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Abstract

Advances in body sensing and mobile health technology have created new opportunities for

empowering people to take a more active role in managing their health. Measurements of dietary

intake are commonly used for the study and treatment of obesity. However, the most widely used

tools rely upon self-report and require considerable manual effort, leading to underreporting of

consumption, non-compliance, and discontinued use over the long term. We are investigating the

use of wrist-worn accelerometers and gyroscopes to automatically recognize eating gestures. In

order to improve recognition accuracy, we studied the sequential dependency of actions during

eating. In chapter 2 we first undertook the task of finding a set of wrist motion gestures which were

small and descriptive enough to model the actions performed by an eater during consumption of a

meal. We found a set of four actions rest, utensiling, bite, and drink; any alternative gestures is

referred as the other gesture. The stability of the definitions for gestures was evaluated using an

inter-rater reliability test. Later, in chapter 3, 25 meals were hand labeled an used to study the

existence of sequential dependence of the gestures. To study this, three types of classifiers were

built: 1) a K-nearest neighbor classifier which uses no sequential context, 2) a hidden Markov model

(HMM) which captures the sequential context of sub-gesture motions, and 3) HMMs that model

inter-gesture sequential dependencies. We built first-order to sixth-order HMMs to evaluate the

usefulness of increasing amounts of sequential dependence to aid recognition. The first two were our

baseline algorithms. We found that the adding knowledge of the sequential dependence of gestures

achieved an accuracy of 96.5%, which is an improvement of 20.7% and 12.2% over the KNN and sub-

gesture HMM. Lastly, in chapter 4, we automatically segmented a continuous wrist motion signal

and assessed its classification performance for each of the three classifiers. Again, the knowledge

of sequential dependence enhances the recognition of gestures in unsegmented data, achieving 90%

accuracy and improving 30.1% and 18.9% over the KNN and the sub-gesture HMM.
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Chapter 1

Introduction

1.1 Motivation

The primary measurements used in the study and treatment of obesity are energy intake

(EI) and energy expenditure (EE). EI measures the amount of energy absorbed through food intake,

and EE measures the energy cost of homeostasis (body maintenance) plus physical activities. At

least in part, obesity results from a mismatch between EI and EE [79]. The units of EI and EE are

calories (or joules). EI is a function of food intake, whereas EE is a function of resting metabolic

rate, the thermic effect of food, and the thermic effect of physical activity.

EI measurement is classically concerned with determining a person’s food intake and con-

verting this information to energy and nutrient intake [8]. Paper-based methods to measure food

intake include the 24-hour recall, food records, and food frequency questionnaires [168, 115, 50].

The 24-hour recall uses a directed interview to quantify the consumption of food and beverages of a

single day [181]. Food records, such as a 7-day diet diary, require the subject to record time, type,

and amount of food eaten [49]. Food-frequency questionnaires are designed to asses the habitual

diet of a subject by asking the frequency with which food items are consumed [49]. Extensions

to these classic tools include computer-based methods that can scan bar codes and record spoken

descriptions of food intake over the course of a day [156]. Other methods include keeping a daily

personal health record of food intake and daily exercise [182, 104] to estimate weight gain, weight

loss, and nutritional information.

The accuracy of these methods is typically ascertained by comparing measurements of EI

1



against simultaneously measured EE. Accounting for weight gain/loss, EI should match EE, therefore

any discrepancy may be considered error in the measurements. The most accurate method for

measuring EE is the calorimetry chamber, in which a subject lives in a controlled environment. In

this scenario, EI can also be accurately measured using bomb calorimetry for all foods given to

a subject. These methods are expensive and obviously impractical for long-term and widespread

use [158]. For free living, the most accurate method for measuring EE is doubly labeled water [159].

Typically used over a period of one week [132], the method measures the average metabolic rate

using water in which hydrogen and oxygen are replaced by deuterium and oxygen-18. The loss

of these isotopes is tracked through daily samples of saliva, urine, or blood. Disadvantages of

this method include its cost and the technical expertise needed to take samples [150]; however, it

remains the gold standard against which EI measurement tools are evaluated. It is well established

that EI calculated from information provided by classic self-report methods show inconsistencies

with measured EE. Food record, food-frequency questionnaires, and recall methods are designed

to be self-administered [181]. People have a tendency to underreport, with estimates ranging from

10% to 50% [38]. This issue may be caused by several factors [149, 103, 83, 74, 34]. Using recall

methods, people can forget what they consumed. Food-frequency tools require long lists of items,

with usefulness somewhat determined by the overlap of the food list with typical eating habits.

Food records require accurate self-estimation of portion sizes, but it has been shown that people

tend to overestimate large portions and underestimate small portions. Another limitation of these

tools is that they place a constant responsibility on subjects to accurately log the information [181].

Within the dietetics research community, there is a well-recognized need to develop new methods

for measuring EI in free living that are more accurate, less expensive, and have less subject and

experimenter burden [112, 169].

This dissertation investigates the use of wrist-worn accelerometers and gyroscopes to auto-

matically recognize eating gestures. Previous work done by our research group studied the tracking

of wrist motion as it relates to eating [55]. A method was developed to detect a pattern of wrist

motion associated with the taking of a bite, defined as placing food or liquid into the mouth [57].

The method was shown to be accurate across a wide variety of foods, counting bites with a true pos-

itive rate of 86% and a positive predictive value of 82% [57]. Additional research showed that bites,

automatically counted using this method, correlated with self-reported caloric intake at the meal

level at 0.5 [151]. The work in this dissertation is concerned with improving upon this method to

2



0 0.5 1 1.5 2 2.5 3 3.5 4
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

Time (sec)

A
m

pl
itu

de

Hello, how are "?"

Figure 1.1: Speech message.

automatically measure EI. The original method treated all bites the same, regardless of context, and

used a single pattern for detection. The proposed idea in this work is to study temporal sequencing

as it relates to eating activities. By defining common activities during eating, we seek to determine if

the recognition of previous activities can be used to improve the recognition of subsequent activities.

To begin studying this idea, first a “language of eating” is defined. Languages obey gram-

matical rules in order to make messages coherent; i.e., the ordered structure of the words is meaning-

ful. Figure 1.1 shows an example from a speech signal. The recognition of each piece of signal can be

undertaken independently, in order to determine the word. However, if the recognition results from

the previous pieces of signal are known, this can constrain and improve the subsequent recognition

of the next piece of signal. In this example, the recognition of the piece of signal labelled “?” can

be improved by using the recognition results of the previous pieces of signal (“Hello” “how” “are”).

For this example, it may be highly expected that the next piece of signal encodes the word “you”.

This dissertation pursues the same idea in the language of eating. The signal is obtained using

accelerometers and gyroscopes to track wrist motion. The recognition of a piece of signal can be

done independently, or can be augmented using recognition results from previous pieces of the signal.

Figure 1.2 shows an example. If the actions “inactive” and “manipulate food” have previously been

recognized, then it may be highly expected that the next action is “take a bite”.
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Figure 1.2: Eating activity signal (roll).

Our experiments use data recorded by a wrist-worn device mounted with gyroscopes and

accelerometers MEMS sensors which track wrist motion. A sample of data collected from this device

is shown in figure 1.3. The plot shows analog voltages of the accelerometers (AccX, AccY, and

AccZ) and gyroscopes (Yaw, Pitch, and Roll) tracking wrist motion of a subject for approximately

48 seconds while eating. A collection of snapshots are shown on the top illustrating the activities

during this period. From left to right, these activities are drinking, moving food items around the

plate, executing a bite with and without utensils, and being in an inactive position. The shaded

areas of the signal represent the length of the activity taking place. We extract features from these

six signals and use them to build models for temporal analysis.

Among the tools for studying temporal sequencing of data, hidden Markov models (HMMs)

are one of the most popular techniques. An HMM is a well-known probabilistic tool used in speech

processing, which uses previously gathered data to make predictions of future information [136]. In

this work, HMMs will be used to model the temporal sequencing of actions related to eating and to

evaluate the utility of this idea for improving automated measurements of EI.

The following sections provide background information regarding the areas of study which

touch upon the research discussed in this dissertation. Section 1.2 describes the problem of obesity.

Section 1.3 gives an overview of mHealth systems and their importance. Section 1.4 discusses
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physical activity monitoring and the measurement of EE. Section 1.5 describes related work using

body-worn sensors for automatic dietary monitoring. Section 1.6 briefly describes related work on

gesture recognition. Section 1.7 gives an introduction to MEMS sensors, describes the type of sensors

used in this work, and demonstrates raw data during eating activities. Section 1.8 describes eating

patterns at three main levels (daily, meal, and microstructure). Section 1.9 explains the theory of

hidden Markov models. Lastly, section 1.10 defines the novelty and specific contributions of this

work.

