the work from Sharma, so further information is included in chapter 2.

Wei investigated training the model developed by Sharma [30] for individual participants [37].

The goal was to capture specialized individual-specific eating patterns to improve overall eating

episode detection. To do so, a new dataset was collected with at least 10 days of data from 8 dif-

ferent subjects. With individualized models, an increase in average weighted accuracy was reported

(82%), but the extent of the increase varied subject by subject.

17



7:54 9:54 11:54 13:54 15:54 17:54 19:54 21:54
Time of day [hr:min]

0.0

0.5

1.0
P(

E)

Figure 1.11: Probability of eating P (E) throughout an entire day showing 3 strong peaks, all of
which are actual meals, and low background noise.

1.4 Daily Context

Previous work from our research group produced a CNN classifier used to process wrist

motion data and output a continuous probability of eating [30]. This model is referred to as the

“windowed eating classifier” or “window-based eating classifier”. The wrist motion data was from

the publicly available Clemson All-Day (CAD) dataset consisting of 4,680 hours of wrist motion data

and 1,063 eating events collected from 351 participants [32]. The probability of eating, or P (E),

output by the window-based classification model ranges from 0 to 1 throughout the day based on

how likely an individual is to be eating based on their wrist movement. A higher P (E) (closer to 1)

corresponds to a higher likelihood of eating at that time. Figure 1.11 shows what the daily P (E)

looks like for one individual in the dataset. The goal of this work is to use the daily P (E) data in a

recurrent neural network model to achieve better overall eating episode detection and largely reduce

the number of false detections. This model is referred to as the “daily pattern classifier”. With their

bottom-up approach, Kyritsis et. al. used a base approximation window of 3.6 seconds [18]. The

top-down approach Sharma used for the windowed eating classifier analyzed a sliding window of 6

minutes [30]. And, this work looks at an even wider window across an entire day (24 hours).

Within the P (E) data from an entire day, we see various periods of high P (E) indicating

a high likelihood of eating. We call these “peaks”. These may accurately correspond with an

actual eating event or merely wrist movement that closely resembles eating motions. The types of

individual peaks we tend to see in daily P (E) sequences are shown in figure 1.12. The first type of

peak (a) is flat, solid, and rectangular at values very close to 1.0. This variety of peak almost always

corresponds with an actual eating event. The second category of peaks (b) is not as well-defined

showing more dispersed P (E) likely caused by secondary activities during eating like watching TV,

using a smartphone, or talking with friends. Peak type (c) is a bifurcated peak that suggests the
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Figure 1.12: Types of individual peaks seen in daily P (E) data: (a) obvious meal (b) fluctuating
response (c) bifurcated (d) short meal (e) long meal (f) false detection resembling meal.

individual returned for seconds during a meal or rested between courses. Peak types (d) and (e)

demonstrate the varying length of eating episodes. And finally peak type (f) shows a false detection

of eating that resembles an authentic eating event. Even within these categories there is variability

due to the daily routines, eating rate, or eating technique of different individuals. This suggests

that a template matching approach would not be very useful. Thus, a neural network approach was

chosen.

The motivating idea for this work is that the P (E) from an entire day provides valuable

insight about where eating occurs. On their own, the peaks do not contribute much information that

can be used to conclude if they correspond to actual eating. However, this would be roughy the same

amount of data analyzed by a windowed or convolutional approach. In short, this myopic approach is

limited. We hypothesize that extended quotidian context could help improve classification of eating

events by reducing the number of false detections. Moreover, a neural network model architecture

designed to learn these temporal relationships and features could use them to accurately predict

eating activity from the entire day in a post-hoc manner.

Figure 1.11 depicts that eating typically occurs at isolated periods of high P (E). However,

for this example the eating activity is very distinguishable since there is low background noise in

the P (E) signal. As mentioned earlier, there is also the possibility of false detections caused by

gestures that resemble eating. A false detection or “false positive” would be where there is a period

of high P (E), but an actual eating event did not occur. For example, grooming activities that

involve moving the eating hand to the face can cause false detections like fixing or brushing hair,

adjusting glasses, or touching the face. This can also include instances like morning and bedtime

routines where an individual may be brushing teeth, styling hair, shaving, or applying makeup.

We have observed a few contextual clues and patterns that help reduce the number of false

detections when manually reviewing P (E) sequences. We denote a period of time related to a pattern
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as an “event of interest”. As a note, in this work meals that occur before 12:00 are referred to as

“breakfast”, meals that occur between 12:00 and 16:00 are “lunch”, those that happen after 16:00

are denoted as “dinner”, and all small meals interspersed throughout the day are “snacks”.

First, a regularity of spacing of 4-6 hours between eating episodes is normal. Humans are

less likely to eat several full-size meals in a short span of time. The daily meal schedule followed by

most people adheres to this pattern as shown in figures 1.13a - 1.13c. In figure 1.13b, the regularity

of meal spacing would even help ignore the false detection around 16:30 (B). Similarly, the P (E)

sample shown in figure 1.13c has many potential false detections early in the day (primarily B). Yet,

these can be ignored by backtracking through the day and using the regularity of the strong meals

as clues.

Second, an individual may snack on or taste food while preparing a meal or cooking, however

this is not a true meal. This instance is usually indicated by two distinct peaks in close succession

where the second peak is actually the meal. For example, the sequence shown in figure 1.13a

demonstrates a case where the individual was possibly snacking while preparing dinner since there

is a short interval of elevated P (E) close to 18:00 (B). A similar pattern is seen after dinner (C)

that may indicate a quick dessert or even seconds while cleaning up that did not constitute a full

meal. Figure 1.13b shows a daily sequence with a very long, bifurcated peak around 12:55 (A) that

indicates possible light snacking before lunch. In the report for this day the individual noted that

lunch was at a restaurant with friends, so the high P (E) may correspond to eating an appetizer or

animated conversation.

Third, a morning routine generally occurs early in the day, so high P (E) before the first

real meal of the day (usually breakfast) could indicate a false detection. To illustrate this, figure

1.13a shows a daily P (E) sequence the exhibits noticeable evidence of a morning routine with a

P (E) peak before breakfast around 8:00 (A). The beginning of the sequence in figure 1.13c likely

demonstrates an extended morning routine from 6:45 to 7:15 (A) as well. This anomaly may even

be present if the individual skipped breakfast. It would appear equally early in the recording, but

without a meal following it.

Lastly, periods of rest tend to occur before or after eating a meal. For instance, a person

may take a midday nap or siesta in the period between lunch and dinner. In figure 1.13c, a pattern

indicating this behavior can be seen as there are the two main strong meals occur preceding and

succeeding a large period of rest in the afternoon (from 15:00 to 20:00 [C]). Overall, these important
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(a) Daily sequence showing 6 strong peaks, of which 3 are actual meals and 3 are nearby transient responses.
The transient responses are probably caused by a morning routine (A), food preparation (B), and cleanup
(C), the latter two of which may include light snacking.
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(b) Daily sequence showing 5 strong peaks, of which 3 are actual meals. The peak at A may be caused
by snacking during food preparation. The peak at B is less likely to be an eating episode because of its
proximity to two other peaks (eating episodes tend to be spaced multiple hours apart).
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(c) Daily sequence showing 5 strong peaks, of which 3 are actual meals, and higher than typical background
noise. Peak A is probably caused by a morning routine, peak B is too proximal to other peaks, and the large
rest area (C) provides context that the peaks prior to C and subsequent to C are more likely to be actual
eating.

Figure 1.13: Daily P (E) sequences with actual eating episodes (green bars) and other events of
interest (orange shaded bars) highlighted.
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contextual indicators and patterns can be seen throughout the dataset. The ones presented here are

merely the most common, perceptible ones we detected in our analysis. A neural network can be

expected to extract less recognizable, latent features as well, hence our approach.

