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Abstract

This thesis considers the problem of detecting occlusions in automobile parts on a

moving assembly line in an automotive manufacturing plant. This work builds on the exist-

ing “Visual Inspector” (VI) system developed as a joint research project between Clemson

University and the BMW Spartanburg manufacturing plant. The goal is to develop a

method that can successfully detect occlusions in real-time. VI is a detector and classifier

system that uses video cameras to determine the correct installation of a part in the assem-

bly line. In the current version of VI, an occluded part is flagged simply as ‘not OK’ - as if

the part were not installed at all. The new algorithm developed aims to extend the func-

tionality of VI to correctly identify occlusions - i.e., flag an obscured, but correctly-installed

part as ‘occluded’ rather than as ‘not OK’. In this thesis, we provide a background of the

current VI system deployed at the manufacturing plant. We then discuss the design of an

algorithm that recognizes occlusions. Details of tests conducted to verify the correctness

of the design, as well as the results of the tests run on real-world data from the plant are

presented. Finally, we discuss the possible enhancements to this algorithm as part of future

work.
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Chapter 1

Introduction

This thesis considers the problem of correctly identifying occlusions in parts on a

moving assembly line in an automotive manufacturing plant. The work contained within

this thesis is meant to extend the functionality of the “Visual Inspector” (VI) system de-

veloped as a joint research project between Clemson University and the BMW Spartanburg

manufacturing plant. VI is a camera-based system that monitors the correct installation

of parts during assembly [1]. An occlusion occurs whenever the line-of-sight between the

camera and the object being monitored is obstructed for a brief period of time. The length

of this time period depends greatly on the quality of image captured by the video camera,

which in turn can depend on a number of factors, such as the rate of movement of the part

on the assembly line, the width of the inspection area defined for that particular installation

of VI, the and the quality of the match between the image of the part captured and the

template of the image stored internally within VI. An occlusion can also happen if there

is insufficient light on the object being inspected, like when a worker at the assembly line

steps in front of the light and casts a shadow on a part being inspected by VI. This shadow

can negatively affect the quality of the match that VI calculates.
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Figure 1.1: Template image of a correctly-installed spring.

1.1 Background of VI and the problem of occlusions

VI is intended to operate on an assembly line, inspecting each car that passes in

front of its camera. The two basic classes of problems handled within VI are detection, and

classification [1]. The goal with detection problems is to determine whether a part has been

installed or not. This is accomplished by storing a series of image templates of the part

being monitored within VI, and comparing each of these templates with the live image of

the part captured by the camera. Template matching is then performed to determine the

level of ‘match’ between the two images. This type of problem is simpler to set up and

operate, and does not require VI to be connected to the BMW vehicle database. Figures

1.1 and 1.2 show template images of an installed spring and a missing spring, respectively.

The two template images are used during the detection process to determine whether the

cars in figures 1.3 and 1.4 have the springs properly installed or not.

With classification problems however, VI determines whether the correct part has

been installed from a set of two or more parts. The reason behind this ‘variability’ in parts

is because every car manufactured by BMW can be customized according to customer

specifications. The customer can choose, for example, the type of engine to be installed.

Depending on the engine type, different types of badges stating the vehicle model may

be applied on the side of the front doors. There are a plethora of such options that are

available to the customer, and these options also vary according to the particular vehicle

2



Figure 1.2: Template image of a missing spring.

Figure 1.3: Correctly installed spring on the underbody of a car.
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Figure 1.4: Missing spring on the underbody of a car.

model. Thus, no two cars are built the same. To aid in classification, VI connects to

the BMW vehicle database to retrieve information that specifies what part is applied to a

particular car. Figures 1.5 and 1.6 demonstrate two (of many) possible badges that may

be applied on the door-line. For such classification problems, VI needs to connect to the

vehicle database in order to verify that the part it detects is indeed the correct part that

should be applied on the vehicle that is being inspected.

Occlusions happen whenever the line-of-sight between the camera and the part to

be inspected is blocked. This problem occurs primarily because of the nature of work in

an assembly line: workers on the shop floor are constantly mobile, installing and inspecting

various parts on the assembly while it is in motion. Therefore, it is not uncommon for a

worker to accidentally step in front of the VI camera while it is attempting detection/ clas-

sification. For any inspection, if the camera is blocked for more than a specific number of

image frames, VI flags the occluded part as though it were not installed. Manual interven-

tion is then required by the human operator to acknowledge the error and to let VI proceed

4



Figure 1.5: Classification of emblem on the door-line for car#1.

Figure 1.6: Classification of emblem on the door-line for car#2.
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Figure 1.7: Occlusion of the spring during inspection of the underbody.

with the inspection of the next car in line. Figure 1.7 shows an occlusion happening during

inspection of the underbody. The worker is making adjustments to the spring installation

on the left-rear side of the car while VI is performing its inspection.

1.2 Related work in occlusion detection

The problem of occlusion detection has been studied extensively before. Occlusion

detection functionality is usually a part of tracking systems that deal with analyzing infor-

mation within complex, open-ended scenes. Two areas where occlusions happen frequently

are in the fields of vehicle tracking and people tracking. However, both these fields are very

different from the relatively simpler problem of tracking objects and detecting occlusions

in an assembly line environment. Vehicles being tracked on the roads will display variable

speed and sometimes variable directions. The occlusions can happen anywhere within the

field of view and lighting conditions and visibility can vary wildly. Figure 1.8 shows the

problem of occlusions while tracking vehicles on the road. Tracking people is also a difficult
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problem to solve. People vary their speed and trajectory constantly. The appearance of

a person may change dramatically based on their posture or clothing. Occlusions happen

very frequently, and at multiple locations in the field of view. Figures 1.9 and 1.10 show the

problem of occlusions while tracking people. The goal of our research is to detect occlusions

in a simpler environment within a vehicle assembly plant where the part being inspected

is always at a consistent distance from the camera. The motion is predictable, and all the

different parts are known beforehand. The system only needs to view the parts that are

within a small window, and detect occlusions within that window. The environment is

much less complex than one in which a traditional tracking and occlusion detection system

is deployed. In this kind of environment, the simple system we have designed may be more

robust, and detect occlusions with higher accuracy than complex algorithms that are in-

tented to analyze detailed and intricate scenes, where the tracking problem becomes much

more difficult, and occlusions happen very frequently.

The following work in areas of vehicle and people tracking further demonstrate the

complexity of the related work. References [5], [7], [8], and [10] involve work that detects

occlusions while tracking vehicles on roads. The work described in [5] addresses the problem

of occlusions occuring in a vehicle tracking problem, by proposing that the vehicle or object

being tracked be split into non-homogeneous segments. These segments are then tracked

individually. The idea behind tracking segments, rather than the object as a whole, is that

occlusions tend to occur locally within small regions, and that robustness to occlusion can be

improved since not all segments are occluded at the same time. The success of this method

hinges on the detection of suitable features that can be then used to segment the object

into non-homogeneous parts. The work in [8] looks at tracking vehicles from a camera

positioned close to the ground, where the height of the vehicles cause occlusion to vehicles

behind them. Feature points are selected and tracked through a series of image frames using

the Kanade-Lucas-Tomasi feature tracker. The height of the features are also estimated.

The features are classified as ‘stable’ and ‘unstable’, depending on the mean and variance

of the estimated height. The stable features are used to refine the height of the unstable
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Figure 1.8: Occlusion while tracking vehicles travelling along a highway. Image borrowed
from [4].
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Figure 1.9: Occlusion while tracking people at a track and field event. Image borrowed
from [3].
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Figure 1.10: Occlusion while tracking two people crossing paths. Note how each persons’
silhouette changes during tracking. Image borrowed from [2].

features, and it is this refinement process that makes the proposed system robust when

faced with occlusions. The feature points are then grouped together to segment and track

the vehicle. The paper in [7] discusses occlusion detection while performing vision-based

vehicle identification on highways. The concept of ‘motion vector’ is introduced, which is

a set of values for each vehicle that indicate the rate of movement of specific points on

the vehicle. Vehicles are moving in the same direction throughout the field of view of the

camera, and hence the motion vector contains homogeneous values for a single vehicle. The

process detects occlusions by analysing the variance within the motion vector for vehicles. If

the variance is greater than a pre-defined threshold, the motion vector is non-homogeneous,

and an occlusion is said to have occurred. The algorithm then attempts to separate the

occluded regions by identifying and removing the boundary that overlaps between the two

regions. The work in [10] detects occlusions by using apriori information like vehicle-shape

models, camera calibration, and groundplane information. The process describes a static

camera placed near ground-level that tracks vehicles passing through a nearby roadway. The

occlusions in this case can happen from either static occluding objects like trees or poles in

the line of sight of the camera, or from dynamic sources (vehicles occluding other vehicles).