1.2 Obesity

Obesity is a medical condition associated with abnormal or excessive fat accumulation. It

is typically defined by body mass index (BMI) and is calculated by dividing the subject’s weight

(kilograms) by the square of height (meters). The World Health Organization defines overweight as

a BMI≥25, obese as a BMI≥30, and morbidly obese as a BMI≥40 [7].

Obesity is causing health damage to the population worldwide, and is considered to be a

global epidemic [4, 35]. Obesity has been shown to correlate to several diseases [117, 68, 53, 74] in-

cluding type 2 diabetes mellitus, gallbladder disease, coronary heart disease, high blood cholesterol

level, high blood pressure, osteoarthritis, cardiovascular disease, several types of cancer (endome-

trial, postmenopausal breast, kidney, and colon), musculoskeletal disorders, sleep apnea, asthma,

infertility, and depression. According to the World Health Organization, obesity has more than

doubled since 1980 and 65% of the world’s population lives in countries where obesity is among the

leading causes of death [7].

The United States has seen an increase in the number of adults, adolescents, and children

suffering from obesity. The National Health Nutrition Examination Surveys (NHANES) [5], in the

years of 2009 and 2010, found that 35% of the adult population was obese. Additionally, 17% of

adolescents and children were obese. These percentages represent over 78 million U.S. adults and

approximately 12.5 million U.S. children and adolescents [122]. The “Healthy People 2012” initiative

of the U.S. Department of Health and Human Services [6] set goals to reduce the prevalence of

obesity among adults (ages 20 and over) to 15% and 5% among adolescents (ages 12-19). However,

the obesity rate in children (ages 6-11) increased from 11% to 18% over the same time period.

Recent studies [67] have concluded that if obesity trends were to continue based on 2010 levels, the
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combined costs from medical expenditures over the next 2 decades would be $549.5 billion with a

33% increase in obesity prevalence and a 130% increase in severe obesity. By 2030 obesity rates

would reach 42% and severe obesity would reach 11%.

There are three main strategies used in the treatment of obesity: surgery, pharmacology, and

behavioral change. Surgical procedures, [121, 45] such as gastric bypass, gastric banding, vertical

banded gastroplasty, and laparoscopic cholecystectomy have been shown to be effective for signifi-

cant weight loss, but are only considered for those who are morbidly obese, have failed conventional

methods for weight loss, and are good candidates from a psychological standpoint. Pharmacology

methods [80] use medication to reduce appetite, decrease nutrient absorption, or increase thermoge-

nesis (EE); some of these have shown negative side effects on the human body (e.g. valvular heart

disease, cataracts, neuropathy, and hemorrhagic strokes). Behavioral weight loss methods [74, 34]

involve increasing EE, decreasing EI, and altering behavior.

Recently, there has been an increased interest in involving an engineering perspective in

the study of diet and obesity. Scientific research in dietetics is dependent on improving dietary

assessment methodology [112]. The lack of accuracy inhibits dietetics practitioners from obtaining

accurate information on which to base nutrition care plans. Computerized questionnaires using

mobile devices and the Internet have improved data recording, but researchers have also worked on

developing systems that can take advantage of sensors mounted on certain parts of the body [18, 144].

1.3 Mobile Health (mHealth)

Technology has revolutionized medical care in many ways. eHealth, short for electronic

health, is concerned with bringing technology into hospital and supervised care settings [15]. It in-

cludes the use of modern information and communication technologies to meet the needs of citizens,

patients, healthcare professionals, healthcare providers, and policy makers. Examples include bring-

ing telemedicine into hospitals and managed healthcare, electronic medical records, allowing access

to patient records by pharmacists, sharing information between clinicians, and even sharing infor-

mation between same-site facilities. mHealth, short for mobile health, is a similar area of research

but is concerned with using technology to empower self-care. Examples include self-administered

diagnostic tests and daily health monitoring, with a focus on lowering costs and enabling individuals

to better manage their own health. The goal of mHealth systems is to improve a subject’s health by
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monitoring their status, recognizing behaviors, diagnosing medical conditions, and providing inter-

ventions if necessary through the use of wireless portable devices capable of storing, processing, and

retrieving real-time and non-real-time data from the users [9, 97]. The impact and effectiveness of

mHealth systems is dependent on devices that provide connectivity and enable the user to become

players in managing their own health and care. Wearable wireless sensors are expected to grow by

400 million units by 2014, while the number of operational mobile subscribers already surpassed the

5.2 billion mark in 2011 [9]. The market for mobile health applications is expected to grow by 6

billion US$ by the end of 2015 [141].

mHealth systems have enhanced monitoring and recording data for several health-related

issues through the use of embedded sensors and applications in mobile devices, complemented with

body-worn sensors. mHealth sytems have made many contributions to cardiovascular monitor-

ing [133], diabetes [42], calorie intake monitoring [171], blood oxygen levels [23], blood sugar [12],

and hypertension [43], among others. For example, Poh et al. [133] developed a system called

Heartphones which measures bilateral volume pulse for cardiovascular monitoring using a reflective

photosensor mounted on common earbuds. A custom application was built into a smartphone plat-

form for processing data and displaying the resulting information to the user. Chomutare [42] worked

on the development of a self-monitoring application for patients with type 2 diabetes. Alinker et

al. [23] created a wrist-worn device which measured blood pressure, oxygen saturation, and ECG

to monitor the status of high-risk cardiac/respiratory patients. The device has a communication

interface which connects to a telemedicine center. Tsai [171] describes the development of a system

to register and calculate caloric intake using an application on a mobile device which is connected to

a server application. The server application reminds the user to update caloric information. Sung et

al. [165] presents an ambulatory health monitoring system called LiveNet. This system has a PDA,

a microcontroller board connected to a variety of sensors (activity detection, oxygen saturation,

ECG, EMG, galvanic skin response, respiration, temperature, and blood pressure), and an appli-

cation which registers data and processes it using machine-learning techniques. This system was

built to be used in several clinical studies such as Parkison’s disease monitoring, depression moni-

toring, epilepsy seizure detection, and general activity detection. In previous work by our research

group, Dong [55] worked on an experiment in which accelerometers and gyroscopes were embed-

ded in the iPhone 4 to recognize activity events during the day (ambulatory, sedentary, eating).

Pantelopoulos [125] provides a broader survey on biosensor systems for use in health monitoring.
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1.4 Physical activity monitoring

Several methods for measuring EE have been created, including behavioral observations [166,

173], self-report [89, 98], physiological markers [179, 161], motion sensors [180, 131, 82], and indirect

calorimetry [107, 64]. This section focuses on methods that use body-worn sensors to monitor

physical activity in order to measure EE. Physical activity is defined as body movement by skeletal

muscles resulting in EE [37].

The most commonly used sensors are accelerometers and gyroscopes. Vathsangam et

al. [175] used a triaxial accelerometer and a triaxial gyroscope mounted on the hip. Fourier anal-

ysis was used to examine the cyclic nature of walking and show its relationship with EE. They

concluded that EE was most effectively predicted by utilizing both types of sensors instead of one

alone. Badawi [25] implemented a system using a 3-axis accelerometer attached to the shoes of

children. This device captured the physical activity and measured daily EE to provide nutrition

recommendations. Plasqui et al. [132] predicted total EE and activity-related EE by using a 3-axis

accelerometer placed on the lower back to record acceleration of the torso. Kinnuen et al. [94] used

a one-dimensional acceleromenter mounted on a wrist-worn device to count hand movements and

predict EE. When height and mass were included in the prediction model, the device showed a high

correlation between the number of hand movements and EE. Foster et al. [71] developed an ankle-

worn pedometer using a dual-axis accelerometer, and found a positive correlation between steps

counted and walking EE. Lin [101] created a system using accelerometers on the wrist, waist, and

ankle as well an ECG placed near the heart to monitor its electrical activity. The system combined

the information gathered from both sensors and used EE regression models and neural networks.

Sazonova [148] presented SmartShoe, a device that consists of five small pressure sensors embedded

in key support locations of the insole and a heel-mounted 3D accelerometer (a total of 10 pressure

sensors and 2 MEMS accelerometers) with the objective of estimating the body weight of a person

and indirectly measuring EE.

Many studies have shown that self-reported estimates of EE suffer from bias [46], [108], [180].

Body-worn motion sensors provide more objective measurements with less user burden at less cost

[60], and have become widely adopted in research and practice. However, the development of similar

methods to measure EI using body-worn sensors has proven more difficult. The following section

describes related work that uses body-worn sensors for the assessment of dietary behavior.
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1.5 Automatic dietary monitoring systems

Automatic dietary monitoring (ADM) refers to the use of sensors placed on the body or

in the environment to collect and process information to derive patterns about dietary behavior of

users. ADM has the challenge of capturing and assessing several aspects of eating sessions, such as

the time taken for food consumption, eating microstructure (chewing, oral bolus formation, tongue

activity, and swallowing), meal composition, and the volume of food [18]. Currently, there is no

device which can accomplish all these tasks. Much of the work on ADM has been concentrated

towards collecting and analyzing data from different parts of the body. Amft [18] and Sazonov [142]

have published reviews on ADM systems using body-worn sensors. The next three sections discuss

previous works that monitored different parts of the body for chews, swallows, and gestures. The

last section discusses the use of mobile cameras for capturing dietary intake. The work in this

dissertation could be utlilized in many of these methods, where the study of the sequential nature

of eating activities could improve recognition and measurement accuracy.