1.5 Novelty

The novelty of this work is applying neural networks to analyze an entire day of data and

segment episodes of eating activity. Past work has explored windowed approaches to this problem

with CNNs operating on accelerometer and gyroscope data from IMU devices. Using the output of

such a model, we are able to analyze daily context for eating patterns in efforts to improve eating

episode detection and reduce false detections. Furthermore, to our knowledge, very few works have

investigated eating detection for free-living subjects with a dataset of this scale (N = 351). Overall,

this work strives to answer the following questions:

1. Does analyzing the probability of eating in a daily context with a neural network improve

eating episode classification?

2. Can this approach reduce the number of false detections in eating episode detection?

3. How do the results of this approach compare to those from a window-based classifier?
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Chapter 2

Methods

An overview of the methods for this work is shown in the flowchart in figure 2.1. The

methods of this study begin with the window-based eating classifier from previous work [30]. This

model is used to process wrist motion data and produce continuous P (E) sequences from a day-length

recordings, also referred to as “daily samples”. For data augmentation purposes, the window-based

eating classifier is used repeatedly to generate a large number of daily samples. The daily samples

are then saved with the corresponding ground truth, pre-processed by padding, and prepared for

the daily pattern classifier. This data is used to train and test the daily pattern classifier with the

paradigm of 5-fold cross validation. The output of the model is post-processed with a thresholding

algorithm to generate a sequence of predictions from the model. Lastly, various evaluation metrics

are measured. As a point of confusion, both the daily pattern classifier and the windowed eating

classifier produce a probability of eating as their output. For greater clarity, P (Ew) corresponds to

the probability of eating from the windowed eating classifier and P (Ed) refers to the probability of

eating output by the daily pattern classifier for the remainder of this work.

2.1 Data Augmentation

2.1.1 Window-based Eating Classifier

To generate daily samples, first the windowed eating classifier was trained. Using a trained

model, a sequence of model predictions were generated about the activity of an individual (eating/non-
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Window-based 
Eating Classifier

Daily Pattern
Classifier

Post-Processing 

Evaluation

Data Augmentation

Pre-Processing

Figure 2.1: Overview of the methods for this work.

eating) that we call the P (Ew). A brief recapitulation of the procedure for training this model is

provided here. First, z-score normalized 15 Hz wrist motion data was separated into windows of

length W minutes with s second stride between them. These “window samples” were used to train

the windowed eating classifier. The ground truth used during training was based on a “majority

vote” of the window. If more than half of a window contained eating, the window was marked as

eating in the ground truth. Likewise for non-eating windows. Training was balanced with the same

number of eating and non-eating windows to prevent classifier bias. After training, a P (Ew) value

ranging from 0 to 1 was output by the classifier indicating the likelihood that the provided input

window sample contained eating. The P (Ew) output was generated using model prediction, also

Figure 2.2: Overview of the windowed eating classifier method involving a sliding window of length
W minutes and stride s seconds used to generate a continuous probability of eating for an entire
day, adapted from [30].
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known as model inference, where the output is predicted from an input using a trained deep learning

model. By concatenating the outputs from adjacent windows, a continuous P (Ew) sequence was

generated for an entire day. This process is depicted in figure 2.2.

2.1.2 Day-Level Data Augmentation

The CAD dataset [32] only contained 354 recordings of an entire day. We required a much

larger set of daily samples in order to be able to train and test a day-level classifier. Therefore, we

used the CAD dataset to generate 565 different samples from each actual daily recording, yielding

approximately 200,000 total daily samples. The data augmentation process is outlined in figure 2.3.

To generate this day-level data, the windowed eating classifier was first trained on data from all

354 recordings. The standard training and prediction process described in the previous section was

used to generate day-length P (Ew) sequences for each subject in the dataset. An additional step

354 files

Train
Window samples

6 min window length
15 sec stride

225 data stride
0.25 Hz

Predict
Window samples

6 min window length
100 sec stride

1500 data stride
0.01 Hz

Trained 
model 354 daily samples

Save
Daily samples
Varying length

Repeat 565 iterations (354 × 565 = 200,010)

~200,000 daily samples

Daily pattern
classifier

Daily sample generation

Pad with -1
Daily samples

23.6 hour length
850 data length

Figure 2.3: Flowchart of the data augmentation process to generate daily sample data for our daily
pattern classifier.
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Figure 2.4: Excerpt from a file containing a daily sample with P (E) values on the top row and
corresponding ground truth values on the bottom row.

07:54 09:54 11:54 13:54 15:54 17:54 19:54 21:54
Time of day [hr:min]

0

1

P(
E)

Figure 2.5: Plot of a daily sample showing the probability of eating throughout an entire day.

was added to save the full daily samples to a file with the corresponding ground truth (as shown in

figure 2.4). The ground truth was defined as the raw label (eating or non-eating) for the point at the

center of the window in the raw data. It is important to note that this varies from the ground truth

labeling used for training the windowed eating classifier. However, this does emulate the ground

truth labeling for testing the windowed eating classifier. The convention for labeling the ground

truth was a value of 1 to indicate eating and a value of 0 to indicate non-eating. An example of a

single daily sample is shown figure 2.5.

This three-part train, predict, and save procedure was repeated multiple times to achieve

the desired quantity of generated samples. A total of 200,010 daily samples were generated to

accommodate early estimates of the model size and complexity. For training, a window length W

of 6 minutes (5400 data) and a stride length s of 15 seconds (225 data) were used as in previous

work [30]. Each model was trained for 30 epochs and the model with the best training accuracy

was saved. Training code from Sharma was used with minor modifications (e.g. multiple GPU

optimization, repeated iterations) [30].

The potential drawback of this approach is that daily samples generated repeatedly from

the same daily recording may not have much variability and consequently result in overfitting in

our day-level classifier. To explore this issue, we visualized the variance in daily samples generated

from the a single actual day-length recording. Figure 2.6 shows an example of the spread between

the minimum and maximum values across all of the data generated from a single recording. Similar

variance was observed across all actual daily recordings in the original dataset. Additionally, during
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Figure 2.6: Difference (shading) between the minimum (lower dashed line) and maximum (upper
solid line) values across all 565 samples generated from a single recording in the CAD dataset.

training and testing of the daily pattern classifier, we do not split the daily samples generated

from the same actual day recording across the train/test boundary. That is, daily samples were

split by original recording identifier and not by arbitrary indices for training and testing splits. As

found in earlier experiments, the volatility of the windowed eating classifier produced substantial

genuine noise to precipitate this phenomenon. The average standard deviation of evaluation metrics

measured per subject varied 5-10% in subsequent model re-training runs. The full extent of this

volatility is quantified and explored in appendix A.

2.1.3 Downsampling

A challenge in analyzing a day-length recording is that there is a large amount of data in

a day. A classifier that considers all this data simultaneously would thus have a very large number

of parameters and suffer from long training and inference times. Additionally, the time needed to

generate the numerous 200,000+ samples had to be reasonable. In order to reduce this complexity,

we downsample the day-length recording from 0.067 Hz (1 datum every 15 seconds) to 0.01 Hz (1

datum every 100 seconds or 1.67 minutes) during model inference. We seek to retain the overall

daily pattern of P (E) without modeling the small fluctuations that happen second to second.

We chose the downsampling factor using visual estimation. Figure 2.7 shows an example.