In the case of static occlusion objects, the process takes the groundplane information into

account while analyzing the scene. For dynamic occlusion objects, the algorithm utilizes

generic shape models of classes of vehicles to determine when two objects may be occluded.

References [9], [11], and [12] involve work that detects occlusions in scenes of people

moving about in real life. Reference [9] describes a visual method to detect and track soccer

players on a field. This method detects occlusions that happen between players during the
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game. Players are first detected by analysing all the pixels across the playground, and

determining whether the pixel belongs to an object (a player, or lines on the field) or not.

This is done by checking the color intensity difference between the pixel and its immediate

neighbours. The idea is that pixels belonging to the background (the playground) will have

a uniform color, and hence, will not be part of an object. Players are thus detected as fixed-

size regions. Occlusions are detected by tracking the center of gravity of all player regions

across frames - if for any two regions, the center of gravities overlap, an occlusion is detected.

The work [11] specifies that occlusions happen when pixels around the target being tracked

move into the bounding box around the target. The process considers the target object as

the foreground, and other regions as the background. An occlusion is detected whenever the

background around the foreground appears within the target’s bounding box. A Multiple

Instance Learning method and Support Vector Machine is used to train the classifier that

detects foreground and background objects. The study is made on subjects moving down

a corridor in a building, so that depth of movement comes into consideration. The work

within [12] utilizes depth information to detect occlusions as they happen. The process uses

an efficient belief propagation algorithm [6] to generate dense depth images from binocular

video sequences. A bounding box is assigned to the person being tracked. To detect

occlusion, the process assumes that the median depth value of all pixels in the bounding

box (the dominant depth value) changes when an occlusion happens. If the change in the

dominant depth value over two images frames is greater than a threshold, an occlusion is

detected.

1.3 Novelty

VI was designed to be very low-cost, and easy to set up and operate. It uses

inexpensive cameras and computers to perform inspection in real-time, and its detection

and classification algorithms have been developed in-line with these limitations. Algorithms

employing expensive image computations were ruled out, and the focus was on developing
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a simple algorithm that could use image statistics to detect occlusions. To our knowledge,

such an approach has not been employed previously.
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Chapter 2

Research Design and Methods

2.1 Overview of the current inspection process in VI

For the purpose of this discussion, and the rest of the document, the term “car”

will be used interchangeably to refer to any assembly (underbody, car door, etc. based on

context) that is to be inspected. VI operates at 10 Hz, continuously inspecting 10 images per

second. Figures 2.1, 2.2, and 2.3 are a sequence of images recorded as a car door appears for

inspection. VI uses a “trigger” to identify when a part is ready to be inspected. The trigger

is separate from the part being analyzed - it has to have a consistent appearance and always

be visible across all cars during inspection. The trigger is the first step in the inspection

process. The “trigger template” specifies the shape of the trigger, and the “trigger search

window” specifies an area over the image where the trigger template is searched for. This

window is larger than the template, and allows for some degree of variability in the position

of the trigger, thus making the inspection process more robust. Each trigger window must

have at least one trigger template defined, and more number of templates may be specified

if required, to take into account slight variations in the appearance of the trigger. Multiple

triggers may be used in case all the parts to be inspected do not fit into a single image

frame, and VI currently supports up to four separate triggers per car. VI continuously

searches the trigger search window for an appearance of the trigger template. When a
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trigger template is identified, VI then searches for “inspection templates” within one or

more “inspection search windows”. VI supports up to 100 different parts (or “classes”)

that can appear within an inspection search window. Classes specify what shapes can be

expected within the inspection window - for example, the doorline-emblem use case can

have any one of seven different emblems appearing within the search window, depending on

the car model being inspected. Each emblem is defined as a separate class. Each individual

class also has one or more “class templates” defined to account for slight variations in

appearance. Similar to trigger templates, more number of class templates can be specified

to improve the robustness of classification. The inspection search window is larger than the

class template to allow for variability in the placement of the class to be inspected. Figures

2.4 and 2.5 demonstrate the concept of trigger template and trigger search window, as well

as class template and inspection search window. Finally, VI inspects multiple sequential

images taken as the part passes through the inspection search window. This again improves

the robustness of classification, and ensures that anomalies occuring in one or more image

frames do not throw off the classification.

VI is built using C++, and uses the OpenCV library to perform the template

matching process. For simplicity, consider an installation of VI with a single trigger search

window and a single inspection search window, with two or more classes associated with the

inspection window. For each image frame that it captures, VI inspects the trigger search

window for occurrences of the trigger template. The template match process generates a

correlation value between 0.0 and 1.0 for all pixels across the trigger search window. A

successful match occurs at one or more locations within the trigger search window. The

location of the pixel with the highest correlation value within the search window is recorded

and this pixel location is used to define the center of a rectangle corresponding to the

trigger template. The trigger template is deemed to be located within this rectangle. Once

VI locates a trigger template, it starts collecting image frames for the entire duration of

time the trigger template is visible within the trigger search window. After the trigger

template moves out of the trigger search window, VI sets about classifying all the image
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Figure 2.1: Sample image of a car door during inspection, passing from right to left in front
of VI.

Figure 2.2: Sample image of a car door during inspection, passing from right to left in front
of VI.
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Figure 2.3: Sample image of a car door during inspection, passing from right to left in front
of VI.

Figure 2.4: Sample image of a trigger search window and template.
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Figure 2.5: Sample image of the inspection search window and template corresponding to
the trigger search window and template in figure 2.4.

frames it previously collected. For each image frame, VI scans the inspection search window

for the presence of any of the defined inspection templates (corresponding to each of the

defined classes for the installation). Template matching is again used in a manner similar

to that of the trigger template search process. Each class is assigned a correlation value by

the template matching process, and the class with the highest correlation value is voted the

‘winner’. The result of this inspection is then displayed on-screen, and the winning class

name along with its correlation value is written to a text file.

2.2 Updates made to the existing VI inspection process

The functionality of the current VI inspection process was extended to output ad-

ditional information which could then be utilized to identify occlusions. Currently, VI

calculates the correlation value separately for each class within a given inspection area, but

only considers the maximum correlation value across all classes during classification. VI
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Table 2.1: The record format of the new output text file from VI.

Field Name Description

Trigger Frame Index The frame number of the image frame captured when
VI locates a trigger template.

Trigger Value The maximum correlation value of the trigger template
within the trigger search window for this image frame.

Class Frame Index The frame number of the image frame undergoing
classification. This value will match the Trigger Frame Index
when VI is not actively classifying image frames.

Inspection Area Number The inspection area corresponding to each class
being considered during classification. This value will be zero
when VI is not actively classifying image frames.

Class Correlation Value The correlation value of the classes undergoing
classification within VI. There can be more than one
Class Correlation Value field in this file, corresponding to
the number of classes defined within this installation of VI.
Value will be zero when VI is not actively classifying
image frames, or for classes outside of a particular
inspection area.

was modified to generate an additional output text file that contains the correlation value

of the trigger and all classes within an inspection area, for each image frame captured. The

record format of this text file is as per table 2.1.