1.5.1 Chew-based systems

Research into automatic detection of chews uses microphones placed on the ear or throat

to measure the sound created by chewing, or sensors placed on the jaw to monitor motion while

chewing. Amft et al. [20] researched the detection of eating activities and classified four food types

using chewing sounds collected by a microphone located inside the ear canal. In an extended work

[16], the sensor was enhanced using a headphone-housed acoustic transducer to capture vibration

and signal patterns under minimal ear occlusion conditions. Nishimura [120] used a Bluetooth

headset and adapted an in-ear microphone to count the number of times food was chewed during

a meal. Shuzo [154] combined a bone conduction microphone, a condenser microphone, and an IC

recorder to record sound chews and classify activities such as eating, drinking, and speaking as well

as provide chewing count. Sazonov [145] and Fontana [70] used a piezoelectric strain gauge sensor

to capture motion of the lower jaw to monitor chewing. Liu et al. [102] proposed a wireless sensor

which integrated a microphone and a camera (with a similar viewing angle to the subject’s eye) to

record real-time sounds (speech, eating, drinking, and others) and images of food while the chewing

action was taking place. A restriction was that the user must have his or her food on a circular plate

or bowl. Päßler et al. [128] proposed a work for automatic food intake recognition through adapting
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Table 1.1: Summary of chew-based systems.

Year Publication Objective Subjects Features Classifier Metric(s)

2012 Liu et al. [102] Recognize 4 types of sounds
(speech, eating, drinking, others)

6 Energy features, spectral
features,temporal features,
color-histograms

Extreme
Learning
Machine

82.51%•/24.18%•

(Eating/Drinking)

2012 Päßler et al. [128] Adapt chewing sound models to
classy 7 food types and 1 drink

2 MFCC and delta coefficients GMM-
HMM+MAP

71.3%•

2012 Sazonov et al. [145] Detect periods of chewing and no
chewing events

20 RMS, entropy, median,
mean, max, zero-crossing,
peaks, others (25-features)

SVM 80.98%◃

2012 Fontana et al. [70] Discriminate between solid and liq-
uid intake

7 Time and frequency domain
filtered by two band-pass fil-
ters

SVM (Linear
and RBF)

90.52%◃

2011 Cadavid et al. [36] Discriminate chewing and no chew-
ing events by explorong the vi-
sual quasi-periodicity of the mouth
while eating

36 Power spectrum coefficietns
from AAM parameters

SVM 93%•

2010 Amft et al. [16] Classify 19 food type based on chew
sounds

2 Spectral features Naive Bayes 86.6%•

2010 Shuzo et al. [154] Discriminate between 4 types of
eating actions (eating a hard food,
eating a soft food, drinking water,
speaking). Also, count the number
of mastications.

5 Barycentric frequency, max
peak frequency, roll-off fre-
quency, LPC coefficients, to-
tal power, ratios of divided
section power of 1/3 octave
band to the total power

KNN 70%•

2008 Nishimura et al. [120] Count the number of chews - MFCC One-vs-all
LBG Code-
book

98.07%•

2005 Amft et al. [20] Recognize 4 food types 4 Zero-crossing rate, fluctua-
tion of amplitude and spec-
trum, freq centroid, spectral
roll-off, band energy ratios,
6 cepstral coefficients

C4.5 decision
tree

80%-100%•

•-Accuracy, ◃- Avg precision and recall

sound models of chewing using the maximum a posterior estimation algorithm (MAP). MAP is a

well known algorithm in speech processing which reduces the error caused by mismatch of model and

features parameters [76]. This strategy was adopted because of the inter-individual differences of

food intake sounds, causing a low recognition on new presented data as compared with the training

data. A recent method to study chewing is one proposed by Cadavid et al. [36], which uses video

information of a subject’s face while eating. Features are extracted from the image sequences using

a an active appearance model, which describes shape and appearance deformation around a given

region [48]. Table 1.1 summarizes several characteristics of the studies mentioned here.
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1.5.2 Swallow-based systems

Swallowing is an action inherently linked to food intake activities. Swallowing is often

partitioned in three phases: oral preparation, the pharyngeal, and the esophageal phase [51]. The

first phase has to do more with chewing while the other phases concern activation of muscles which

move the food intake to the stomach. Researchers have monitored food intake using microphones

on the ear and throat to capture the sounds produced by swallowing and others sensors such as a

surface electromyograpgh to capture variations in the muscle patterns in the throat. Lopez-Meyer et

al. [105] detected swallowing sequences through supervised and unsupervised methods, specifically

SVM and KNN. Walker et al. [177] used an elastic band containing two surface microphones to

record swallowing by mounting the sensor directly on the throat. Sazonov et al. [147] proposed

a method to automatically detect swallowing, differentiate between solid and liquid food intake,

and estimate ingested mass. Dong and colleagues [54] used a piezo-respiratory chest-belt, wrapped

around the chest of the subject, to monitor breathing; future work with the device could encompasses

the detection of swallows. Sazonov [143, 142] used a microphone positioned in the laeyngopharynx

for swallowing detection, also a strain sensor implemented below the ear to detect chews and bites.

Their work showed the ability to detect periods of food intake, differentiate between solid foods and

liquids, and predict the mass of ingested food (solid and liquids). Päßler [129] recorded chewing

and swallowing sounds by implementing an in-ear microphone in the outer ear canal of the right ear

while a hearing aid package with a reference microphone was applied behind the outer ear to record

environmental sounds. Sounds were used to detect activity of food intake and classify consumption

of seven types of food and two type of beverages. Table 1.2 summarizes several characteristics of

the studies mentioned here.

1.5.3 Gesture-based systems

Accelerometer and gyroscope sensors mounted on the body have also been explored for

measuring food intake. Dong et al. [56] developed a wrist-worn device to track wrist motion and

measure the number of bites taken during a meal. Additional research showed that bites, automat-

ically counted using this method, correlated with self-reported caloric intake at the meal level at

0.5 [151]. Dong also developed a method to automatically detect eating activities during free living

by continuously tracking wrist motion and recognizing a pattern indicative of a meal or snack [55].
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Table 1.2: Summary of swallow-based systems.

Year Publication Objective Subjects Features Classifier Metric(s)

2011 Walker et al. [177] Discriminate swallow, vocal chord
activation, clearing of throat,
coughing

2 Energy and max absolute
value inside window

Threshold
scheme

-

2011 Passler et al. [127] Detect periods of food intake 40 Energy levels Threshold
scheme

83.3%•, 91.3%◦,
81.8%⋆

2010 Sazonov et al. [147] Automatic detection of swallows 20 Mel-scale Fourier spectrum
and wavelet packet decom-
position

SVM 84.7%•

2010 Lopez-Meyer et
al. [105]

Discriminate swallow events 18 Absolute time difference be-
tween neighboring swallows

SVM and
KNN

93.9%•, 92.4%†,
98.5%⋄

2009 Sazonov et al. [142] Detect periods of food intake, def-
firenciate solid and liquid intake, es-
timate mass intake

20 Average instantaneous swal-
lowing frequency

Bayesian >95%•, >91%•,
>83%•

•-Accuracy, ◦-Precision, ⋆-Recall , †-Sensitivity, ⋄-Specificity

A wrist-worn acceleration sensor was used by Amft [17] with the primary objective of detecting

drinking activities, the container used, and the fluid level. Two drinking motions were studied, fetch

and sip. Fetch describes a sequence of motion from picking up a container until placing it back in

its original position, while sip describes a shorter gesture that only includes moving the hand to the

mouth and back. They concluded that fetch and sip gestures could be spotted with similar accu-

racy, and sip is specific enough to indicate drinking in continuous data. Junker and Amft [85, 19]

presented a recognition system that used five inertial sensors located on the wrists, upper arms,

and upper torso. Their research describes motion gestures based on the particular utensil used,

establishing four gestures (cutlery, drink, spoon, hands). Amft [22] later augmented the recognition

by incorporating chewing and swallowing information through an ear-mounted microphone, and a

collar combing a surface EMG and a stethoscope-like microphone as sensors. Table 1.3 shows a

summary of these works.

1.5.4 Camera-based systems

Some researches have tried using computer vision algorithms coupled with mobile devices to

measure EI. Chen [39] shows a technique to obtain food volume based on a image. After capturing

the image the user must select a 3D shape model in which position, scale, and orientation parameters

are optimized to obtain a volume measurement. Almaghrabi et al. [14] worked on a food recognition

system which was coupled with nutrition tables to obtain energy intake estimation of food. The

system requires the user to point at the food to start the process. A top and side view image of
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Table 1.3: Gesture-based systems.