In this figure daily samples are compared with different stride lengths. Each daily sample from (a)

to (e) increases the stride length by an order of magnitude. Smaller increases did not substantially

impact any of the prioritized objectives. Daily sample (a) was generated with a 1 datum stride, (b)

with a 15 data stride (for a perfect 1 second), (c) with a 150 data stride, and so on. Daily samples

(a) - (c) appear largely unchanged at the daily level. A stride length of 1500 data (d) is the first
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Figure 2.7: Effect of stride length s on resolution of a daily sample: (a) s = 1 datum ( 1
15 second),

(b) s = 15 data (1 second), (c) s = 150 data (10 seconds), (d) s = 1500 data (100 seconds), (e) s =
15000 data (1000 seconds).
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order of magnitude jump to show some downsampling. The next order of magnitude increase used

to produce daily sample (e) is noticeably losing data. Thus, after scrutinizing this visual comparison

of daily sample fidelity, a stride length of 1500 data was chosen because it offered downsampling

without loss of the overall integrity of the signal. In summary, a 15 second (225 data) stride length

was used for training and a 100 second (1500 data) stride length was used for prediction.

The nature of the windowed eating classifier allowed different stride lengths to be used for

training and testing (or prediction). As the name implies, this ability was enabled by the fact that

it worked on sliding windows of data. As long as the window length remained constant, changing

the stride length only changed the number of windows that would be processed by the model and

the resolution of the resulting P (E) signal. This functionality was exploited in the original work to

improve data granularity for testing (down to a 1 datum stride) [30].

2.2 Pre-Processing

The characteristics of P (E) data from the windowed eating classifier already confined it to

a range of [0, 1]. Consequently, no feature scaling or normalization was used on the daily sample

data; raw daily samples were used as the input to the daily pattern classifier. Uniform and Gaussian

smoothing were tested, but both degraded performance so they were not used. Since each daily

sample was a different length, all samples were padded to the maximum length (850 data = 23.6

hours = 850× 100/(60× 60)) with -1 values before processing. The value -1 was chosen because it

was outside the range of the probability of eating. These values were masked out later in the model

as described in section 2.3.1. The data was also reshaped to a 3D tensor with the shape [batch,

timesteps, features] that is required by RNNs in TensorFlow before processing. For this data the

shape was [-1, 850, 1], where the -1 value allowed TensorFlow to determine the number of batches

at runtime.

2.3 Daily Pattern Classifier

A recurrent neural network design was used for the daily pattern classifier due to the strength

of RNNs with variable-length time series data. The memory aspect of RNNs was also imperative

to capture important indicators from the daily context. Other architectures were tested including a
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fully-connected network and 1D convolutional neural network with residual connections (based on

U-Net [27]). Both approaches had drawbacks. The fully-connected “dense” network was limited by

the nature of its architecture. Dense architectures are designed to learn the relationship between

a fixed-size input and a fixed-size output with both as aggregate units. We needed an architecture

that could operate over a sequence datum-by-datum and learn to classify slices of that sequence.

The 1D CNN architecture was also restrained as it fell back to a similar myopic view of the daily

sequences. Appropriately, it demonstrated poor performance and limitation in learning attributes

of the daily patterns. Furthermore, since our data had inconsistent lengths, it would need to be

truncated, padded, or divided into fixed-length sliding windows for processing with these networks.

Truncating would have removed useful data, padding would have added unnecessary data, and a

sliding window approach is antithetical to the goal of capturing daily context. Therefore, an RNN

was built for the task.

2.3.1 Architecture

The architecture of the daily pattern classifier includes a masking input layer, a single

bidirectional GRU layer, and a time-distributed dense output layer. The bidirectional GRU layer

uses tanh activation functions and the output dense layer uses sigmoid activations. A diagram of the

model architecture is shown in figure 2.8. Overall, the model includes 1,841 trainable parameters.

The classifier was designed, trained, and evaluated using TensorFlow 2.2.0 and the Keras API in

Python 3.8.3.

2.3.1.1 Masking Layer

As described previously, the input was padded to with -1 values to a length of 850 data.

The first layer of the network, a masking layer, was used to skip these invalid timesteps. That way,

the computation of gradients and weights within the network was only dependent on real data and

not padded zeros or other fabricated values.

2.3.1.2 Bidirectional GRU Layer

The next layer in the model architecture was a gated recurrent unit (GRU) layer enclosed

in a bidirectional wrapper. The default GRU in Keras was used with the reset gate applied to the

hidden state before matrix multiplication. A bidirectional wrapper was added around the GRU
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Figure 2.8: Recurrent neural network architecture for the daily pattern classifier (‘?’ is a placeholder
for the number of batches).

layer to compute weights in a forward pass of the input first and then a flipped backward pass. The

summation of the outputs from the forward and backward pass was computed instead of the default

concatenation as this was found to offer slightly better performance. This was done by setting the

merge_mode parameter to sum in Keras. Xavier normal initialization was used (glorot_normal

kernel initializer in TensorFlow) for the weights of this layer because it yields better initial values

that are related to the structure of the layer. The default activation functions were used. The

hyperbolic tangent (tanh) function was used as the activation function for the layer and the sigmoid

function was used as the recurrent activation function between recurrent steps within the layer. For

the GRU layer, U units were used. Different values of U were tested including 8, 16, 32, 64, 128,

and 256 (i.e. powers of 2 from 23 to 28). Both GRU and LSTM layers were also tested. The full

results of this grid search for the best number and type of units is shown in section 3.1.

2.3.1.3 Time-distributed Dense Layer

Lastly, a single-unit dense layer was encapsulated in a time-distributed wrapper for the

model output. The TimeDistributed wrapper in Keras applies the enclosed layer to each timestep

of the input. This makes it possible to produce an output for each data point in the input when
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Figure 2.9: Overview of k-fold cross validation, k = 5.

combined with a 1-unit dense layer. Hence the input and output dimensions of the overall model

are the same: 850 data. A sigmoid activation function was used on the output of the dense layer to

limit the output to the range [0,1].

2.3.2 Training

Training was performed using k-fold cross validation. In general, k-fold cross validation is

a technique to evaluate the performance of a neural network on all of the data in a dataset. The

data is split into k different groups or “folds” and one fold is reserved for testing while the other

folds are combined for training. The value for k is usually set to 3, 5, or 10; we will use k = 5.

Figure 2.9 depicts 5-fold cross validation as it is used in this work. The folds were split by subject

from the original CAD dataset [32], rather than by total data. This was done so there was no

train/test overlap between samples that originated from the same recording. Each split included

training data from 80% of the recordings (≈271 recordings) and testing data from 20% of the

recordings (≈71 recordings). Accordingly, of the 200,000 available daily samples, each split involved

training on ≈160,000 samples and testing on ≈40,000 samples. Model training was performed on the

Clemson University Palmetto Cluster, a high-performance computing (HPC) system, on a compute

node equipped with 40 cores, 370 GB of RAM, and 2 NVIDIA Tesla V100 graphics cards with a

combined 32 GB VRAM.
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2.3.3 Network Hyperparameters

Hyperparameters of a neural network are the adjustable controls outside the layers of the

neural network architecture. There are several that need to be set to reliably and repeatably train a

neural network like the number of training epochs and the batch size. The necessary hyperparameters

for the daily pattern classifier considered in this work are defined here:

1. Loss Function: Binary cross entropy loss was used because the model was performing the

binary classification task of determining whether each timestep was eating (1) or non-eating

(0). The binary cross-entropy loss function is defined as follows, where N is the number of

training samples, and yi ∈ {0, 1} is the target class:

LBCE =
1

N

N∑
i=0

yi · log(P(yi)) + (1− yi) · log(1−P(yi)) (2.1)

2. Number of Training Epochs: The daily pattern classifier was trained for 50 epochs and

the model with the best training accuracy was saved. Training was tested up to 100 epochs,

but upon inspecting the training accuracy and cross entropy loss on the training data over

this range, we only noticed marginal improvement after 50 epochs. Furthermore, training for

longer than 50 epochs did not result in any performance advantage on evaluation metrics.