2.3 Simulation testbed

A testbed was constructed to mimic the movement of cars on the assembly line at

BMW. The testbed consisted of a platform mounted on metal rails, a spool attached to

an electric motor, and a length of wire from the spool that could clip-on to the edge of

the platform. Objects to be inspected were placed on top of the movable platform. When

switched on, this setup could move the platform laterally across the field of view of a video

camera at a consistent rate of speed. See figure 2.6 for a picture of this installation. Objects

on the platform could thus be inspected via VI, similar to how cars are inspected in the

manufacturing plant (see figure 2.7). Three classes of objects (or parts) were considered for
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Figure 2.6: Picture of the testbed installation.

this installation, with one template per class. The parts were three ‘Minion’ characters from

the Despicable Me movie franchise (see figure 2.8). The three Minion toys were choosen for

their similarity in dimensions, to replicate parts inspected by VI at the BMW plant. The

rights to Minions lie with Universal Studios Inc.

2.4 Simulation runs on the testbed

With the testbed in place, test runs were made that simulated the types of occlusions

that VI encounters in the BMW plant. Table 2.2 specifies the different types of occlusions

that were considered, and figure 2.9 shows sample images captured of each type of occlusion,

using Class2 as the reference for inspection. Brief occlusions are quick, one-off occlusions

that happen once during the inspection. This type of occlusion typically occurs when a

worker passes by in front of the part during inspection. The occlusion is only momentary,

and VI sees the complete part for most of the inspection process. This was simulated

on the testbed by momentarily placing a cardboard box in front of the Minion during
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Figure 2.7: Inspection setup for the testbed installation.

Figure 2.8: The three inspection classes (Class1, Class2, and Class3, respectively) used in
the testbed installation.
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Table 2.2: The different types of occlusions defined for the simulation.

Type of occlusion Description

None No obstruction of the part during inspection.

Brief A quick, momentary obstruction of the part. The part is fully
visible for the majority of the duration of inspection.

Partial A section of the part is completely obscured for the
entire duration of the inspection.

Intermittent A series of brief occlusions of the part. The part is fully
visible in between the sequence of obstructions.

inspection (top right image in figure 2.9). Partial occlusions happen when the part being

inspected is partially or completely covered. This type of occlusion typically happens in

the plant during assembly, when mutilation tape is not completely removed from the part.

The mutilation tape is used to cover a part during assembly to protect it from damage.

Sometimes, the worker performing the assembly does not completely remove the tape from

the part before the car leaves the assembly location, leaving the part partially obscured.

This was simulated on the testbed by applying a piece of electrical tape partially over the

Minion during inspection (bottom right image in figure 2.9). Intermittent occlusions are a

series of brief occlusions that happen over the course of a particular inspection. This type

of occlusion occurs when a worker is actively working on the car currently being inspected,

so that his/ her back and forth movements across the part being inspected causes repeated

brief occlusions. This was simulated on the testbed by repeatedly blocking the Minion with

a cardboard box while it was being inspected (bottom left image in figure 2.9; note that for

the intermittent occlusion, although only a single image is presented, it is in effect a series of

brief occlusions occuring across multiple image frames. The additional image frames have

not been presented here). For all the types of occlusion considered, the common factor

is that the trigger is never occluded. VI does not perform classification when the trigger

is occluded, and hence, does not generate the correlation information that is vital to our

analysis. In all cases in the testbed simulation, care was taken to make sure the trigger was

never occluded.
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Figure 2.9: Sample images of the different types of occlusions during simulation (clockwise,
from top left: none, brief, partial, and intermittent).

Using the testbed, correlation values corresponding to each type of occlusion were

generated. Four different runs were made on the testbed using Class2 for the inspection. A

different occlusion type was simulated on each run, and the results were noted.

Another simulation was also conducted on the testbed, whereby a sequence of 20

consecutive inspections was run, and the results were recorded. The inspections were set

up to represent all the different types of occlusions. The ground-truth data corresponding

to this test is specified in table 2.3.

2.5 Analysis of correlation values to detect occlusions

Four cases were run on the testbed, using Class2 as the part to be inspected. A

different type of occlusion (none/ brief/ partial/ intermittent) was simulated during each

case. For each of the four cases, the results were analyzed, and the new correlation values

obtained from VI were plotted. Each plot obtained had distinct characteristics.
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Table 2.3: The ground-truth data corresponding to the simulation on the testbed.

Minion no. Inspection area no. Occlusion ground-truth Occlusion type
(0:no; 1:yes)

1 1 0 None

2 1 0 None

3 1 0 None

4 1 1 Brief

5 1 1 Brief

6 1 1 Brief

7 1 1 Partial

8 1 1 Partial

9 1 1 Partial

10 1 1 Intermittent

11 1 1 Intermittent

12 1 1 Intermittent

13 1 0 None

14 1 1 Brief

15 1 1 Brief

16 1 1 Intermittent

17 1 1 Intermittent

18 1 1 Intermittent

19 1 1 Brief

20 1 1 Partial
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Figure 2.10: Plot of trigger and class correlation values corresponding to each image frame
for an inspection with no occlusion.

For an inspection with no occlusion, Class2 correlation values (the light blue line)

are high, and the correlation values are more or less stable for the duration of the inspection.

This graph is presented in figure 2.10. The correlation values for the other two classes are

low (but not zero). The fact that the correlation values for all three classes is stable was

noted.

For an inspection with a brief occlusion, class correlation values demonstrate a down-

ward spike for the few image frames that were occluded. Note that the correlation values

corresponding to the class being inspected (Class2) demonstrate a much larger fluctuation

than the correlation values for the other two classes. Also not that the trigger (the red line)

was not occluded during this inspection. All frames that did not experience occlusion had

high correlation values. This graph is presented in figure 2.11. The change in correlation

values for all three classes across the inspection was noted.
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Figure 2.11: Plot of trigger and class correlation values corresponding to each image frame
for an inspection with a brief occlusion.
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Figure 2.12: Plot of trigger and class correlation values corresponding to each image frame
for an inspection with a partial occlusion.

For an inspection with a partial occlusion, the correlation values corresponding to

Class2 are very low, but more or less stable. The plot is similar to that of an inspection

with no occlusion, but with much lower class correlation values. The correlation values for

the other two classes are similar to the values seen for the case with no occlusion. This

graph is presented in figure 2.12. The fact that the correlation values for all three classes is

stable was noted.

For an inspection with an intermittent occlusion, all the correlation values demon-

strate downward spikes during the image frames that were occluded. The trace for Class2

shows the largest fluctuation, whereas the trace for the other two classes show less devi-

ations. The un-obstructed frames had high correlation values for Class2. Note that the

trigger was not occluded during this inspection. This graph is presented in figure 2.13. The

change in correlation values for all three classes across the inspection was noted.
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Figure 2.13: Plot of trigger and class correlation values corresponding to each image frame
for an inspection with intermittent occlusions.
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It is evident from the plots that brief and intermittent occlusions result in a large

variation in the class correlation values. Inspections having partial occlusions do not demon-

strate this variation. Nevertheless, we suggest that the average standard deviation of the

class correlation values within each inspection area is a good indicator of whether an occlu-

sion has occurred - if a class demonstrates a high value of standard deviation in correlation

values, it is reasonable to infer that a brief or intermittent occlusion has happened during

inspection. However, if a class demonstrates low standard deviation, it could mean that

there was either no occlusion at all, or that there was a partial occlusion - the proposed

new algorithm does not recognize partial occlusions. The algorithm will track the correla-

tion values for the trigger and each class independently for each inspection, and utilize the

standard deviation values to identify brief and intermittent occlusions.

2.6 Details of the new algorithm to detect occlusions

2.6.1 Statistics used to detect occlusions

For each inspection area to be analyzed the algorithm requires as input, the correla-

tion values generated for each class within that inspection area. The class correlation values

are generated for the entire duration of the trigger (the time between when the trigger cor-

relation value first rises above the trigger threshold value, and when the trigger correlation

value falls below the threshold for more than 10 frames). The class correlation values can

be obtained from VI, from its existing processing. For each inspection area, define the set

of correlation values as:

XC = x1, x2, x3, ...xN , ∀C = 1 to M,

where N is the duration of the trigger in frames,

and M is the number of classes within this inspection area
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The algorithm also needs the threshold value for standard deviation, σU as input.

This is a single value for each use case U . For the details on how this value can be obtained,

refer to section 3.2.