Year Publication Objective Subjects Features Classifier Metric(s)

2012 Dong et al. [57] Count the number of bites 47 Roll motion velocity Threshold
scheme

85%†, 81%◃

2011 Dong et al. [58] Automatic detection of eating ac-
tivities

4 Variance of yaw, pitch, and
roll velocities, bites per
minute, occurrences of not
detect bites over 1 minute

Threshold
scheme

82%†, 70%◃

2010 Amft et al. [17] Detect the sips in the drinking ac-
tion

6 Sum of absolute ampli-
tude, difference of begin and
end of amplitude, number
of zero-crossings, amplitude
begin and end, sum of am-
plitude differences, mean,
and variance

Feature simi-
larity search

94%◦, 84%⋆

2009 Dong et al. [56] Count the number of bites 10 Roll motion velocity Threshold
scheme

91%†

2008 Junker et al. [85] Find sections with relevant gesture
motion and classify 10 gestures;
four gestures are related to eating
(cutlery, drink, spoon, handled)

4 Pitch and roll angles from
upper and lower arm,
derivative and sum of ac-
celeration signal of lower
arm (along pitch angle),
derivative and sum of rate
of turn from lower arm
(along roll angle)

GMM-HMM 57%◦, 80%⋆

◦-Precision, ⋆-Recall , †-Sensitivity, ◃-Positive predictive value (PPV)

the food are use to calculate the volume using area sizes. An extension of this work is presented

by Villalobos et al. [176] in an application in a smartphone. Volume is used to compute calories

using predefined nutritional tables. Wu and Yang [184] presented a work to recognize fast food using

a web camera and estimate calories from a database of 101 types of fast foods. Video was taken

avoiding the participant’s face, conversations, and interruptions; pictures were also collected. Image

processing was used to compute and classify fast food features. The resulting food classification was

later associated to a nutritional table estimating calories based only on food appearance not food

portions. Martin [111] describes a semi-automated system which requires the participation of the

user to train the system for further estimation of food quantity based on pictures. In the training

phase the user must use a reference card for calibration, manually select the area of each food type,

and provide grams information. After training, the user may take pictures which automatically

detects and classifies food and provides total grams as well. This information is sent to dietitians

to recheck the information and adjust for errors manually. Other works for measuring energy intake

from images can be found in [164, 186, 73, 167, 138, 95, 153, 190, 134]. In general these methods

will require considerable more research before a fully functioning system can be developed that can

automatically measure EI of any foods in any environment with little-to-no human assistance.
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1.6 Gesture recognition

A gesture can be described as a configuration and/or movement of a part of the body

(arms, hands, fingers, face, head, torso, pose, eye gaze) with the objective of expressing an emotion,

intent or command. There are several devices used (both in research and commercially) to convert

a gesture into digital information such as touch screens, 2-D and 3-D cameras, acoustic sensors,

magnetic sensors, and mechanical sensors [27]. Gesture recognition has been applied to several

problems, including sign language [124, 88], activity recognition [172, 157], virtual reality [44], and

human-computer interaction [114, 130].

Much of the literature related to gesture recognition has been concerned with algorithms

to detect, track and recognize actions in video sequences [172, 114, 124], but wearable sensors

have also been explored. Specifically, accelerometers and gyroscopes are capable of determining

the acceleration, position, and orientation of an object. Akl and his colleges [13] developed an

accelerometer-based gesture recognizer of 18 traces using the Nintendo’s Wii remote. Chen [40] also

used this remote to develop 16 fundamental motion gestures which could represent digits. Bui [33]

developed a glove with six accelerometers to classify 23 Vietnamese letters for sign language. Other

studies motivated by sign language [96, 100] used surface EMG sensors with a 3-axis acceletometer

mounted on the forearm and hand. Chen et al. [41] combined accelerometers and surface EMG to

recognize 24 hand gestures based on wrist and fingers movements. Zhang [189] developed a hand

gesture recognition device based on a Rubik’s cube using EMG and accelerometers. The device

defined three basic hand postures and six circular movements with a total of 18 gestures as control

commands. Wang et al. [178] proposed a wireless digital pen with an accelerometer and used it

to recognize digits and eight shape trajectories. Xu et al. [185] used a MEMS 3-axes acceleration

sensing chip integrated with data management and Bluetooth wireless data chips to capture and

classify 7 hand gestures (up, down, left, right, tick, circle, and cross). Other studies have used the

accelereometers built into mobile devices to perform gesture recognition by moving the device in

specific patterns [119, 91]. Dermitzakis [52] used a gyroscope-based system for upper-limb prosthetic

gesture recognition. The system uses five sensors distributed along the right upper arm, the upper

back and the head. Oh [123] developed a wand-like artifact built with accelerometers and gyroscopes

with an objective of recognizing 10 characters and 3 gestures drawn in the air. Murao [116] presented

a study on 27 gestures using accelerometers and gyroscopes and assessed the accuracy of the results
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by altering the location of the sensors in an experimental device. The work in this dissertation bears

some resemblence to research in gesture recognition, but the application domain of eating provides

novel context for improving recognition accuracy.

1.7 Micro-electromechanical systems sensors (MEMS)

Micro-electromechanical systems (MEMS) are small (nano, micro, mili scale) integrated

devices or systems that combine electrical and mechanical components. MEMS terminology is

used in the U.S.; in Europe and Asia [84], microsystems technology (MST) and micromachines

are sometimes used for the same purpose as MEMS. Maluf & Williams [109] describe MEMS as

being simultaneously a toolbox, a physical product, and a methodology. MEMS provide techniques

and processes to design and create miniature systems. The physical product is often designed for

a specific task, combining functions of sensing and actuation. MEMS encompasses a plethora of

sensors such as pressure sensors [146], optical sensors [99], thermal sensors [84], accelerometers [126],

gear trains [77], mircodroplet generators [11], gyroscopes [140], strain gauges [84], microphones [187],

micro-mirrors [93], probes [92], imagers [66], analyzers [72], global positioning system sensors [62],

magnetometers [174], electrocardiography sensors [188], miniature robots [32], and others. The

diversity and low power consumption of MEMS sensors makes them useful in various commercial

(e.g. biomedical, automotive, and telecommunications) and military (e.g. navigation and weapons)

applications.

The work in this dissertation uses MEMS accelerometers and gyroscopes. These measure

linear acceleration and angular velocity. The combination of these measurements is sometimes called

an inertial measurement unit (IMU) [24].

1.7.1 Accelerometers

Accelerometers follow the principle of the spring-mass system (figure 1.4) using Newton’s

second law of motion and Hooke’s law. Newton’s second law of motion states that if an object

with mass m has experienced an acceleration a, then a force is acting on this mass. The force is

proportional to the product of the mass and the acceleration, as seen in equation 1.1. In Hooke’s

law, an equation for the force applied to the spring is derived by considering the distance, ∆x, of
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Figure 1.4: Spring mass model.

the spring displaced from its equilibrium position and a spring constant k, as seen in equation 1.2.

F = ma (1.1)

F = −k∆x (1.2)

The previous equations can be combined to provide a method for measuring acceleration

using the linear displacement of the spring, as shown in equation 1.3. Negative acceleration refers

to the compression of the spring. Ultimately, the acceleration measurement gets reduced to a linear

displacement measurement.

a = − k

m
∆x (1.3)

1.7.2 Gyroscopes

Gyroscopes measure the angular velocity rate of a spinning mass to determine its orientation.

Angular momentum is the principle that governs gyroscope operation and is represented by a vector

quantity resulting from the product of the rotational inertia and rotational velocity of a particle

about a particular axis. Equation 1.4 describes the angular momentum of a particle L with mass

m, velocity v, and distance from the origin r.

L = mr× v (1.4)
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A MEMS gyroscope uses the Coriolis effect to compute a Force measurement. Equation 1.5 shows

the parameters of the Coriolis equation, where Ω are the angular velocities, v are the velocities of

the particle in the rotating system, m is the mass of the particle, and F are the inertial forces.

F = −2mΩ× v (1.5)

1.7.3 Wrist tracking data

In this work a custom wrist-worn device was built, containg gyroscopes and accelerometers

to track the wrist’s motion. The specific sensors used were STMicroelectronics LIS344ALH [1],

LPR410AL [2], and LPY410AL [3] MEMS sensors. The device was used to record wrist motion

data of humans during the consumption of a meal. A broader description of the development of the

device can be found in the works of Dong [55] and Drennan [60]. A brief description of the sensors

and the data recorded is provided next.