3. Optimizer: The Adaptive Moment Estimation (Adam) optimizer was utilized for training.

It builds on classical stochastic gradient descent by using adaptive learning rates for different

parameters in the network. The Adam method incorporates elements from the RMSprop and

Adadelta optimizers. As a result, it is quite popular and one of the best overall optimizers [29].

All parameters for the Adam optimizer were left set to the default values in TensorFlow.

4. Learning Rate: Closely related to the optimizer is the learning rate. The initial learning rate

for the Adam optimizer was also left at the standard value of 0.001. Training with this value

was predominantly stable. Training accuracy and loss were not erratic or slow to converge, so

the learning rate was left consistent with TensorFlow defaults.

5. Batch Size: A batch size of 64 was used to balance training time per epoch and training

accuracy. The batch size is commonly selected as a power of 2, seeing that this has been found

to improve training time by best utilizing parallel processing on GPUs. The value of 64 was
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the next step up from the default 32. We decided to increase the batch size by one notch to

speed up training but avoid changing it too much and disrupting the results.

2.4 Post Processing

For post-processing, each sequence of P (Ed) probabilities output by the daily pattern clas-

sifier was passed through a thresholding algorithm. A single threshold T was used for the algorithm,

so if a datum in the sequence was above T , the datum was classified as eating (labeled 1). Likewise,

if a datum was below T , it was classified as non-eating (labeled 0). This is shown mathematically

in equation 2.2, where f(x) is the thresholding function and x is the input P (Ed) value.

f(x) =


1 if x > T

0 otherwise

(2.2)

Different values of T were tested. Other heuristics were also employed including merging

detections within a half window length of each other and ignoring detections less than 1 minute

entirely. The result was a binary sequence indicating the model predictions for where eating occurred.

An example of a P (Ed) sample processed by this thresholding algorithm is shown in figure 2.10. This

prediction was then compared with the ground truth sequence to calculate the metrics described in

section 2.5.

Time0.0
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0.4
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0.8
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E d

)

T
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After

Figure 2.10: P (Ed) signal before and after being processed with the single-value thresholding algo-
rithm (T = 0.25).
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Table 2.1: Eating classifier confusion matrix

For the window-based eating model a dual-threshold hysteresis approach was used for post-

processing instead. In this approach the P (E) signal would have to exceed a starting threshold

TS and fall below an ending threshold TE to count as a detection. As this was used in previous

work [30], this was the default for early testing. However, there was less noise in the P (Ed) signal

than the P (Ew) signal, so we decided to use a single threshold algorithm instead.

2.5 Evaluation

There are two types of evaluation metrics associated with an eating detection classification

model: time and episode metrics [31]. For this work, both sets of metrics were calculated from the

binary prediction sequences after post-processing had occurred. First, time metrics were calculated

by comparing the prediction output to the ground truth (GT) for each timestep. As mentioned

earlier, the GT was constructed using the raw label value at the center of each window that produced

a P (Ew) data point. Essentially, this downsampled the GT to the stride length of the data for

evaluation so it was consistent with the output of the model. All time metrics computed were based

on the four categories of detection in a standard confusion matrix. Any eating classifier would have

the same four values. A true positive (TP) occurred if the classifier predicted that a timestep was

eating and it was also eating in the ground truth. A true negative (TN) was recorded if the classifier

predicted non-eating for a timestep that was non-eating in the GT. A false positive (FP) was marked

35



Detection
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Classification TN TNFNFP TP

Figure 2.11: Labeling of eating time metrics between ground truth meal and model detection: true
positive (TP), true negative (TN), false positive (FP), and false negative (FN)

if the classifier predicted eating when the data point was actually non-eating. And, a false negative

(FN) was logged when the classifier missed an eating timestep and instead marked it as non-eating.

The confusion matrix for these four detection counts is shown in table 2.1. Two additional quantities

can also be computed: actual condition positive count (P = TP+FN) and actual condition negative

count (N = TN + FP). The labeling convention for these types of detections is shown in figure 2.11.

Second, episode metrics were calculated by comparing the overlap of model predicted eating

episodes and GT eating episodes. In this context, an eating episode is defined as a continuous

interval of time classified as eating (i.e. a series of ones). If there was any overlap between the model

prediction and the ground truth, the episode was counted as a true positive (TP). A false positive

(FP) eating episode occurred when the model predicted an eating episode when there was not one

in the GT data. And, a false negative (FN) was constituted by the classifier missing a ground truth

event. There is no concept of a true negative (TN) eating episode for episode metrics with this data.

The different types of episode detections are shown in figure 2.12.

The metrics for both categories were calculated from these detection categories. We consid-

ered the following time metrics: weighted accuracy (AccW ), true positive rate (TPR), true negative

rate (TNR), F1 score, and precision (equations 2.3 - 2.7 on page 37). Weighted accuracy was consid-

ered instead of raw accuracy because of the class imbalance in the data. Eating was far less common

than non-eating. For weighted accuracy, W is the weighted balance ratio of non-eating to eating

calculated prior to this metric by fold. TPR is also known as sensitivity or recall and TNR is also

Detections

Meals

Classification TP TP TP TP FN FP

Figure 2.12: Labeling of eating episode metrics between ground truth meals and model detections:
true positive (TP), false positive (FP), and false negative (FN)
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known as specificity. The selected terms were chosen for clarity.

AccW =
W · TP + TN

W · P + N
(2.3)

TPR =
TP

TP + FN
(2.4)

TNR =
TN

TN + FP
(2.5)

F1 =
TP

TP + 1/2 · (FP + FN)
(2.6)

Precision =
TP

TP + FP
(2.7)

For episode metrics, we only considered TPR and F1 score, each calculated in the same

manner but with episode instead of time detection counts. We also evaluated the number of false

positives per true positive (FP/TP) as an indicator of how much the classifier was triggering for

other events throughout the day.

Evaluation metrics were calculated after summing up all of the time TPs, TNs, FPs, and FNs

and the episode TPs, FPs, and FNs accordingly, not after processing each recording. Furthermore,

evaluation metrics were only measured for data within the original recording length, not the entire

padded sequence.

2.6 Runtime Considerations

2.6.1 Data Loading

A problem of this scale required specific implementation details to perform well without

requiring an exorbitant amount of time. First, to import the 200,000 daily samples from individual

text files, the files were read in parallel using the multiprocessing module in Python to decrease

load times. However, the Python scripts for the daily pattern classifier needed to be run many times

during development and testing, so additional runtime optimizations were added. The data was
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loaded from all 200,000 text files only once and saved to binary NumPy files in the proprietary .npy

format for subsequent usage. This dramatically improved load times from over 40 minutes to just

2 seconds (1200x faster). Additionally, the binary NumPy files provided greater storage efficiency

requiring 67% less space (1.44 GB instead of 4.3 GB). Text files (.txt) and comma-separated values

files (.csv) are some of the least efficient ways to store and load numerical data in Python. Both

were tested during the process of optimization and found to be suboptimal.

2.6.2 Model Inference

Model inference or model prediction was needed to generate the daily samples as described

in section 2.1.2. Since there were 200,000 samples overall, the 20% testing set for each fold of

k-fold cross validation still included 40,000 samples. To improve model inference runtime, these

samples were grouped into very large batches (e.g. 4,096) using the batch_size parameter on the

model.predict() function. Unlike the batch size for training, the batch size for testing has no

impact on performance since the model has already been trained. The only limit is the system

memory, or more commonly GPU memory when training on a GPU.
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Chapter 3

Results

This chapter includes the results of several experiments analyzed in this work. First, at-

tribute testing for the type and number of memory units used in the RNN layers of the model

architecture is evaluated. Second, the general performance of our day-level classifier is evaluated.