For each class C in the inspection area to be analyzed, compute the standard devi-

ation of the correlation values XC as:

σC =

√√√√ 1

N

N∑
i=1

(xi − x)2 (2.1)

After computing each σC , calculate the average standard deviation of correlation

values across all the classes in the inspection area as:

σI =

M∑
C=1

σC

M
(2.2)

Finally, if σI > σU , the current inspection area has an occlusion, and this is to be

flagged.

2.6.2 Context of the new occlusion detection process with respect to

existing VI processing

The new algorithm has been developed as a stand-alone application for the purpose

of this research, but the ultimate aim is to integrate it with the existing detection and

classification process within VI seamlessly, so that VI has the occlusion information avaliable

when it is performing classification. The context of the new occlusion algorithm with respect

to existing VI is presented in figure 2.14. Boxes with solid borders represent tangible

outcomes during processing. Boxes with dashed borders describe intangible processes (the

logic within VI and the new algorithm). Solid arrows represent existing process flows, while

the dashed arrow represents a hypothetical process flow.

Box (a) represents the image frames collected by VI for the duration of the trigger.

VI continuously monitors the trigger search window for the presence of a trigger template.
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Figure 2.14: Context of the new algorithm with respect to existing VI processing.

When a trigger template is detected, VI starts recording all image frames until the trigger

template is no longer visible within the trigger search window. These recorded image frames

are passed on to the inspection process in box (b) as a single dataset. The inspection process

then checks each image frame for the presence of one of the inspection templates within

the defined inspection search windows. Inspection templates corresponding to whether a

part in a particular inspection window is present or not, is available to VI. VI analyzes

each inspection window for the presence of all the inspection templates (or class templates)

defined for that particular window, and generates class correlation values for each class

associated with that inspection window. This is represented by box (c). These class corre-

lation values are utilized by the voting process in box (d). The voting process counts the

number of occurrences of each class defined within an inspection window (according to the

class correlation values), and calculates which class had the maximum count. The class

with the maximum count is deemed the winner by box (e), and a decision is made as to

whether the inspection was “OK” (a valid class was detected within the inspection search

window), or “NOK” (a valid class was not detected - this could be because the required

part was not installed at all, or due to occlusion of the part during the inspection). The

class correlation values represented by box (c) are also passed on to the new algorithm

that performs occlusion analysis. A sample representation of the class correlation values for

an inspection search window having a single inspection search window, and three different

possible classes is provided in table 2.4. The occlusion analysis process represented by box

(f) calculates the standard deviation values separately for each class within an inspection
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Table 2.4: Sample class correlation values generated by an inspection. A sesquence of five
frames have been triggered. Class 1 is the class present in the inspection search window,
evidenced by its high correlation values compared to the other two classes.

Frame Trigger Inspection Class 1 Class 2 Class 3
no. correlation area correlation correlation correlation

value no. value value value

140 0.83 1 0.88 0.38 0.36

141 0.82 1 0.89 0.38 0.37

142 0.83 1 0.89 0.35 0.36

143 0.85 1 0.87 0.37 0.36

144 0.83 1 0.88 0.38 0.37

145 0.83 1 0.88 0.38 0.38

search window. The process then calculates the average standard deivation across each class

within a search window, and checks if the average value is above a pre-defined threshold.

If so, the process has identified an occlusion. This is represented by box (g). As part of

this research work, this is as far as we have taken the process. The next step will have to

be the actual integration of this new detection process into the existing VI process, and

we envision the result available in box (g) to be made available to VI in time to make a

correct OK or NOK decision if occlusions are detected. This is represented by the dashed

line connecting the output of box (g) to the input of box (e).

2.7 Verification of the new algorithm

In order to test the validity of the new algorithm, live data collected from the BMW

plant was used - video was recorded at the assembly lines at the plant, and this recorded

video was then run through VI for detection and classification. VI has a special mode

built-in whereby a video file can be specified as input to the inspector, rather than images

from a video camera, and this mode was utilized to perform the verification.
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Table 2.5: Ground-truth information for the spring coil use case (truncated to the first five
cars inspected). This use case had two inspection areas, and hence, each car has two rows
in the table. A ‘0’ indicates that no occlusion occured within that particular inspection
area in the video, while a ‘1’ specifies that an occlusion was observed within that particular
inspection area.

Car no. Inspection area no. Occlusion ground-truth
(0:no; 1:yes)

1 1 1

1 2 0

2 1 1

2 2 1

3 1 0

3 2 0

4 1 0

4 2 0

5 1 1

5 2 1

2.7.1 Generation of ground-truth data

As the first step of the verification process, ground-truth data was noted for each of

the video files containing live data. Live data from the following five installations of VI were

considered: the spring coil use case, the door-line emblem use case, the child safety lock use

case, the underbody use case, and the wheel lock use case. For each video file generated

from the above installations, the ground truth data for each car inspected consisted of the

inspection area number and whether the inspection template within each inspection area

was occluded or not. The ground-truth data was collected manually, by observing each

video and noting down the occlusions as they happen. The ground truth generated for each

use case, truncated to include only a few samples of the inspections, is presented in tables

2.5 to 2.9. Sample images of the inspection problem from each use case are presented in

figures 2.15 to 2.20.

After recording the ground-truth data for all use cases, the total number of occlu-

sions observed for each use case were collated into a single table (see table 2.10) to aid
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Figure 2.15: Sample images taken during the inspection process for the spring coil use case.
(From left to right) case with no occlusion; case with occlusion.

Table 2.6: Ground-truth information for the door-line emblem use case (truncated to the
first five cars inspected). This use case had two inspection areas, and hence, each car has
two rows in the table.

Car no. Inspection area no. Occlusion ground-truth
(0:no; 1:yes)

1 1 0

1 2 0

2 1 0

2 2 0

3 1 0

3 2 0

4 1 0

4 2 0

5 1 0

5 2 0
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Figure 2.16: Sample image taken during the inspection process for the door-line emblem
use case. This use case does not have any inspections with occlusions. The part being
inspected is visible within the inspection search window.
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Table 2.7: Ground-truth information for the child safety lock use case (truncated to the
first five cars inspected). This use case had only a single inspection area, but each car was
triggered between one and three times. This variation is due to the way this particular
use case is setup in the BMW plant - the assembly (car door) appears within the trigger
window momentarily, before shifting position and rising up to the worker’s eye level so
that additional installation of parts can be performed on the assembly. After the worker
completes the installation, the assembly is then lowered back into the field of view of the VI
camera, which then causes VI to trigger again. See figure 2.17 for a plot of the correlation
values corresponding to multiple triggers on a single car. In three of the assemblies observed
(out of a total of 72 for this use case), an additional inspection/ installation was manually
performed by the workers, which resulted in the assembly being triggered a third time.
Hence, for the child safety lock use case, each car has a variable number of rows in the
table.

Car no. Inspection area no. Pass no. Occlusion ground-truth
(no. of times triggered) (0:no; 1:yes)

1 1 1 0

1 1 2 0

2 1 1 0

2 1 2 0

3 1 1 0

3 1 2 0

4 1 1 0

4 1 2 0

5 1 1 0

5 1 2 0
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Figure 2.17: Plot of the class correlation values observed per frame for a single car in the
child lock use case. The plot demonstrates a single car that triggers twice. This multiple
trigger for a single car is unique to the child safety lock use case, and happens because of
the way in which the use case is set up in the BMW plant.

Figure 2.18: Sample images taken during the inspection process for the child safety lock
use case. (From left to right) case with no occlusion; case with occlusion. The case with
occlusion has also occluded the trigger, and this case (along with 7 other similar cases) will
not be considered as occlusions in the ground-truth.
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Table 2.8: Ground-truth information for the underbody use case (truncated to just the first
car inspected). This use case was out of the ordinary, because it had four separate triggers
set up (the other four use cases operate with only a single trigger). The underbody has a
large number of areas to be inspected, spread out over the length of the car. The inspection
areas were split up among four triggers so that each area could be inspected at relatively
the same position (the center of the field of view of the camera) by VI. The first two triggers
had six inspection areas each, while the last two triggers had five each, for a total of 22
inspection areas. Hence, each car has 22 rows in the table, and only the first car’s ground
truth information is shown here.