The LIS344ALH, is three-axis linear accelerometer used in the device. Figure 1.5a shows

the three axes (X, Y, Z) that measure linear acceleration in the specified direction. The sensor has

an element which displays a changing capacitance based on its acceleration and an integrated circuit

interface which outputs three analog signals (voltages) for analysis. The linear acceleration is given

in gravity units (g). The accelerometer does not directly sense gravity but rather a deviation from

free fall, i.e. if the sensor is laying on a horizontal surface this will measure 0 g in the X and Y axis

whereas the Z axis will measure 1 g. The sensor operates in a ±2 g scale, thus gravity values of +2,

+1, 0, -1, -2 represent voltages of 3.3, 2.31, 1.65, 0.99, 0.2 with a ±5% tolerance. Figure 1.6 shows

an example of the signals provided by the 3-axis acceleremoter of a subject in the action of taking

a drink.

MEMS gyroscopes were also used in the device. The LPR410AL gyroscope is used to capture

roll and pitch and the LPY410AL gyroscope is used to capture pitch and yaw. One of the pitch signals

is ignored. These gyroscopes include a sensing element composed of a single driving mass, kept in

continuous oscillation and capable of reacting, based on the Coriolis principle, when an angular rate

is applied. Figure 1.5b provides a visual representation of the axes used for estimating the angular

rate of a rotational movement. The unit of measurement for angular velocity used is degrees per

second (dps). Each gyroscope provides an output voltage signal, where 2.5 mV represents 1 dps.

The signals provided by the sensors are combined with a 1.24 V DC signal to allow representation of
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Figure 1.5: MEMS sensors.

negative voltages. Figure 1.7 shows an example of the raw data of a subject in the action of taking

a bite.

1.8 Eating patterns

The phrase “eating pattern” can refer to a variety of characteristics, including food consump-

tion, beverage consumption, portion size, meal patterns and frequency, school meal participation and

consumption, and dietary quality [118]. The concept of an eating pattern can be studied at different

time scales, including the daily level, the meal level, and the microstructure level. Patterns at the

daily level include the frequency of meals and the temporal distribution of eating events throughout

the day. Meal level patterns include the quantity of calories consumed, nutrition information, and

the pace at which a subject eats. The microstructure level is concerned with bite size portions, and

patterns in chewing and swallowing during food consumption.

Some previous studies regarding eating patterns have shown a relationship between daily

patterns and obesity. Ma et al. [106] found that adults who skip breakfast were more likely to be

obese, including those which have breakfast and dinner away from home. People that had a greater

frequency of eating episodes were less likely to suffer from obesity. Triches et al. [170] also found that

children that consumed breakfast less frequently had a stronger likelihood of obesity. Other works

have found evidence supporting the idea that regular consumption of breakfast, lunch, and dinner

contributes to healthy weight and better intake of nutrients [118, 155, 183, 29, 90]. Gillman [78]
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Figure 1.6: Accelerometer raw data.
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observed that the amount of fruit and vegetables consumed was increased when young people had

meals with their families often. Coon et al. [47] found that higher energy foods are consumed more

frequently while watching television. Likewise, Putnam [135] observed that when people ate away

from home, they were likely to consume more food or higher energy food (or both).

Researchers have also studied eating patterns at a meal level. Bowman [30] found that

children ate more grains, fruits, and milk, when categorized as regular consumers of breakfast.

Triches et al. [170], determined that low consumption of milk was significantly linked to obesity in

children. Kant et al. [86] established that people which have the greatest variety of foods from all

food groups have the most adequate nutrient intake. Some studies [65, 75, 163] have suggested that

obese people tend to eat more rapidly, and that slowing the rate of consumption will help them

eat less and be satisfied with less food. This idea that repid eating correlates to obesity has been

challenged by the results of other studies. Kaplan [87] found that faster intake rates lead to more

food consumption for both lean and obese individuals. Other studies have shown that increasing

portion size also increases food intake for both lean and obese individuals [61, 113]. Wansink [31]

studied the patterns of people with low and high BMIs in Chinese buffets. People with low BMIs

tended to use smaller plates, browse the buffet more, leave more food on their plate, and place

napkins on their lap. The individuals with high BMI tended to use bigger plates, immediately serve

themselves, finish their portions, and place napkins on their lap less frequently.

Eating behaviors at the microstructure level has been studied. Spiegel [160] conducted a

study which showed that bite size affected the extent to which food was chewed and the local rate of

ingestion. According to the findings, subjects ate faster when they took larger bites, but slowing the

ingestion rate by reducing bite size did not reduce the amount of food consumed. Kaplan [87] studied

the effect of meal size, meal duration, bites per meal, and bites per minute in six lean and obese

subjects, observing no significant difference in patterns among the two groups. Stellar [162] used a

train gauge sensor implanted against the palate in a dental arch mounted on the back upper molars

to find that chews and swallows can provide measures to the microstructure level of a meal, reflect

hunger, and satiation. Bellisle [26] conducted a study of the effect of chewing and swallowing patterns

based on the degree of acceptance of food in the mouth (palatability) using an oscillographic and

video recordings. Ioakimidis et al. [81] collected data to describe chewing patterns using a magnetic

jaw displacement detector. Frequency of chews varied significantly within the quartiles of chewing

sequences, where more chews occurred in the first and fourth quartile.
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The work in this dissertation focuses on eating patterns at the meal and microstructure

level. Of particular interest is the idea that actions within a meal, or motions within an action, have

some sequential dependence. The primary motivation for studying the sequential dependence is to

improve automated recognition and measurement of the actions. However, these patterns could also

be studied for any relation to BMI or other factors known to be related to obesity.

1.9 Hidden Markov Models

Markov processes and Hidden Markov models (HMM) are well-known probabilistic-based

techniques used to model sequential information. They can be found in a wide variety of applications

such as economics, biology, tracking systems, speech processing, image processing, and communica-

tion systems. Rabanier [136] and Bishop [28] provide thorough information on the fundamentals of

general Markov processes and HMMs. Some of that information is reviewed here for background.

1.9.1 Markov models

A Markov model is a stochastic model which models temporal or sequential data, i.e., data

that is ordered. The probabilistic framework of a Markov model provides a way to model the

dependencies of current information (e.g. weather) with previous information, so each observation

in the data sequence depends on previous elements in the sequence. For most applications the best

prediction is based on the most recent data, rather then data in the distant past. Therefore, having

a collection of data (or observations) (x1, ..., xn) modeled by random variables X1, ..., Xn, Xt could

be dependent on Xt−1, Xt−2, ..., Xt−m for a fixed m. The simplest case is where m = 1, hence the

prediction at a given time t is dependent on the information contained at time t − 1. This is the

Markov property and is expressed by equation 1.6.

p(xt|x1, x2, x3, .., xt−1) = p(xt|xt−1) (1.6)

A Markov chain is a type of Markov model. This is governed by the Markov property, but

it is more restrictive because the observations can only take on a finite set values sj , for j = 1, ..., N ,

referred to as states. Thus, in a Markov chain, knowing the observation is equivalent of knowing

the state as well. There exists probabilities that explain the relationship between states, i.e. the
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Figure 1.8: Markov chain weather model (C=cloudy, R=rainy, S=sunny).

probability of transitioning from one state to a different state or remaining in the same state. These

transition probabilities can be calculated from training data. Figure 1.8 shows an example of a

Markov chain used to predict weather based on past information. Three possible states are allowed

in this model; sunny, rainy, and cloudy (S, R and C). Predicting the next day’s weather can be

accomplished through use of the Markov property, p(si|si−1).

The main disadvantage of the Markov Chain is that for many practical problems, it is not

possible to perfectly observe the true state of the system. For example, in a GPS tracking system,

the data is corrupted by noise, which might cause variation in the representation of the true position.

Because systems contain this hidden information, they must be modeled differently to accurately

predict information. The systems can be modeled in two parts; the hidden and the observed part.

The hidden portion is modeled using hidden (latent) variables. This leads to the definition of hidden

Markov models.

1.9.2 Hidden Markov models

An HMM is a stochastic model in which the states of the model are hidden and each state

emits an output which can be observed. In an HMM the outputs of a state are not deterministic (as

in the case of a Markov chain). Rather, the observations are associated with a probabilistic function
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Figure 1.9: HMM weather model (C=cloudy, R=rainy, S=sunny; U=umbrella, NU=no umbrella).

given a state sj . Extending the last Markov chain example, an example HMM can be constructed

by assuming that we do not have the ability to view the state of the weather and predictions about

the weather are based on observing whether a subject is carrying an umbrella or not. Figure 1.9

shows the HMM for the weather model, where given the state of the weather, there is a probability

function associated with observing an umbrella (U) or not (NU).

Concretely, in an HMM there exists an observation sequence O = {o1, o2, ..., oT } and a state

sequence Q = {q1, q2, ..., qT }. An observation ot can be discrete or continuous and an element of the

state sequence qt represents any of the N possible states, i.e. qt = sj . The parameters that govern

an HMM are derived by computing the probability of the state sequence given a set of observations.