This analysis is performed by comparing the time and episode metrics across different values of the

threshold T in post-processing. Lastly, a detailed comparison is made between the results of the

daily pattern classifier (with the values from previous experiments) and those from the windowed

eating classifier.

3.1 Type and Quantity of Memory Units

A grid search was used to find the number of units U in each layer and the type of layer

(LSTM or GRU) that offered the best performance. Performance was measured using the episode

true positive rate (TPR) and time weighted accuracy. Powers of 2 from 8 to 256 were used for the

grid search since these are common in RNN design. The effect of the number of units and the type

of unit on the episode TPR is shown in figure 3.1. Similarly, the effect of these variables on the time

weighted accuracy is shown in figure 3.2. The metrics in these plots were evaluated with T = 0.4

for post-processing.

In both figures there is a maximum point at 16 memory units – for both the LSTM and

GRU – with a decline of 4-5% as the number of memory units increases to 256. Fewer units

also offered slightly reduced performance. In both episode TPR and time weighted accuracy the
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Figure 3.1: Effect of the number of units in each layer on TPR compared between LSTM and GRU
cells, T = 0.4.
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Figure 3.2: Effect of the number of units in each layer on time weighted accuracy compared between
LSTM and GRU cells, T = 0.4.
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(a) Daily pattern classifier, P (Ed)
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Figure 3.3: Comparison between P (Ed) and P (Ew) for a sample with high background noise. Daily
pattern classifier shows a subdued response with an input of this type. GT shown with green bars.

GRU layers outperformed the LSTM layers by 1-2% for every number of memory units except 128.

GRUs have been shown to pick up on less prevalent patterns [14], so this aspect may explain this

slight performance difference. Furthermore, LSTMs are more performant when extensive, long-term

context is required. On the contrary, the data used with this classifier is relatively short (only

hundreds of data long) and 1-dimensional. Based on these results, a value of U = 16 units was

chosen with a GRU layer over an LSTM layer. All further results are reported with the parameter

U = 16.

3.2 Performance Analysis

Figure 3.3a depicts an example output from our day-level classifier, for the input from the

window-based classifier shown in figure 3.3b. It can seen that the background noise is much lower

in P (Ed) than in P (Ew), demonstrating that the daily pattern classifier can mitigate many of the

transient responses from the window-based eating classifier. The overall level of P (Ed) is also lower
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and more subdued than P (Ew). Because of this, the threshold used for final segmentation on P (Ed)

needed to be much lower than the threshold used for P (Ew) and even the standard cut-off of 0.5

used for a single-threshold approach.

A range of values for the threshold T were tested. To evaluate these thresholds, the episode

true positive rate (TPR), number of false positives per true positive (FP/TP), and time weighted

accuracy (AccW ) were all computed at each value T . The goal for daily pattern classifier performance

was an episode TPR exceeding 85% to roughly match performance reported in previous work [30]

and less than 1.0 FP/TP.

The effect of T on the time weighted accuracy is shown in figure 3.4. At first, values of T

decreasing from 0.8 to 0.1 in steps of 0.05 were tested since 0.8 was the value that offered the best

performance with P (Ew) [30]. Yet, for this classifier it led to the worst performance. Furthermore,

the weighted accuracy continues to increase as T approaches 0.1. So, values decreasing from 0.1 to

0.01 in steps of 0.01 were tested as well. And, as depicted in figure 3.4, AccW reaches a maximum

at T = 0.05 and then sharply drops off.

Likewise, the effect of T on the episode TPR and FP/TP is shown in figure 3.5. As T

decreases, the episode TPR increases and the number of FP/TP increases too. Values of T between

0.2 and 0.05 are situated in the optimal region known as the“knee” of the curve. However, the goal

of less than 1.0 FP/TP limited T to values over 0.08. Values of T below the maximum weighted

accuracy seen in figure 3.4 at T = 0.05 exhibit higher episode TPR rates, but at the expense of

weighted accuracy. This means that at these thresholds the model is classifying large portions of

the recording as eating since T is so low. Ultimately, T = 0.1 was chosen to meet these objectives.

All further results are reported using the threshold T = 0.1.

Figure 3.5 also shows the performance of the windowed eating model for various values of

TS while TE was held constant at 0.3 reported in [30]. This figure gives a visual representation of

the proximity of performance between the two classifiers in addition to the improvement in FP/TP

discussed further in the next section.

3.3 Comparison to Previous Work

We compare our results to the CNN window-based eating classifier from previous work. All

time evaluation metrics for the daily pattern classifier and the windowed eating classifier are shown
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Figure 3.4: Effect of threshold T on time weighted accuracy for daily pattern classifier.
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Figure 3.5: Effect of threshold T (number next to points) on episode TPR and FP/TP for the daily
pattern model. The effect of threshold TS (number next to points) on the window-based classifier

with TE = 0.3 reported in [30] is also shown for reference. 8 , g indicate selected values.
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Model TPR (%) TNR (%) F1 (%) Precision (%) AccW (%)

Window-based Classifier [30] 69 93 48 36 80

Daily Pattern Classifier 78 93 50 37 85

Table 3.1: Time metrics comparing windowed eating classifier and daily pattern classifier (this work).
The latter shows a 5% increase in AccW and a 9% increase in TPR with other metrics remaining
similar.

Model TPR (%) FP/TP

Window-based Classifier [30] 89 1.7

Daily Pattern Classifier 85 0.8

Table 3.2: The daily pattern classifier shows a 4% decrease in TPR, but a 53% decrease in the
number of FP/TP. Eating episode metrics shown for the window-based eating classifier.

in table 3.1. Similarly, episode metrics for these two classifiers is shown in table 3.2. The results

for the windowed eating classifier are those reported in previous work with TS = 0.8 and TE =

0.4 [30]. A comparison between the results reported in [30] and those obtained from replicating

the experiment are included in appendix B. When we compare the evaluation measures of the day-

level classifier and the window-based eating classifier we find that the time and episode metrics are

comparable, while there is a drastic reduction in the number of FP/TP (i.e. false detections per

true detection). With the chosen threshold of T = 0.1, the daily pattern classifier achieved an 85%

true positive rate (TPR) for eating episodes with only 0.8 FP/TP and a time weighted accuracy of

85%. For the windowed eating model, an 89% episode TPR with 1.7 FP/TP and a time weighted

accuracy of 80% was reported in previous work [30]. This is only a 4% decrease in episode TPR

with the daily pattern classifier, but a 53% decrease in the number of FP/TP at the chosen T = 0.1.

However, there is lower FP/TP values for all episode TPR values when compared. Full evaluation

results are shown in table B.3 in appendix B.

For further analysis, we consider a signal processing perspective. With our day-length P (E)

signal, figures 3.6 - 3.10 demonstrate that our daily pattern classifier produces a signal with a much

higher signal-to-noise ratio (SNR) than the windowed eating model. This means that the meal peaks

in the P (Ed) signal are more distinguishable from the other background noise. Conversely, the P (Ew)

signal for the window-based eating model has a much lower SNR. The lower SNR necessitated the

more complex hysteresis thresholding method. Despite this post-processing approach, there was a

much higher number of false detections. Our new daily-level classifier improves considerably in this
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regard. Overall, the daily pattern classifier produced far fewer false detections than the windowed

eating classifier from previous work.

Figures 3.6 - 3.10 show direct comparisons between the output of the windowed eating

classifier and the output of the daily pattern classifier. Figures 3.6 - 3.9 compare the P (Ed) and

the P (Ew) output for the same individuals shown in section 1.4. In each, the ground truth events

are shown with green bars and detections for the respective classifiers are shown above the GT with

blue bars.

In figure 3.6 there is a recording where the daily pattern classifier retains detection of all

three eating episodes and reduces much of the background noise in the signal to zero. While there

was no improvement in episode detection in this case, it can be seen that the overall output is more

clean and refined.