Car no. Trigger no. Inspection area no. Occlusion ground-truth
(0:no; 1:yes)

1 1 1 1

1 1 2 0

1 1 3 0

1 1 4 0

1 1 5 0

1 1 6 0

1 2 1 0

1 2 2 0

1 2 3 0

1 2 4 1

1 2 5 1

1 2 6 1

1 3 1 0

1 3 2 0

1 3 3 0

1 3 4 0

1 3 5 0

1 4 1 0

1 4 2 0

1 4 3 0

1 4 4 0

1 4 5 0
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Figure 2.19: Sample images taken during the inspection process for the underbody use case.
(From left to right) case with no occlusion; case with occlusion. Note: all six inspection
areas for trigger #2 have been shown above.

Table 2.9: Ground-truth information for the wheel lock use case (truncated to the first five
cars inspected). This use case had only a single inspection area, and hence, each car has
just one row in the table.

Car no. Inspection area no. Occlusion ground-truth
(0:no; 1:yes)

1 1 0

2 1 0

3 1 0

4 1 0

5 1 0
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Figure 2.20: Sample image taken during the inspection process for the wheel lock use case.
This use case does not have any inspections with occlusions. The part being inspected is
visible in the inspection search window.
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Table 2.10: The net occlusions ground-truth data.

Use case No. of in-
spection ar-
eas per car

Total in-
spections
performed

No. of
occlusions
(camera was
blocked)

No. of occlu-
sions (light
was blocked)

Total no. of
occlusions
(ground-
truth)

Testbed sim-
ulation

1 20 16 0 16

Spring coil 2 150 25 1 26

Door-line
emblem

2 154 0 0 0

Under- body 22 264 16 44 60

Child safety
lock

1 125 0 0 0

Wheel lock 1 19 0 0 0

Table 2.11: Cases where the trigger was occluded in VI.

Use case Trigger occluded Trigger occluded
(inspection performed) (never triggered)

Underbody 0 22

Child safety lock 8 0

Wheel lock 0 10

the verification of the occlusion detection algorithm. While recording the ground-truth in-

formation, three use cases were found to have multiple inspections where the trigger was

occluded and the car was either not inspected at all, or the occlusion was not detected.

This information is presented in table 2.11. At the plant, VI would be connected to BMW’s

vehicle data base, and if a vehicle is supposed to be inspected, but was not triggered, VI

can easliy flag an error. Since the vehicle database was not available for this research work,

this functionality was switched off. If the trigger is occluded during inspection, VI does not

generate correlation values, and there is no data to analyze. VI isn’t designed to handle

these cases, and the cases are not considered while calculating the detection accuracy or

the overall accuracy of the new algorithm.
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2.7.2 Determining the threshold value of standard deviations for detect-

ing occlusions

The second step of the verification process was to determine the actual threshold

for standard deviation values. The algorithm detects occlusions by checking whether the

standard deviation of the correlation values exceeds this threshold. If the threshold is

breached, an occlusion is said to have occurred.

Live data from the BMW plant (the same data that was used to generate the

ground-truth information for the six use cases in table 2.10) was introduced to VI, and

for each use case, the class correlation values generated were recorded. This recorded

information was then analyzed, and the standard deviation values were calculated. These

values were then matched up to the right ground-truth inspection for every use case. Hence

by the end of this process, every single ground-truth data had a standard deviation value

(of the corresponding class correlation values) attached to itself. Next, histograms of the

standard deviation values were generated separately for ground-truth cases with and without

occlusions. For each use case, the histograms were then superimposed, to determine whether

a clear separation could be observed between cases with and without occlusions. Ideally,

cases without occlusions would have standard deviation values exclusively at the lower end

of the scale, whereas occlusions would register much higher standard deviations, with no

overlapping values between the two types of cases. A threshold value of standard deviation

could thus be picked, in order to complete the occlusion detection process. If no clear

separation was observed, the idea was to then pick a threshold value low enough that would

maximize the potential for detecting occlusions (with the disdvantage of possibly a larger

number of false positive results).

2.7.3 Inspection of live data with the new algorithm and standard devi-

ation threshold values

As the final step of the verification process, the standard deviation threshold values

for each use case obtained from the previous step were utilized within the new algorithm
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in order to determine whether or not occlusions had occurred. The results of this step

were cross-verified with the ground-truth information to determine the accuracy of the new

algorithm.
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Chapter 3

Results

3.1 Analysis of correlation values generated for the different

types of occlusions simulated on the testbed

Simulations were run to generate the correlation values corresponding to each differ-

ent type of occlusion. After these values were generated by the modified VI, the standard

deviations of each inspection were calculated. This is presented in table 3.1. As expected,

the standard deviation is very low when there is no occlusion, or when there is a partial

occlusion. For brief and intermittent occlusions, however, we can see a measurable increase

in the amount of deviation.

Table 3.1: Observed standard deviation values for simulated occlusions.

Type of occlusion Standard deviation value
(σ)

None 0.01

Brief 0.066

Partial 0.008

Intermittent 0.062
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3.2 Selection of the standard deviation threshold values for

each use case

3.2.1 Selection of the threshold value for the testbed simulation

Figure 3.1 shows the histogram of standard deviation values observed corresponding

to the ground-truth data for the testbed simulation. Two different histograms are shown

here - one set for ground-truth cases with no occlusions (in red), and another set for ground-

truth cases with occlusions (in green). The standard deviation value observed is presented

along the X-axis, and the frequency of occurrence of the standard deviation values is pre-

sented along the Y-axis. According to the ground-truth, this use case had four inspections

with no occlusion, and 16 inspections with occlusion. As can be observed, cases with no

occlusions have low standard deviation values, signified by the red bars clustering towards

the left side of the graph. On the other hand, cases with occlusion display significantly

higher standard deviation values on average. A point to note here is the overlap between

cases with and without occlusion at the standard deviation values 0.008 and 0.009. The

three cases with occlusion having these low values of standard deviation were instances of

partial occlusion - VI generates consistent correlation values for these type of occlusions, and

the algorithm is not designed to detect these cases. Hence, even though the ground-truth

information for these cases say that an occlusion has occured, the standard deviation values

generated say otherwise. The solitary ground-truth occlusion case at standard deviation

0.006 is also a partial occlusion, and is not detected by the algorithm for the same reasons

detailed above. The plot of correlation values generated per frame for these four outlier

cases are presented in figure 3.2.

The remaining cases in this use case demonstrate very good separation between

occlusions and no occlusions. This separation is as we expected, and this makes choosing

a threshold value simpler. Ultimately, a standard deviation threshold value of 0.040 was

chosen for this use case, as it accurately distinguishes between all true positives (barring

the cases with partial occlusion) and true negatives.
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Figure 3.1: Histogram of observed standard deviation values corresponding to the ground-
truth data for the testbed simulation (classified according to whether an occlusion was
observed or not).
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Figure 3.2: Plots of class correlation values observed per frame for each of the four partial
occlusions part of the testbed simulation. In each case, the class actually being inspected
has the highest correlation values, while the other two classes have lower (but non-zero)
correlation values. The consistent nature of the correlation values means that they have
low standard deviation values as well, and such cases are not detected by the new algorithm.
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3.2.2 Selection of the threshold value for the spring coil use case

Figure 3.3 shows the histogram of standard deviation values observed corresponding

to the ground-truth data for the spring coil use case. As for the previous use case, ground-

truth cases with no occlusions are presented in red, and ground-truth cases with occlusions

are in green. According to the ground-truth, this use case had 124 inspections with no

occlusion, and 26 inspections with occlusion. Cases with no occlusions are clustered mainly

at the left side of the graph. However, cases with occlusion are more widely dispersed in

this use case compared to the previous one. There are quite a few points of interest in this

particular histogram: the overlap between four cases with occlusion and other cases with

no occlusion at standard deviation values 0.008, 0.009, 0.018, and 0.020.

The three cases with occlusion having values of standard deviation 0.008, 0.010, and

0.020 were instances of partial occlusion - the inspection areas were completely occluded by

a worker for the entire duration of the inspection. Hence, the corresponding class correlation

values for these inspections were very stable throughout the inspection. These cases will

not be detected by the new algorithm. The plot of correlation values generated per frame

for these three cases are presented in figure 3.4.