Baye’s theorem can be used to describe this in terms of its likelihood function, prior probabilities,

and normalization factor as shown in equation 1.7.

p(q1, q2, ..., qT |o1, o2, ..., oT ) =
p(o1, ..., oT |q1, ..., qT )p(q1, ..., qT )

p(o1, .., oT )
(1.7)

Using the Markov property and the assumption that observations are independent from each other,
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the terms in the numerator can be rewritten as in equations 1.8 and 1.9.

p(q1, ..., qT ) =
T∏

t=1

p(qt|qt−1) (1.8)

p(o1, ..., oT |q1, ..., qT ) =
T∏

t=1

p(oi|qt) (1.9)

Then equation 1.7 is proportional to the form presented in equation 1.10.

p(q1, q2, ..., qT |o1, o2, ..., oT ) ∝
T∏

i=1

p(qt|qt−1)

T∏
i=1

p(ot|qt) (1.10)

The last equation provides a set of conditional probabilities which mark the basis for the parame-

ters used in a HMM: transition probabilities, emission (observation) probabilities, and initial state

probabilities.

1.9.2.1 HMM parameters

The common notation for an HMM is given by λ = {A,B, π}.

1. Initial state distribution π = {πj} describes the probabilities of starting the observation se-

quence in state sj . Equation 1.11 defines πj . The sum of these should add to 1 and πj ≥ 0.

πj = p(q1 = sj), j = 1, .., N (1.11)

2. State transition probability distribution A = {aij} is a matrix containing the probability of

transitioning between states. The notation aij represents a transition from state si to state

sj and is defined by equation 1.12. In a HMM, aij ≥ 0 and all transitions probabilities from

state sj should add to 1, i.e.
∑N

j=1 aij = 1.

aij = p(qt = si|qt−1 = sj), i, j = 1, ..., N (1.12)

3. Emission probability distribution B = bj(ot) describes the probabilistic function of the obser-

vations given state sj , This function is shown by equation 1.13 and bj(ot) ≥ 0. This probability
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function is described by the observations (discrete or continuous).

bj(ot) = p(ot|qt = sj), j = 1, ..., N (1.13)

If the observations are discrete, the problem can be simplified by constraining an observation ot to

a finite set of values V = {v1, .., vW }, shown by equation 1.14. A formal way to develop discrete

outputs is by using vector quantization methods to build code books. Discrete probability functions

govern the probability of an observation being observed at time t for a given state. For example, a

die has 6 sides with outcomes 1 trough 6, while another die has 12 sides with seven sides having an

outcome of 1 and just one side for each outcome 2 through 6. In this example, each die represents

a different state in the experiment and the probability mass function is different for the possible

outcomes given the state.

bj(vk) = p(ot = vk|qt = sj), k = 1, ...,W (1.14)

A continuous representation of the observations has the advantage of better capturing the underlying

statistical model. Here, bj(ot) takes on the form of a probability density function (pdf). The most

common pdf used for a HMM is the Gaussian density. Equations 1.15 and 1.16 show the single and

multivariate Gaussian distribution, respectively.

bj(ot) =
1√
2πσ

exp

(
− (ot − µj)

2

2σ2
j

)
(1.15)

bj(ot) =
1

(2π)d/2|Σj |1/2
exp

(
−1

2
(ot − µj)

′Σ−1
j (ot − µj)

)
(1.16)

In general, mixture of Gaussian densities are used to model continuous observations. This means

that M number of Gaussians collectively model the density. Equation 1.17 describes the probability

density function bj(ot) based on M Gaussians; where, cm is a weighting value with
∑M

m=1 cm = 1

and bjm(ot) = N (ot;µjm,Σjm). The parameters of the Gaussians can be computed using maximum

likelihood (ML) estimation through the expectation-maximization (EM) algorithm. More details on
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Gaussian mixture models (GMM) can be found in Reynolds et al. [139] and Bishop [28].

bj(ot) =
M∑

m=1

cmbjm(ot) (1.17)

1.9.2.2 Fundamental problems in HMMs

HMMs can be used in a number of ways to solve problems. The following briefly outlines

the most common types of problems for which HMMs are used.

Observation sequence evaluation

One of the primary tasks when using a HMM λ = {A,B, π} is evaluating a sequence of

observations O = {o1, ..., oT } or p(O|λ) to determine how well a model predicts a given observation

sequence O. Thus, if there are L HMMs each must be evaluated in order to choose the most

appropriate model λl, for l = 1, ..., L.

An observation sequence O depends on the state sequence Q = {q1, ..., qT } of an HMM λl.

Therefore, the probability of a state sequence generating an observation sequence can be written as

shown in equation 1.18.

p(O|Q,λl) =
T∏

t=1

p(ot|qt, λl) = bq1(o1) · bq2(o2) · ... · bqT (oT ) (1.18)

Depending on the model λl, the probability of a state sequence is expressed in equation 1.19.

p(Q|λl) = p(q1|λl)
T∏

t=2

p(qt|qt−1, λl) = πq1 · aq1q2 · aq2q3 · ... · aqT−1qT (1.19)

Finally, the evaluation of an observation sequence has the form shown in equation 1.20.

p(O|λl) =
∑
Q

p(O|Q,λl)p(Q|λl) =
∑

q1,...,qT

πq1bq1(o1)aq1q2bq2(o2)...aqT−1qT bqT (oT ) (1.20)

This approach has a drawback in that it must consider all possible state sequences for the

observation sequence evaluation. The Forward-Backward algorithm is typically used to overcome

this problem by acknowledging that there are redundancies in the calculations. The algorithm

consists of two similar recursive algorithms which compute p(O|λl). In the forward case, we have a
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parameter α which represents the probability of the partial observation sequence o1, .., ot for state

sj at time t as shown in equation 1.21.

αt(j) = p(o1, .., ot, qt = sj |λl) (1.21)

The algorithm is described as follows:

1. Initialization:

α1(i) = πibi(o1), 1 ≤ i ≤ N

2. Recursion:

αt+1(j) =

[
N∑
i=1

αt(i)aij

]
bj(ot+1), 1 ≤ i, j ≤ N, 1 ≤ t ≤ T

3. Termination:

p(O|λ) =
N∑
i=1

αT (i)

A graphical representation of the forward algorithm using only two states is shown in figure

1.10. The nodes represent states, the arrows are called arcs and represent the product of the transi-

tion probability with the emission probability, and incoming arcs to a node represents summation.

At t = 1 the algorithm initializes by computing α1 for all states represented as nodes in the second

column. Then, α1 gets propagated and multiplied by the value of the probabilities in the arcs to form

α2. Subsequently, all the values of α are computed by propagating previous values, until reaching

the last observation at time T .

The backward algorithm calculates the probability p(O|λ) by starting at the end of the

observation sequence at time T and moving in reverse towards t = 1. The parameter β calculates

the partial probability of observations ot+1, .., oT for state sj at time t+1 as shown in equation 1.22.

βt+1(j) = p(ot+1, .., oT , qt = sj |λl) (1.22)

The algorithm is described as follows:
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Figure 1.11: Backward algorithm.

1. Initialization:

βT (j) = 1, t = T, 1 ≤ i, j ≤ N

2. Recursion:

βt(j) =

[
N∑
i=1

βt+1(i)aij

]
bj(ot+1), 1 ≤ j ≤ N, 1 ≤ t < T

3. Termination:

p(O|λ) =
N∑
i=1

πiβ1(i)

A similar graphical representation for two states for the backward algorithm can be found in figure

1.11.
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State sequence decoding

The objective of decoding is to discover the hidden state sequence that most likely describes

a given observation sequence. One solution to this problem is to use the Viterbi algorithm, which

finds the single best state sequence for a given observation sequence. The Viterbi algorithm is a trellis

algorithm which is very similar to the forward algorithm, except that the transition probabilities are

maximized at each step rather than summed. A parameter δ is used as the probability of the most

probable state path for the partial observation sequence as shown in equation 1.23.

δt(i) = max
q1,q2,...,qt−1

p(q1q2...qt = si, o1, o2, ..., ot|λ) (1.23)

The Viterbi algorithm is defined as follows:

1. Initialization

δ1(i) = πibi(o1), 1 ≤ i ≤ N

ψ1(i) = 0

2. Recursion:

δt(j) = max
1≤i≤N

[δt−1(i)aij ] bj(ot), 2 ≤ t ≤ T, 1 ≤ j ≤ N

ψt(j) = arg max
1≤i≤N

[δt−1(i)aij ] , 2 ≤ t ≤ T, 1 ≤ j ≤ N

3. Termination:

P ∗ = max
1≤i≤N

[δT (i)]

q∗T = arg max
1≤i≤N

[δT (i)]

4. Optimal state sequence backtracking:

q∗t = ψt+1

(
q∗t+1

)
, t = T − 1, T − 2, ..., 1

31



π

π2

b (o1)

1

b2(o1)

t                                   1

a11b1(o2)

a12b2(o2)

a22b2(o2)

a21b1(o2)

2

1 a11b1(o3)

a22b2(o3)

3

a12b2(o3)

a21b1(o3)

a11b1(o4)

a22b2(o4)

4

a12b2(o4)

a21b1(o4)

T

. . .