Figure 3.7 shows average performance of the daily pattern classifier with all three eating

episodes detected and a 50% reduction in the number of false detections. The only false positive is

triggered early in the recording, down from the two transient detections near the third strong peak.

These brief responses likely indicate meal preparation/clean-up or light snacking before and after

the last strong peak of the day in the P (Ew). With our day-level classifier, they have been refined

and melded into the strongest of the three peaks to make up the last detection in the P (Ed).

The recording shown in figure 3.8 has a generally noisy P (Ew) signal with several false

detections throughout the day. The daily pattern classifier filtered many of them, but it did not

substantially reduce the peak around 16:55, which triggered a false detection in the P (Ed). This

exemplifies excellent performance by the daily pattern classifier with an 80% reduction in the number

of false detections. Other than the one false detection mentioned, the P (Ed) signal for this recording

is clean and all three meals are detected.

In figure 3.9 a P (Ew) recording is shown with abundant background noise in the first half

and a noticeable period of rest in the second half. The P (Ed) generated from this recording has

remarkably low noise with a large difference between the peaks and the ambient signal. All three

meals were detected and the number of false detections was reduced from 5 to 0 demonstrating a

best case scenario for the daily pattern classifier.

One final example in figure 3.10 is included to show that our daily pattern classifier cannot

recover true positive eating episodes from false negatives in the P (Ew) signal. If an eating episode is

missed by the windowed eating classifier and it is consequently not recognizable as an eating episode
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in the P (Ew) sequence, it will very likely not be recovered. In the case of figure 3.10, the last ground

truth meal is not recognized by either the windowed eating classifier or the daily pattern classifier.

There are still 75% fewer false detections, but the false negative episode is not recovered as a true

positive by the daily pattern classifier. This specific P (Ew) recording was very tumultuous, which

produced a less confident model output with subdued peaks around 0.3 in the P (Ed) signal. As

a result, the last meal in the recording was suppressed and did not qualify as a meal. A lower

threshold T for this specific recording would perhaps register this detection but changing T would

not be advantageous on the whole.
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(a) Daily pattern classifier P (Ed) with T = 0.1. 3 TP, 0 FP, 0 FN
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(b) Windowed eating classifier P (Ew) with TS = 0.8 and TE = 0.4. 3 TP, 0 FP, 0 FN

Figure 3.6: Comparison between P (Ed) and P (Ew) showing noise reduction, but no marked im-
provement on a P (Ew) recording with low background noise. Detections shown with blue bars (top)
and GT shown with green bars (bottom).
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(a) Daily pattern classifier P (Ed) with T = 0.1. 3 TP, 1 FP, 0 FN
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(b) Windowed eating classifier P (Ew) with TS = 0.8 and TE = 0.4. 3 TP, 2 FP, 0 FN

Figure 3.7: Comparison between P (Ed) and P (Ew) showing decent performance of the daily pattern
classifier with a 50% reduction in the number of false positives in the P (Ed). Detections shown with
blue bars (top) and GT shown with green bars (bottom).
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(a) Daily pattern classifier P (Ed) with T = 0.1. 3 TP, 1 FP, 0 FN

8:55 10:55 12:55 14:55 16:55 18:55
Time [hours]

0.0

0.2

0.4

0.6

0.8

1.0

P(
E w

)

TS

TE

(b) Windowed eating classifier P (Ew) with TS = 0.8 and TE = 0.4. 3 TP, 5 FP, 0 FN

Figure 3.8: Comparison between P (Ed) and P (Ew) showing an 80% decrease in the number of
false positives in the P (Ed). Detections shown with blue bars (top) and GT shown with green bars
(bottom).

48



6:28 8:28 10:28 12:28 14:28 16:28 18:28 20:28
Time [hours]

0.0

0.2

0.4

0.6

0.8

1.0

P(
E d

)

T

(a) Daily pattern classifier P (Ed) with T = 0.1. 3 TP, 0 FP, 0 FN
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(b) Windowed eating classifier P (Ew) with TS = 0.8 and TE = 0.4. 3 TP, 5 FP, 0 FN

Figure 3.9: Comparison between P (Ed) and P (Ew) showing a 100% reduction in the number of
false positives in P (Ed) from a P (Ew) recording with high noise. Detections shown with blue bars
(top) and GT shown with green bars (bottom).
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(a) Daily pattern classifier P (Ed) with T = 0.1. 2 TP, 1 FP, 1 FN
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(b) Windowed eating classifier P (Ew) with TS = 0.8 and TE = 0.4. 2 TP, 4 FP, 1 FN

Figure 3.10: Comparison between P (Ed) and P (Ew) where an FN episode (last ground truth event)
is not recovered. Detections shown with blue bars (top) and GT shown with green bars (bottom).
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Chapter 4

Conclusion

4.1 General Discussion

In this thesis, the novel concept of analyzing a day-length recording to detect episodes of

eating was introduced as well as an RNN-based daily pattern classifier for this task. The results of

the experiments in this work answer the three original questions:

1. Does analyzing the probability of eating in a daily context with a neural network improve

eating episode classification?

The 6-minute window signal from the window-based eating classifier had a low SNR and

an abundance of noise due to the variety of gestures and wrist motion throughout the day

that can resemble brief periods of eating. These gestures include grooming, shaving, brushing

teeth, adjusting glasses, touching the face, and even food preparation, among a multitude of

others. However, when the data was re-analyzed with a daily window this added more context

and increased the SNR as shown in figures 3.6 - 3.10. The background response of the P(Ew)

signal was significantly filtered while retaining the peaks for meals, which caused improved

SNR. This is evidence that a neural network can learn daily contextual clues and utilize them

for better eating detection.

Using an RNN for this task had many advantages. First, since the problem was inherently

time series based, a recurrent neural network approach was needed for per-timestep classifica-

tion. Second, the memory of RNN neurons enabled greater understanding of the daily context,
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which was the focus of this work. Lastly, masking with time series data made it possible to

only feed the classifier real data without creating unrealistic data with padded zeros or other

values. Overall, an RNN-based classifier was ideal for the daily pattern classifier.

2. Can this approach reduce the number of false detections in eating episode detection?

Our day-level classifier created more separation between background noise in the signal and

data that corresponded to actual meals. This distinction enabled better detection of eating

episodes by mitigating transient responses and leading to fewer false detections. Furthermore,

this permitted a shift from a dual-threshold hysteresis approach to a single-threshold approach

for post-processing.

3. How do the results of this approach compare to those from a window-based classifier?

This approach exhibits similar or better results for every time and episode evaluation metric

we measured when compared to the window-based classifier from [30]. Some performance met-

rics remained relatively unchanged, while others like the AccW , time TPR, and episode FP/TP

increased by a larger margin. The largest improvement was a 53% reduction in the number of

FP/TP eating episodes. The greatest decline was a 4% drop in episode TPR. All other metrics

improved except time TNR, which remained constant between the two approaches.

4.2 Limitations

The most significant advantage of this approach is also its most significant limitation. The

daily pattern classifier requires an entire day-length recording of data to operate. The daily frame

of reference and contextual indicators are essential for this approach. As such, it can only work in

a post-hoc fashion and is not designed for real-time use. The data used by the classifier is also not

an end-to-end model that can process raw wrist motion IMU data. Data for this model must first

be parsed with another model like the window-based eating model CNN approach from previous

work [30] to generate a probability of eating signal. The daily pattern classifier and the windowed

eating classifier are similar, but designed for two different approaches to the same problem. The

windowed eating classifier is designed to be a real-time model and operate without the foresight of

comprehensive patterns in the data. On the other hand, the daily pattern classifier leverages the

latter for a model oriented for post-recording runtime.
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Another limitation of this study is that the daily pattern classifier was only tested with

the Clemson All-Day (CAD) Dataset [32] that includes over 350 day-length recordings from free-

living participants. Albeit it is the largest dataset of its type known to us, the applicability to

other datasets has not yet been investigated and may require changes to the model architecture or

pre-processing.