The fourth ground-truth occlusion case at standard deviation 0.018 was a brief occlu-

sion, but VI generated consistent correlation values throughout the duration of inspection.

This is a false negative, and is not detected by the algorithm because of the low standard

deviation values. The plot of correlation values generated per frame is in figure 3.5.

Unlike the histogram of the testbed simulation, there is no clear separation between

the cases with and without occlusions in the spring coil use case. Occlusion cases with the

standard deviation values closest to the highest value recorded for a non-occlusion case were

again verified manually by observing the video file, as well as the correlation value trace.

All such cases were found to be true occlusions, and the analysis of the trace for four of the

occlusion cases with the least standard deviation values are presented in figure 3.6.

For the spring coil use case, the separation between the cases with and without

occlusion is very little, and this makes choosing a threshold value a little more difficult.
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Figure 3.3: Histogram of observed standard deviation values corresponding to the ground-
truth data for the spring coil use case (classified according to whether an occlusion was
observed or not).
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Figure 3.4: Plots of the class correlation values observed per frame for the three instances
of partial occlusion in the spring coil use case. The spring coil use case has two inspection
areas, with two classes per inspection area, for a total of four classes as depicted in the
plots above. For the plot on the left, the false negative occured in only one inspection area
- denoted by the light green and light blue lines. The occlusion in the second inspection
had a marked effect on the standard deviation for the respective classes in that area, as
evidenced by the large fluctuation in the pink and dark blue lines. For the plot on the right,
the partial occlusion affected both inspection areas equally, and hence the relatively similar
traces for all four classes.

Figure 3.5: Plots of the class correlation values observed per frame for the brief occlusion
not detected in the spring coil use case. The occlusion happened on the first inspection
area, right at the begining of the inspection process. This is evidenced by the upward spike
in the trace corresponding to Class2 (the light blue line). However, the average standard
deviation of the correlation values within this inspection area was still quite low.
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Figure 3.6: Plots of the class correlation values observed per frame for the four occlusions
with lowest standard deviation values. (clockwise from top left) standard deviation value
0.021 - occlusion of the spring in the first inspection area (the fluctuation of the green line);
standard deviation value 0.021 - inspection of a missing spring in the first inspection area,
where the worker occludes the missing part right at the end of inspection (the momentary dip
in the green line at the end); standard deviation value 0.027 - occlusion of the spring in the
first inspection area (the dip in the light blue line during the second half of the inspection);
standard deviation value 0.028 - brief occlusion of the spring in the first inspection area
(the trough visible on the light blue line).
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Ultimately, a standard deviation threshold value of 0.020 was chosen for this use case, as it

adequately distinguishes between true positives (barring the cases with partial occlusion)

and true negatives. It must be noted that this threshold value is lesser than that chosen

for the testbed simulation use case. This is because the standard deviation values observed

for true occlusions in the spring coil use case are lower than those observed for the testbed

simulation. A possible explanation for this may lie in the different way the two use cases

are set up. The testbed necessitates placing the camera very close to the subject being

inspected. Consequently, even a small occlusion fills up a large portion of the field of view

of the camera. Thus, any movement captured will have a large impact on the correlation

values that VI generates. This is not so in the case of the spring coil use case at the

BMW plant. The camera is much farther away from the car, with a much larger field

of view. Therefore, the use case is slightly less sensitive to changes in the image during

inspection, which translates to less fluctuations in the correlation values, and consequently,

less standard deviation values. Moreover, the fluidity of movement of the assembly line also

has to be taken into consideration. The testbed assembly is much less smoother than the

spring coil assembly line, which may contribute to larger fluctuations in correlation values.

3.2.3 Selection of the threshold value for the door-line emblem use case

Figure 3.7 shows the histogram of standard deviation values observed corresponding

to the ground-truth data for the door-line emblem use case. The ground-truth cases without

occlusions are presented in red, and there are no cases with occlusions for this use case.

According to the ground-truth, this use case had 154 inspections in total, all with no

occlusion. Most of the inspections with no occlusions are clustered at the left side of the

graph. However, a particular inspection shows a relatively high standard deviation value of

0.047. The analysis of the trace for this inspection is presented in figure 3.8.

For the door-line emblem use case, there was no need to consider separation between

the cases with and without occlusion. Ultimately, a standard deviation threshold value of

0.050 was chosen for this use case, to accommodate all true negatives. It must be noted that
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Figure 3.7: Histogram of observed standard deviation values corresponding to the ground-
truth data for the door-line emblem use case (classified according to whether an occlusion
was observed or not). This use case does not have any occlusions.
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Figure 3.8: Plot of the class correlation values observed per frame for the case with no
occlusion with high standard deviation value. The doorline-emblem use case has two in-
spection areas, with three classes in the first, and seven classes in the second area. This
particular case demonstrates relatively high standard deviation values, even though there
is no occlusion. After reviewing this case in the video file, it was determined that the
high standard deviation value was caused by excessive shaking of the door-line assembly
during inspection. The lack of a stable image contributed to high fluctuations in the class
correlation values.
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this threshold value is greater than that chosen for the spring coil use case. This is because

the standard deviation values observed for cases with no occlusions in the door-line emblem

use case are higher than those observed for the spring coil use case. Again, this difference

is likely due to the different manner in which the two use cases are set up. The door-line

emblem use case positions the camera closer to the subject than that done for the spring

coil use case. Consequently, even small movements in the video will have a large impact

on the correlation values that VI generates. Moreover, the door-line emblem assembly is a

little less smoother than the spring coil assembly line, with frequent shaking of the assembly

during inspection that may in turn contribute to larger fluctuations in correlation values.

3.2.4 Selection of the threshold value for the child safety lock use case

Figure 3.9 shows the histogram of standard deviation values observed corresponding

to the ground-truth data for the child safety lock use case. Ground-truth cases with no

occlusions are presented in red, and there are no cases with occlusion. According to the

ground-truth, this use case had 125 inspections with no occlusion. The histogram for this

use case is not as expected - cases with no occlusions are not limited to the left side of the

graph, quite a few cases exhibit high standard deviation values. There are a lot of points

of interest here: the large number of inspections with no occlusion occurring at relatively

high standard deviation values greater than 0.040.

Eight cases with no occlusion demonstrated higher than expected values of standard

deviation that were greater than 0.040. Each of these cases were manually reviewed, and

it was verified that there were indeed no occlusions. The reason for the high standard

deviations for each of these inspections was because of excessive shaking of the assembly

during inspection that caused large fluctuation in the class correlation values. Similar to

the door-line emblem use case, the child safety lock use case positions the camera very

closer to the subject being inspected. Consequently, tiny movements in the video translate

to large changes in the correlation values that VI generates. Moreover, the child safety lock

assembly is a little less smoother than the spring coil assembly line, with frequent shaking

54



0

5

10

15

20

0 0.02 0.04 0.06 0.08 0.1 0.12

F
re

q
u

e
n

c
y

Standard deviation value

No occlusion

Occlusion

Figure 3.9: Histogram of observed standard deviation values corresponding to the ground-
truth data for the child safety lock use case (classified according to whether an occlusion
was observed or not).
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Figure 3.10: Plots of the class correlation values observed per frame for the first four
cases with no occlusion having high standard deviation values in the child safety lock use
case. It is important to note that although the trigger value (the red line) falls below
the trigger threshold for three of the four cases above, the corresponding zero-valued class
correlations (the light blue and light green lines) are not considered while calculating the
standard deviation. The class correlation values demonstrate sufficiently high fluctuations
by themselves to result in high standard deviation values.

of the assembly during inspection that may in turn also contribute to larger fluctuations

in correlation values. The plot of correlation values generated per frame for these eight

inspections are presented in figure 3.10 and figure 3.11.