�1(1)
�1(1)

�1(2)

�1(2)

�2(1)
�2(1)

�2(2)
�2(2)

�3(1)

�3(1)

�3(2)
�3(2)

�4(1)
�4(1)

�4(2)
�4(2)

�T(1)
�T(1)

�T(2)

�T(2)

Figure 1.12: Viterbi forward step.
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Backtracking allows the best state sequence to be found from the back pointers stored in the recursion

step, but it should be noted that there is no easy way to find the second best state sequence. Figures

1.12 and 1.13 shows the two-state example showing the forward and backtracking steps, respectively.

Parameter estimation

Parameter estimation is the process used to train an HMM given a set of observations. This

process results in an estimation of the parameters π, A, and B. This problem is difficult in part

because the parameters cannot be estimated directly. Instead, by using the data, the problem is

reformulated to find a set of parameters that maximizes the probability of the observation sequence

as in equation 1.24.

argmax
λ

p(O|λ) (1.24)

This can be solved by using the maximum likelihood estimation (MLE) technique. Con-

cretely, the Baum-Welch algorithm is a special case expectation-maximization (EM) method which
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iteratively improves the likelihood of p(O|λ). This algorithm re-estimates the parameters of the

model λ̂ by using the EM algorithm and finding local maxima as seen in equation 1.25.

p(O|λ̂) ≥ p(O|λ) (1.25)

An intermediate step is defined to describe the reestimation of the HMM parameters. This

parameter (equation 1.26) is ϵt(i, j) which is defined as the probability of being in state si at time

t and state sj at time t+ 1 given a model and the observation sequence.

ϵt(i, j) = p(qt = si, qt+1 = sj |O, λ) (1.26)

Using the forward and backward variables, equation 1.26 can be rewritten as shown in equation

1.27. The denominator defines p(O|λ).

ϵt(i, j) =
αt(i)aijbj(ot+1)βt+1(j)∑N

i=1

∑N
i=1 αt(i)aijbj(ot+1)βt+1(j)

(1.27)

The probability of being in state sj at time t for a given set of the observation (O) is defined

as γt(i) as shown in equation 1.28.

γt(i) =
N∑
j=1

ϵt(i, j) (1.28)

A method for reestimating the parameters of the HMM can be accomplished by using equations

1.27 and 1.28. This method can be seen as counting event occurrences. Equation 1.29 records the

number of times state sj occurs at time t = 1. Equation 1.30 records the ratio between the number

of times a transition from state si to state sj happens and the expected number of total transitions

from state si. Equation 1.31 is the ratio of the expected number of occurrences of state sj when

observing symbol vk to the total number of occurrences in state sj .

π̄i = γ1(i) (1.29)
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āij =

T−1∑
t=1

ϵt(i, i)

T−1∑
t=1

γt(i)

(1.30)

b̄j(vk) =

T∑
t=1

s.t.ot=vk

γt(j)

T∑
t=1

γt(j)

(1.31)

1.10 Novelty

The primary contribution of this work is the study of the sequential predictiveness of activ-

ities related to eating to improve the automatic recognition of unrestricted eating gestures. Some

previous works have studied the recognition of individual gestures related to eating [17, 85], but to

our knowledge we are the first to propose studying the sequential dependencies across a larger scale

of time.

In chapter 2, we undertook the task of identifying the gestures related to eating activities

during the consumption of a meal. An inter-rater reliability test was conducted to determined the

stability of the definitions of the proposed gestures.

In chapter 3, the sequential dependency of eating gestures is studied. Here, higher-order

HMMs are converted into equivalent first-order to model several levels of history from gestures

sequences, i.e. that previous knowledge of eating gestures can help predict the upcoming gesture.

Chapter 4 considers the problem of automatically classifying and segmenting wrist motion

data for the purposes of recognizing eating gestures. These ideas again explore the utility of sequen-

tial dependencies, in this case to guide the segmentation process.

Although this work is primarily concerned with using the idea of sequential predictiveness

to improve the recognition and measurement of EI, it might also prove useful in studying the char-

acteristics of people with respect to eating habits. It may be that the methods developed herein

could prove useful in identifying behaviors associated with increased EI or other criteria associated

with obesity.
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Chapter 2

Definition and Assessment of Wrist

Motions Related to Eating

Activities

2.1 Introduction

The motivating goal of this work is to measure eating activities by tracking wrist motion.

To achieve this goal, a set of gestures are defined that comprise common eating activities. A large

number of specific activities are possible, such as cutting solid food with an utensil, extending and

contracting the arm for liquid intake, grabbing a napkin to wipe the mouth (or hands), stirring with

a spoon, etc. However, because the goal is automated recognition, it is desirable to seek as small a

set as possible. In this chapter, a study was undertaken to determine which gestures are suitable to

describe eating activities throughout a variety of subjects. By visually inspecting the participants

while eating, a set of four basic activities was found to appear frequently during the consumption of

a meal: rest, utensiling, bite, and drink. The gestures for these activities were defined based on the

intention of the eater at the moment of wearing the wrist tracker device. Using these definitions,

three meals were manually labeled by five human raters. The data provided by the raters served to

explore the stability of the gesture definitions through an inter-observer reliability evaluation. The

results indicated that these gestures were consistently recognizable by human raters and thus could
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serve as a base language for the study of automated recognition.

2.2 Methods

2.2.1 Data

The data used for this study was recorded in a large data collection supported by the

National Institutes of Health via grant 1R41DK091141-A1. The Harcombe Dining Hall of Clemson

University was the location for data collection. The facility seats up to 800 guests and provides a

wide range of foods and beverages, allowing people to build their own meal. For example, some

of the choices include omelets, sandwiches, pizza, pasta, fruits and vegetables, meat cuts, deserts,

juices, milk, sodas, teas and coffee. The foods are served in a wide variety of containers, including

plates, bowls, wraps, pouches, trays, cartons, cups, and glasses, and they are consumed using a

variety of utensils including forks, knives, spoons, and fingers.

Inside the dining hall, an instrumented table was prepared to record data simultaneously

from four participants. Four digital cameras in the ceiling (approximately 5 meters height) were

used to record the participant’s mouth, torso, and tray while meal consumption. Also, a custom

wrist-worn device was used to record the motion in the participant’s wrist during his or her meal

consumption. Wrist motion was sampled at a frequency of 15 Hz. Each participant had his device

wired to a laptop where data was stored. A scale was located under the subject’s tray to monitor

food weight while eating. Figure 2.1 shows a picture of the instrumented table.

Participants wore the device on their dominant hand. There were no restrictions on foods

or eating style during data collection. Participants were allowed to eat as normally as possible,

including natural movements unrelated to eating (e.g. conversations with people, using a phone,

gesturing, scratching, etc.). Subjects were free to build their own meal, as well as drink any type of

beverage using the container of their choice. Figure 2.2 shows an image of four subjects eating at

the instrumented table.

The full data set is composed of 276 subjects, including 131 males and 145 females subjects

ranging age from 18 to 75. Body mass index (BMI) ranged from 17.4 kg/m2 to 46.2 kg/m2.

Ethnicity is predominantly Caucasian (192), but also includes African-American (27), American

Indian or Alaska Native (2), Asian or Pacific Islander (29), Hispanic (11), and Other (15). The data

has been used to evaluate the accuracy of the original bite counting method developed by our group
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Figure 2.1: Instrumented table.

Figure 2.2: Eaters on instrumented table.
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Table 2.1: Participant’s information.

Participant Sex Age BMI Ethnicity
(years) (kg/m2)

1 Female 21 27.5 Caucasian
2 Male 21 22.6 Caucasian
3 Male 20 21.7 Caucasian
4 Female 20 20.7 Caucasian
5 Male 18 21.3 Caucasian
6 Female 29 27.9 Caucasian
7 Female 24 19.2 Caucasian
8 Female 23 24.6 Caucasian
9 Male 43 24.6 Caucasian
10 Male 50 22.3 Caucasian
11 Female 20 20.4 Caucasian
12 Female 57 27.4 African-American
13 Female 29 23.1 Caucasian
14 Female 40 27.3 Caucasian
15 Male 21 28.5 Caucasian
16 Female 23 25.7 Hispanic
17 Male 20 21.6 Caucasian
18 Female 43 24.9 Caucasian
19 Female 20 23.3 Caucasian
20 Male 26 35.1 Caucasian
21 Male 54 20.1 Caucasian
22 Female 26 26 Caucasian
23 Male 23 28.6 Caucasian
24 Male 26 25.2 Caucasian
25 Male 28 28.3 Caucasian

[?], and to compare a measure of EI derived from automated bite count against self estimates [?].

For the work in this dissertation, a subset of 25 meals were chosen randomly from the full dataset.