4.3 Future Work

There are several opportunities for future research in this area. First and foremost, future

work could look at incorporating both models (window-based and daily-context-based) into a single

end-to-end encoder-decoder classifier. Although this model would be able to output a probability

of eating from raw wrist motion data with the added benefit of daily context, it would also be an

inherently post-hoc and not a real-time classifier. This is entirely due to the need for overall daily

patterns that would not exist until an entire day of data existed as well. This classifier would also

require more parameters, greater model complexity, and a much larger dataset to train end-to-end.

A dataset of this size is not yet available.

The volatility of this model is also yet to be explored. Although only preliminary figures for

quantifiable model volatility have been measured for the windowed eating classifier (see appendix A),

it is apparent that there is a higher level of variability than expected. Whether this issue is arising

from the amount of data, the nature of the classifier itself, how non-eating samples are selected for

training, or another issue entirely remains to be seen. In any case, the volatility of this model should

be evaluated more thoroughly. Furthermore, the same should be done for the daily pattern classifier

as that is not investigated in this work. A comparison between the two would also be practical.

Finally, once the issue of model volatility is researched and controlled, grouping participants

by eating behavior could be beneficial. These styles or behaviors of eating are also known as eat-

ing phenotypes. Currently, the problem is that model volatility is too high to use any metric to

precisely measure performance difference between groups. A change in performance could be due

to model volatility or better/worse grouping, but with current fluctuations there is no easy way to

differentiate the two. Previous research has looked into using individual models [37] and large, full

group models [30] for eating detection. This research would serve as a middle ground between the

two by grouping people based on how they eat.
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Appendix A Quantifying Model Volatility

While conducting initial experiments for this work, it became apparent that the evaluation

metrics changed drastically when the windowed eating classifier was retrained even when all other

variables were held constant (e.g. random number generators). We realized that this issue arose

because the windowed eating classifier was trained to optimize per-datum accuracy, where each

datum was a 6-minute window of IMU data consisting of 5400 total data points from 6 axes. This

caused variability in eating episode detection accuracy.

It is important to note that the thresholding algorithm used for the windowed eating classifier

differs from that used with the daily pattern classifier. Instead of a single threshold, the method that

was implemented used a dual-threshold hysteresis method with other heuristics. The 2 thresholds

were the start threshold, TS , and the end threshold, TE . If the P(E) signal output by the model

exceeded TS , the start of an eating detection was marked. And, similarly when the probability signal

fell below TE , the end of an eating detection was marked. Based on previous work, TS was set to

0.8 and TE was set to 0.4 [30]. As for other heuristics, detections within a half window length of

each other were merged and detections less than 1 minute were ignored entirely. The sequence of

detections was recorded as a binary array used in subsequent time and episode metric evaluation.

We hypothesize that the variability can be attributed to the fact that the model was trained

to optimize this per-window accuracy and therefore weighted accuracy through class balancing dur-

ing training. The hyperparameters TS and TE used in the hysteresis thresholding method for eating

episode detection were manually tuned to optimize per-episode accuracy. However, this left the

model at a carefully-balanced point-of-inflection where any deviation in model training could result

in a considerable difference in eating episode detection and consequently time and episode metrics.

Figure A.1 shows an example situation where this could happen. If the model trained differently

due to the model architecture, error surface, and gradient descent process, the probability of eating

output by the model for a specific eating event could vary enough to no longer trigger TS in the

hysteresis thresholding method. Since the output of hysteresis thresholding is used to create the

sequences compared for both time and episode metrics, this would adversely affect both. For exam-

ple, as shown in figure A.2 if an interval that was classified as eating by one model due to narrowly

exceeding the starting threshold, but fell below the threshold on another model the episode metrics

would drastically vary.
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Figure A.1: Example of two P(E) results from the windowed eating model with hysteresis thresholds,
TS and TE . The solid line P(E) would trigger an eating episode detection with the provided TS and
TE , while the dotted line P(E) would not.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20Window
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(a) All three meals detected and most windows correctly classified. Window TPR = 70% , episode TPR =
100%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20Window
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Detections

(b) All three meals detected and only one window correctly classified in the second meal. Window TPR =
60%, episode TPR = 100%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20Window

Meals

Detections

(c) Second meal is missed entirely so only two meals detected. Window TPR = 50%, episode TPR = 70%

Figure A.2: Three examples indicating how window and episode metrics would change with varying
amount of eating episode detection.
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Metric
Average standard deviation

per subject [%]

Window AccW 3.4

Time AccW 4.7

Time TPR 9.3

Time F1 Score 9.1

Episode TPR 9.5

Episode F1 Score 11.4

Table A.1: Windowed eating model volatility metrics for subsequent retraining.

To measure the volatility, the model was trained 30 times and a number of performance

metrics were evaluated for each of the of 354 recordings in the CAD dataset. These metrics were:

window weighted accuracy (AccW ), time F1 score, time true positive rate (TPR), time weighted

accuracy (AccW ), episode F1 score, and episode TPR. The formulas for these metrics are defined

in section 2.5. The fluctuation in these metrics was calculated by computing the average standard

deviation per subject (“volatility”) in the dataset after retraining 30 total times. The model was

trained with 5-fold cross validation 30 times and then the aforementioned metrics were calculated

on a subject-by-subject basis. For example, a trained model was used to calculate time F1 score

for subject 1, then subject 2, and so on. The standard deviation of each metric was calculated per

subject and then averaged together for a final measure of volatility. These results are summarized

in table A.1.

As seen in table A.1, the time weighted accuracy volatility was almost half the volatility

of the other time and episode performance measures. Time and episode TPR and F1 serve to

explore the volatility in the other metrics that are evaluated for this dataset. Beyond time weighted

accuracy, the volatility was higher than expected at around 10% regardless of the metric. This

supports our hypothesis that the number of true positive eating episode detections is to blame since

weighted accuracy is the only metric in this collection that considers all TPs, TNs, FPs, and FNs. In

summary, the model has been optimized to a somewhat precarious point that causes widely differing

results based on small changes during the stochastic training process.

There also appears to be further volatility coming from how the model is trained specifically.

Window AccW variability was also measured and found to be 3.4%, which is much lower than other
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metrics, but still higher than expected. We hypothesize that this per-subject volatility in window

weighted accuracy arises from how non-eating and eating samples are selected for training, which

leads to highly variable training and therefore volatility in time and episode metric measurement.
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Appendix B Windowed Eating Model Results Replication

A replication experiment was performed for the windowed eating classification model from

previous work [30]. The wrist motion data was sliced into W = 6 minute windows (5400 data) with

s = 15 second (225 data) stride between them. Before processing, acceleration bias was removed

with a trend filter, data was smoothed with a Gaussian filter with a window length of 15 data and

σ = 10.0, and the data was z-score normalized with global trended standard deviations for each axis

of data and all zero means. For training and testing, 5-fold cross validation was used. The classifier

was trained for 30 epochs and the model with the best training accuracy was saved and used for

testing. The windows of data used for testing were created with W = 6 minutes (5400 data) and

s = 1 datum.

Time and episode metrics were measured after processing the model output with a dual-

threshold hysteresis method. The approach was set up to mirror that in [30] and the two thresholds

were set to TS = 0.8 and TE = 0.4 to match as well. The results of this experiment are reported

in tables B.1 and B.2. Overall, the replicated time metrics were 1-4% lower than reported and the

episode TPR was 2% lower. FP/TP also increased by 6%. Comparing the replicated results to the

daily pattern classifier results there is only a 2% decline in episode TPR with a slightly larger 56%

decrease in FP/TP at the chosen threshold T = 0.1.