There were eight special cases (not part of the 125 inspections considered as part of

this use case), where the trigger was occluded, in addition to the inspection area. The setup

of the child safety lock use case in the BMW plant places a trigger window very close to

the inspection window. An occlusion in the inspection window will almost always occlude

the trigger window as well. However, if the trigger is occluded VI does not generate class

correlation values at all, and hence, there is no data to analyze for the few frames where
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Figure 3.11: Plots of the class correlation values observed per frame for the second four
cases with no occlusion having high standard deviation values in the child safety lock use
case. Again, it is important to note that zero-valued class correlations above are not con-
sidered while calculating the standard deviation. The class correlation values demonstrate
sufficiently high fluctuations by themselves to result in high standard deviation values.
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Figure 3.12: Plots of the class correlation values observed per frame for the first four
instances where the trigger was occluded in the child safety lock use case. The child safety
lock use case has a single inspection area with two classes. All the cases depicted above
had occlusions that occluded the trigger, in addition to the inspection area. These are
characterised by the trigger value (the red line) falling below the threshold of 0.70, and the
corresponding class correlation values (the light blue and light green lines) dropping down
to zero. These cases are presented for information only - they are not included for analysis
by the new algorithm.

the occlusion causes the trigger value to fall below the trigger threshold. Hence, zero-valued

class correlations for the frames corresponding to when the trigger was occluded are not

considered as part of the occlusion analysis. The current setup of VI is not designed to ac-

commodate inspections where the trigger is occluded. Hence, such cases are not considered

for analysis by the new algorithm. The plot of correlation values generated per frame for

these eight inspections are presented in figure 3.12 and figure 3.13.

For the child safety lock use case, there is no measure of separation between the cases

with and without occlusion. Cases with no occlusion were registering very high standard
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Figure 3.13: Plots of the class correlation values observed per frame for the second four
instances where the trigger was occluded in the child safety lock use case. Similar to the
previous four cases of occlusion, all the cases depicted above had occlusions that occluded the
trigger, in addition to the inspection area. Again, these cases are presented for information
only - they are not included for analysis by the new algorithm.
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deviation values, because of way the use case is set up at the plant. Ultimately, a standard

deviation threshold value of 0.075 was chosen for this use case, in order to capture all true

negatives in this use case. It must be noted that this threshold value is much higher than

that of any other use case. This is because the standard deviation values observed for

cases with no occlusions in the child safety lock use case are very high. The reason for this

high value is similar to the reason why the door-line emblem use case also employs a high

threshold value - the camera is placed very close to the subject, which contributes to larger

fluctuations in correlation values, and the assembly movement is not as smooth as that for

the other use cases.

3.2.5 Selection of the threshold value for the underbody use case

Figure 3.14 shows the histogram of standard deviation values observed corresponding

to the ground-truth data for the underbody use case. Ground-truth cases with no occlusions

are presented in red, and ground-truth cases with occlusions are in green. The underbody

use case is unique amongst the use cases within VI, as it is the only one with more than

one trigger. This use case has four triggers, with multiple inspection areas divided amonst

them. The first two triggers have six inspection areas each, while the last two triggers have

five each, for a total of 22 inspection areas. According to the ground-truth, this use case

had 204 inspections with no occlusion, and 60 inspections with occlusion. The histogram

for this use case is as expected - cases with no occlusions are clustered on the left side of

the graph, and cases with occlusions are clustered on the right.

For the underbody use case, there is hard separation between the cases with and

without occlusion. The standard deviation of occlusions is relatively low in this use case,

because similar to the spring coil use case, the camera is far away from the subjects being

inspected, and the movement of the assemmbly is fluid. Ultimately, a standard deviation

threshold value of 0.020 was chosen for this use case, in order to capture all true positives

and true negatives.
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Figure 3.14: Histogram of observed standard deviation values corresponding to the ground-
truth data for the underbody use case (classified according to whether an occlusion was
observed or not).
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Figure 3.15: Histogram of observed standard deviation values corresponding to the ground-
truth data for the wheel lock use case (classified according to whether an occlusion was
observed or not). This use case does not have any occlusions.

3.2.6 Selection of the threshold value for the wheel lock use case

Figure 3.15 shows the histogram of standard deviation values observed correspond-

ing to the ground-truth data for the wheel lock use case. The ground-truth cases without

occlusions are presented in red, and there are no cases with occlusions for this use case. Ac-

cording to the ground-truth, this use case had 19 inspections in total, all with no occlusion.

All of the inspections with no occlusions are clustered at the left side of the graph.

The inspections in this use case demonstrate good clustering. As there were no cases

with occlusions, a measure of separation cannot be determined. However, the cases with

no occlusion demonstrate standard deviation values as expected, and this makes choosing
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a threshold value simpler. Ultimately, a standard deviation threshold value of 0.040, the

same as the threshold chosen for the testbed simulation, was selected for this use case as

it accurately detects all true negatives. This threshold could be taken down to as low as

0.020, with no change in the final results.

3.2.7 Summary of standard deviation threshold values selected for each

use case

Table 3.2 collates the standard deviation threshold values selected for all the use

cases over the previous few sections. It is immediately apparent that the threshold value

varies between the use cases. There are a few reasons why this is so. Firstly, lighting

conditions at a particular installation can determine the quality of detection/ classification

performed by VI. Better lighting will generally result in more consistent correlation values.

Shadows appearing across trigger or inspection windows in particular, cause noticeable

changes in the class correlation values, and can lead to false positives if the threshold value

is kept too low. Secondly, the level of zoom of the camera or the distance between the

camera and the inspection area matters. If the use case has a narrow field of view, small

movements or motion in the video feed will have an amplified effect on the correlation

values generated. Conversely, in a use case with a large field of view where the inspection

area is further away fom the camera, small movements are less likely to be picked up, and

less likely to affect the correlation values during inspection. Use cases with a small field of

view in general tend to need higher threshold values in order to not generate false positive

results. Lastly, the amount of movement or jitter in the assembly during inspection plays

a large role in the amount of fluctuation in the correlation values. Use cases with stable

assemblies experience correlation values that are more consistent, and can thus handle a

lower threshold value to detect occlusions.

Essentially, the way a particular use case is set up at the plant will determine the

class correlation values that VI generates as part of inspections for that use case. This

means that similar types of inspections (ones with occlusions, and ones without) at dif-
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Table 3.2: Standard deviation threshold values for each use case.

Use case Standard deviation threshold
value (σ)

Testbed simulation 0.040

Spring coil 0.020

Door-line emblem 0.050

Child safety lock 0.075

Underbody 0.020

Wheel lock 0.040

ferent use case locations will exhibit appreciably different amounts of fluctuation in the

correlation values. The fluctuations in turn affect the standard deviation values, and hence,

the threshold of standard deviation has to be adjusted on a use case to use case basis to

accurately detect occlusions. This new threshold information may be added into the exist-

ing ‘usecase info.txt’ file that VI currently uses to keep track of configuration information

for each use case.

3.3 Analysis of correlation values generated by the simula-

tion on the testbed

The final simulation on the testbed was performed to test the reliability of the

new algorithm, and the newly selected standard deviation threshold value in detecting

occlusions on simulated data. A series of 20 inspections were performed, and the results were

compared with the ground-truth established early on. As expected, the algorithm was able

to successfully identify all brief and intermittent occlusions, based on the comparison of the

observed standard deviation of the correlation values and the threshold standard deviation

value selected previously. Inspections with no occlusions were also correctly reported - there

were no false positives. Partial occlusions were not detected by this algorithm - there were

four false negatives. The results are presented in table 3.3. The algorithm managed to

detect 12 out of 16 occlusions, for a detection accuracy of 75%. The overall result for this
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Table 3.3: Comparison of the output of the occlusion detection algorithm with the ground-
truth information for the testbed simulation.

Minion no. Inspection area no. Occlusion ground-truth Occlusion detected?
(0:no; 1:yes) (yes/ no)

1 1 0 No

2 1 0 No

3 1 0 No

4 1 1 Yes

5 1 1 Yes

6 1 1 Yes

7 1 1 No

8 1 1 No

9 1 1 No

10 1 1 Yes

11 1 1 Yes

12 1 1 Yes

13 1 0 No

14 1 1 Yes

15 1 1 Yes

16 1 1 Yes

17 1 1 Yes

18 1 1 Yes

19 1 1 Yes

20 1 1 No

use case was 16 correct inspections out of 20, for an overall accuracy of 80%.

3.4 Analysis of correlation values generated by live data

3.4.1 Results for the spring coil use case

The correlation values from the live data for the spring coil use case was input to

the new algorithm, along with the newly selected standard deviation threshold value for

the spring coil use case. A series of 150 inspections were performed, and the results were

compared with the ground-truth established early on. The algorithm was able to successfully

identify most of the occlusions. Four false negative results happened because the inspection
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Table 3.4: Truncated results of the occlusions detected on live data for the spring coil use
case.

Car no. Inspection area no. Occlusion ground-truth Occlusion detected?
(0:no; 1:yes) (yes/ no)

1 1 1 Yes

1 2 0 No

2 1 1 No

2 2 1 Yes

3 1 0 No

3 2 0 No

4 1 0 No

4 2 0 No

5 1 1 No

5 2 1 No

area had a consistent appearance during inspection, even while being occluded. The results

(truncated to show the first five cars) are presented in table 3.4. The algorithm managed

to detect 22 out of 26 occlusions, for a detection accuracy of 84.6%. The overall result for

this use case was 146 correct inspections out of 150, for an overall accuracy of 97.3%.

3.4.2 Results for the door-line emblem use case

The correlation values from the live data for the door-line emblem use case was input

to the new algorithm, along with the newly selected standard deviation threshold value for

the door-line emblem use case. A series of 154 inspections were performed, and the results

were compared with the ground-truth established early on. The algorithm successfully

detected all non-occlusions. The use case did not have any occlusions to detect, and the

algorithm did not generate any false positives. The results (truncated to show the first

five cars) are presented in table 3.5. The overall result for this use case was 154 correct

inspections out of 154, for an overall accuracy of 100%.
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Table 3.5: Truncated results of the occlusions detected on live data for the door-line emblem
use case.

Car no. Inspection area no. Occlusion ground-truth Occlusion detected?
(0:no; 1:yes) (yes/ no)

1 1 0 No

1 2 0 No

2 1 0 No

2 2 0 No

3 1 0 No

3 2 0 No

4 1 0 No

4 2 0 No

5 1 0 No

5 2 0 No

3.4.3 Results for the child safety lock use case

The correlation values from the live data for the child safety lock use case was input

to the new algorithm, along with the newly selected standard deviation threshold value

for the child safety lock use case. A series of 125 inspections were performed, and the

results were compared with the ground-truth established early on. The algorithm was able

to successfully identify all of the inspections. The use case did not have any occlusions.

No false positives were generated. The results (truncated to show the first five cars) are

presented in table 3.6. The result for this use case was 125 correct inspections out of 125,

for an overall accuracy of 100%.

3.4.4 Results for the underbody use case

The correlation values from the live data for the underbody use case was input

to the new algorithm, along with the newly selected standard deviation threshold value

for the underbody use case. A series of 264 inspections were performed, and the results

were compared with the ground-truth established early on. The algorithm was able to

successfully identify all of the occlusions. Interestingly, the live data had two cars for which
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Table 3.6: Truncated results of the occlusions detected on live data for the child safety lock
use case.

Car no. Inspection area Pass no. Occlusion Occlusion detected?
no. (no. of times ground-truth (yes/ no)

triggered) (0:no; 1:yes)

1 1 1 0 No

1 1 2 0 No

2 1 1 0 No

2 1 2 0 No

3 1 1 0 No

3 1 2 0 No

4 1 1 0 No

4 1 2 0 No

5 1 1 0 No

5 1 2 0 No

the inspection could only be performed on two of the four triggers because the trigger

window was occluded for the complete duration of inspection. These 22 cases have not

been included in the results. The results (truncated to show the only the first car) are

presented in table 3.7. The algorithm managed to detect 60 out of 60 occlusions, for a

detection accuracy of 100%. The overall result for this use case was 264 correct inspections

out of 264, for an overall accuracy of 100%.

3.4.5 Results for the wheel lock use case

The correlation values from the live data for the wheel lock use case was input to

the new algorithm, along with the newly selected standard deviation threshold value for

the wheel lock use case. A series of 19 inspections were performed, and the results were

compared with the ground-truth established early on. The algorithm successfully detected

all non-occlusions. The use case did not have any occlusions to detect, and the algorithm

did not generate any false positives. The live data also had 10 cars for which the inspection

could not be performed at all because the trigger window was occluded for the complete

duration of inspection. These 10 cases have not been included in the results. The results
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Table 3.7: Truncated results of the occlusions detected on live data for the underbody use
case.

Car no. Trigger no. Inspection area Occlusion Occlusion
no. ground-truth detected?

(0:no; 1:yes) (yes/no)

1 1 1 1 Yes

1 1 2 0 No

1 1 3 0 No

1 1 4 0 No

1 1 5 0 No

1 1 6 0 No

1 2 1 0 No

1 2 2 0 No

1 2 3 0 No

1 2 4 1 Yes

1 2 5 1 Yes

1 2 6 1 Yes

1 3 1 0 No

1 3 2 0 No

1 3 3 0 No

1 3 4 0 No

1 3 5 0 No

1 4 1 0 No

1 4 2 0 No

1 4 3 0 No

1 4 4 0 No

1 4 5 0 No
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Table 3.8: Truncated results of the occlusions detected on live data for the wheel lock use
case.

Car no. Inspection area no. Occlusion ground-truth Occlusion detected?
(0:no; 1:yes) (yes/ no)

1 1 0 No

2 1 0 No

3 1 0 No

4 1 0 No

5 1 0 No

(truncated to show the first five cars) are presented in table 3.8. The overall result for this

use case was 19 correct inspections out of 19, for an overall accuracy of 100%.

3.5 Results of net occlusions detected

The results of the occlusions detected on the live data were collated, and the net

occlusions were matched-up with the ground-truth established earlier. This is presented in

table 3.9. Each row in the table represents the results for a single use case. Column four

(No. of occlusions detected) indicates the performance of the new algorithm for each use

case. Column five specifies the number of occlusions missed by the algorithm. For each

use case, the sum of counts in columns four and five will match the number of occlusions

in column three. Overall, the algorithm managed to detect 94 out of 102 occlusions. The

total result for the algorithm across all the use cases was 732 correct inspections out of 740,

for an occlusion detection accuracy of 98.9%.
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Table 3.9: Comparison of the net occlusions detected vs. the ground-truth information.

Use case Total in-
spections
performed

Total no. of
occlusions
(ground-
truth)

No. of oc-
clusions de-
tected

Undetected
occlusions
due to
consistent
appearance

No. of false
positives

Testbed sim-
ulation

20 16 12 4 0

Spring coil 150 26 22 4 0

Door-line
emblem

154 0 0 0 0

Underbody 264 60 60 0 0

Child safety
lock

125 0 0 0 0

Wheel lock 19 0 0 0 0

71



Chapter 4

Conclusion and Future Work

In this thesis we have detailed one possible method by which occlusions may be

detected within VI. We have modified VI to generate additional correlation information,

and have analyzed this information to determine the variation in correlation values when

occlusions happen. From this analysis, we have then proposed a fast and simple method that

looks at the standard deviation of the correlation values to predict if an occlusion occurs.

This new algorithm has demonstrated an occlusion detection accuracy of 98.9%. It works

well to detect brief and intermittent occlusions - i.e., when there is a large fluctuation in

the correlation values because of occlusion. Considering just the standard deviation of the

correlation value does not work in cases where the part being inspected is partially occluded,

because the correlation values remain more or less constant throughout the occlusion. Such

cases are not handled by this new functionality. It also ignores cases where the occlusion

covers the trigger window. In addition, we have observed that the algorithm is sensitive to a

few parameters such as: shadows or change in intensity over inspection areas, vibrations or

excessive shaking of the assembly during inspection, and the camera zoom level or distance

between the camera and the subject of inspection. These parameters determine the level of

fluctuation of the correlation values generated by VI itself, which in turn affect the standard

deviation values used in analysis by the new algorithm.

For future work, we suggest that the functionality could be extended to detect partial
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occlusions. Additional metrics such as the duration of the trigger, the mean correlation

values for the duration of the trigger, the difference in peak correlation values between

classes, and the difference in mean correlation values across classes may potentially be

utilized to detect partial occlusions.
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