All time and episode evaluation metrics measured for the daily pattern classifier are shown in

Model TPR (%) TNR (%) F1 (%) Precision (%) AccW (%)

Windowed Classifier (Reported in [30]) 69 93 48 36 80

Windowed Classifier (Replicated) 68 92 44 33 80

Daily Pattern Classifier 78 93 50 37 85

Table B.1: Time evaluation metrics comparing reported and replicated results for the windowed
eating classifier. Results for the daily pattern classifier (this work) are also shown for reference.

Model TPR (%) FP/TP

Windowed Classifier (Reported in [30]) 89 1.7

Windowed Classifier (Replicated) 87 1.8

Daily Pattern Classifier 85 0.8

Table B.2: Episode evaluation metrics comparing reported and replicated results for the windowed
eating classifier. Results for the daily pattern classifier are also shown for reference.
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table B.3. Similarly, these results are shown for the windowed eating classifier replication experiment

in table B.4.

The effect of various values of TS was also investigated to compare with reported figures

and the results of changing T with the daily pattern classifier. These results are shown in figure B.1.

Overall, similar deviation can be seen between the reported and replicated results. The replicated

results exhibit lower episode true positive rates for TS values below 0.75 and higher FP/TP ratios for

TS values above 0.75. Still, for every episode TPR, the daily pattern classifier offers lower FP/TP

than the windowed eating classifier. It is important to note that these values shown are at a TE

threshold of 0.3 to match those reported in a similar figure from [30]. The results from tables B.1

and B.2 on page 59 are with TS = 0.8 and TE = 0.4.
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Figure B.1: Effect of threshold TS (number below points) on the window-based classifier with TE
= 0.3 reported in [30] and replicated. The effect of threshold T (number next to points) on episode
TPR and FP/TP for the daily pattern model is also shown for reference.
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Time Metrics (%) Episode Metrics

Threshold (T ) AccW TPR TNR F1 Precision TPR (%) F1 (%) FP/TP

0.01 81.40 90.89 71.90 26.34 15.42 94.97 47.76 2.14

0.02 84.21 88.00 80.42 32.80 20.20 92.78 52.05 1.77

0.03 85.19 85.98 84.40 37.09 23.69 91.17 55.43 1.52

0.04 85.58 84.36 86.80 40.23 26.47 89.89 58.04 1.34

0.05 85.71 82.97 88.45 42.69 28.80 88.77 60.10 1.21

0.06 85.70 81.74 89.66 44.69 30.82 87.81 61.80 1.10

0.07 85.62 80.63 90.61 46.36 32.60 86.94 63.22 1.02

0.08 85.50 79.62 91.37 47.78 34.20 86.15 64.43 0.95

0.09 85.34 78.69 92.00 49.00 35.65 85.42 65.46 0.89

0.1 85.16 77.79 92.53 50.06 36.99 84.71 66.33 0.84

0.15 84.03 73.71 94.35 53.73 42.36 81.55 69.33 0.66

0.2 82.78 70.11 95.44 55.81 46.45 78.81 70.93 0.55

0.25 81.53 66.86 96.20 57.03 49.81 76.33 71.76 0.48

0.3 80.27 63.77 96.77 57.66 52.71 73.84 72.00 0.43

0.35 79.01 60.78 97.23 57.88 55.33 71.37 71.86 0.39

0.4 77.70 57.79 97.61 57.71 57.73 68.79 71.34 0.35

0.45 76.35 54.76 97.94 57.21 59.98 66.10 70.50 0.33

0.5 74.90 51.58 98.23 56.33 62.11 63.29 69.38 0.31

0.55 73.34 48.19 98.48 55.02 64.17 60.28 67.96 0.29

0.6 71.63 44.54 98.72 53.23 66.19 56.99 66.17 0.27

0.65 69.73 40.54 98.93 50.82 68.16 53.26 63.88 0.26

0.7 67.58 36.03 99.14 47.60 70.17 48.97 60.94 0.24

0.75 65.09 30.86 99.33 43.25 72.33 43.94 57.16 0.23

0.8 62.13 24.75 99.52 37.16 74.53 37.57 51.69 0.21

Table B.3: Time and episode evaluation metrics for the daily pattern classifier at various threshold
values T
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Threshold Time Metrics (%) Episode Metrics

TS TE AccW TPR TNR F1 Precision TPR (%) F1 (%) FP/TP

0.65 0.3 80.79 77.96 83.62 33.65 21.56 93.35 37.76 3.26

0.7 0.3 80.93 76.12 85.74 35.92 23.65 91.68 42.31 2.68

0.75 0.3 81.08 74.34 87.82 38.58 26.27 90.09 47.36 2.15

0.8 0.3 80.67 71.50 89.85 41.08 29.10 87.00 52.71 1.67

0.8 0.4 80.02 68.18 91.87 44.04 32.90 86.81 50.37 1.85

0.85 0.3 80.05 68.21 91.90 44.06 32.92 82.88 58.04 1.25

0.9 0.3 78.32 62.59 94.04 46.77 38.01 76.69 63.02 0.86

Table B.4: Time and episode evaluation metrics for the windowed eating classifier at various thresh-
old values TS , TE
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Appendix C Normalization Methods for Windowed Model

Early experiments for this work also examined the effect of various normalization methods

for the raw wrist motion data on the windowed eating model [30] performance. Normalization

methods tested included z-score standardization, min-max normalization, quantile normalization,

and mean normalization. Normalization was performed per-axis. Additionally, variants of z-score

standardization were tested including global standardization and per-file standardization. Because

of the widely varying distribution of values and some extreme outliers, alternative minimum and

maximum values were used for min-max normalization and mean normalization. The histograms

shown in figure C.1 on page 65 give insight into how the modified values for the means and standard

deviations were chosen. The exact values chosen are shown with the results in table C.1.

The equation for calculating each new value x′ with z-score standardization is shown in

equation C.1, where x is the original value and µ and σ are the mean and standard deviation of the

original values respectively. Similarly, equation C.2 shows the equation for min-max normalization

where min and max are the minimum and maximum of the original values respectively. Equation

C.3 displays the formula for computing mean normalized values. And lastly, quantile normalization

is a way of making two distributions have identical statistical properties. The QuantileTransformer

function from the preprocessing module of the sklearn library was used to accomplish this in this

experiment.

x′ =
x− µ
σ

(C.1)

x′ =
x−min

max−min
(C.2)

x′ =
x− µ

max−min
(C.3)

The best training accuracy with each method and the loss at the end of training is shown in table C.1.

These specific methods and values were chosen based on other experiments to find the best values

for each normalization method. Overall, global z-score standardization yielded the best training

accuracy and lowest training loss.

It is important to recognize that these are training metrics and this is a limitation of

this preliminary investigation. Only select normalization methods were evaluated completely. The
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Method
Best Training

Accuracy

Best Training

Epoch

Training Loss

After 30 Epochs

Global standardization 82.6% 28 0.42

File standardization 82.5% 29 0.43

Quantile normalization (n = 10000) 81.7% 29 0.43

Mean normalization (±0.15, ±50) 81.5% 29 0.44

Min-max normalization (±0.15, ±20) 77.7% 30 0.49

Table C.1: Training results for various normalization methods. Numbers with ± indicate minimum
and maximum values used for accelerometer and gyroscope axes in order of appearance.

time and episode evaluation metrics computed for these select few normalization methods showed a

standard deviation of only around 1%. As a result of this limited experiment, z-score standardization

was chosen as the the default normalization method.
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Figure C.1: Histograms of all values for each of the 6 axes of wrist motion data after acceleration
trend filter was applied, N = 100.
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