This smaller sample was used due to the amount of time needed to manually review the videos of

the eaters and hand-label all eating activities. The selected data set consisted of 11 male and 9

female subjects. Table 2.1 shows sex, age, BMI, and ethnicity information for the 20 participants.

Also, table 2.2 describes the meal information, including the duration, food type, drinks, utensils,

and containers used in the meal for each of the participants.

2.2.1.1 Preprocessing

Accelerometer data (AccX, AccY, AccZ) and gyroscope data (Yaw, Pitch, Roll) were smoothed

using a Gaussian-weighted window defined by equation 2.1. Here Rt is the raw data and St is the
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Table 2.2: Food list per subject.

Subj. Time Food Drink Utensil Containers
(min)

1 12.8 Stir fry vegetables Water Hand, fork Mug, plate

2 7.7 Chicken sandwich, french fries Tea Hand Mug, plate

3 16.1 Refried beans, shoestring french fries,
popcorn chicken, taco

Tea Hand, fork Mug, plate

4 23.8 Popcorn chicken, shoestring french
fries, banana

Water Hand, fork Glass, plate

5 8.8 Stew beef, seasoned dry limas, steamed
california blend vegetables, white rice

Water Hand, fork Glass, plate

6 16.8 African spiced sweet potato, blackened
tilapia, seasoned corn, sauteed toma-
toes and zucchini

Sweet tea Hand, fork Mug, plate

7 20.3 Bread, salad, wild rice Sprite zero Hand, fork Mug, plate

8 10.2 Ice cream, cupcake, custom fruit bowl Water Hand, spoon Glass, plate, bowl

9 15.4 Eggplant and broccoli pizza, ham-
burger, pepperoni pizza, shoestring
french fries

Sweet tea Hand, spoon Glass, plate

10 14.6 Black beans and rice, sauteed pollock Kiwi juice Hand, fork Glass, plate

11 11.7 Garlic bread sticks, grilled italian
sausage with onions and peppers, ro-
tini with marinara

Water Hand, fork Glass, plate

12 25.2 Cupcake, veggie indian currry, brownie Lemonade Hans, fork Glass, plate

13 25.1 Eggplant parmesan, salad bar, sweet-
zza cinnamon pecan, sweetzza apple

Unsweet tea Hand, fork Glass, plate

14 30.9 Portobello sandwich, salad Sweet tea Hand, fork Glass, plate,
bowl, mug

15 4.3 Pasta tour of italy Powerade Hand, fork Glass, plate

16 17.6 Buffalo tenders, salad bar Cranberry
juice water
mix

Hand, fork Glass, plate

17 14.2 BBQ brisket and kaiser roll, cereal corn
pops, hash sweet potato and bacon

Apple juice
and water

Hand, fork,
spoon

Glass, plate, bowl

18 21.0 Peanut butter chocolate fudge, salad
bar, spinach and cheese quiche

Water Hand, fork Glass, plate, bowl

19 13.8 Homestyle chicken sandwich, salad bar Sweet tea Hand, fork Glass, plate, bowl

20 6.6 Fish, mac and cheese Sweet tea

21 41.3 Pasta tour of italy, salad bar, bread,
blueberry crobbler, brownie

Sweet tea Hand, fork Glass, plate, bowl

22 18.0 Pepperoni pizza, spice pork and veg-
etable, sweetzza chocolate peanut but-
ter

Diet coke Hand, fork Glass, plate

23 10.0 Bread sticks, desert pizza, ziti Mellow yel-
low

Hand, fork Glass, plate

24 18.9 Asian vegetables, salad, wasabi pota-
toes

Coke Hand, fork Glass, plate

25 13.9 Shoestring french fries, homestyle
chicken sandwich, salad bar

Diet coke Hand Glass, plate
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smoothed data at time t. For the sensors we used, the best results were obtained using N = 15 (1

second) and with σ2 = 10. Figure 2.3 shows and example of the six signals after smoothing.

St =
0∑

i=−N

Rt+i

exp
(

−t2

2σ2

)
N∑

x=0
exp

(
−(x−N)2

2σ2

) (2.1)

2.2.2 Eating gestures

One significant problem when performing eating activity recognition is defining a set of

“gestures” that describe the individual eating activities. We crated our definitions based on the

concept of discernible user intent. The subject’s intent is determined by observing the hand wearing

the device. The duration of an action lasts from when the intent can first be observed, until

that intent has ended. Our group engaged 8 people in repeatedly observing videos and manually

segmenting and labeling them with different sets of gesture names over the course of several months.

During this period of time, some gestures were combined and others were considered but removed

to their limited occurrences. The criteria for defining a gesture was refined several times with the

goal of being as objective and repeatable as possible. Ultimately, the group settled on four gestures

related to eating: rest, utensiling, bite, and drink. All other gestures for which intent was not defined,

including both eating and non-eating activities (e.g. gesturing while talking, cleaning with a napkin,

waving at a friend, etc.), are referred to as other. We developed a definition for each word consisting

of four parts: a) the description of the activity, b) the start time of the activity, c) the end time

of the activity, and d) particular events that should be included or excluded from the word label.

Table 2.3 provides these details for our four words.

2.2.2.1 Ground truth

A custom tool was developed for reviewing the recorded data to label segments with the

gesture definitions. The tool was coded using Microsoft Visual C. Video and sensor information

were synchronized and displayed as shown in figure 2.4. Time navigation was performed using the

keyboard to move forwards, backwards, play and pause. Labeling was done manually by looking at

the intent of the instrumented hand of the eater in the video. A word could be labeled by enclosing

it within a box using specific keys in the keyboard. A completed label is marked by a colored box
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Figure 2.3: Raw (left column) and smooth (right column) data.
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Word Details

Bite

(a) The subject puts food into their mouth.

(b) Begins when a hand or utensil starts moving towards the mouth.

(c) Ends when the hand or utensil finishes moving away from the mouth

(d) If a bite is interrupted, the word label should start after the interruption,
when motion towards the mouth resumes. Bites need not begin and end
at the plate. Motion towards and away from the mouth should define the
boundaries; with food consumption taking place in between.

Rest

(a) The subjects dominant hand has little or no motion.

(b) Begins when subjects hand stop moving.

(c) Ends when subjects hand begins moving again (and moves for at least one
second)

(d) A rest may include brief periods of motion (less than one second) such as
posture adjustments. Rests should not include motions with other intent,
whether eating related or not. (ex: gesturing while talking, cleaning with
a napkin, or waving to a friend).

Utensiling

(a) The subject uses a utensil or their hand to manipulate, stir, mix or prepare
food(s) for consumption.

(b) Starts when utensil or hand moves towards food with intent to manipulate.

(c) Ends when manipulating has finished.

(d) This includes moving food around the plate, dipping foods in sauces, cut-
ting foods, etc.

Drink

(a) The subject puts beverage into their mouth.

(b) Starts when a hand begins moving a beverage towards the mouth.

(c) Ends when the hand has finished moving away from the mouth.

(d) Each individual sip should be a different drink (if multiple sips are taken).

Table 2.3: Eating gesture definitions.
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and a legend used to discriminate between labels as shown at the bottom of figure 2.4. This figure

served as a guide for raters and with the set of instructions listed below (numbers correspond to

indicated positions in figure 2.4):

1. This value indicates which index you are currently watching (which frame of the video is

displayed).

2. This box allows you to jump to any previously labeled gesture by clicking on the word and

index. If you click on a label you must click over the signal plot to keep on labeling.

3. This is an indicator telling you which gesture you most recently labeled.

4. These windows provide instructions for the tools usage.

5. This feature allows you to jump to an index by typing the number of the index you would like

to move to and clicking the Jump button.

6. This is an example of the tool’s usage: from the instructions, you can see that bite labels can

be created using Q. When you enter a Q for the first time, you begin creating your bite label.

The label begins where your cursor currently is located and the outline of a box is drawn to

indicate the minimum amount of time required for the word action to take place. When this

is created, you now must complete your label by moving the video forward (using the video

controls) and entering the same label button (in this case, a Q for a bite) to complete labeling

the word. When this is done, the box will be filled in like the bite labels shown before and after

the box circled above. Gestures should be labeled according to the word definitions provided.

Note: if you want to label is shorter than the minimum box you can ignore it.

7. If you had mistakenly chosen an incorrect gesture and you have not finish labeling, you can

press ESC button to erase the current word selection.

A minimum time requirement for each gesture was determined and displayed for the rater to

help guide the label-making process. One meal file was randomly selected and five raters were asked

to label the complete meal using the definitions in table 2.3. Later, matched labels were compared

for rest, utensiling, bite, and drink gestures. Table 2.4 shows statistics for the gestures obtained

from the five raters. Finally, it was determined that a bite required at least 1 second to perform and

utensiling, drink, and rest each required a minimum of 2 seconds to perform.
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Table 2.4: Word statistics based on one meal.

Gesture Min Time Max Time Average Time Std. Dev Time
(sec) (sec) (sec) (sec)

Rest 1.9 42.9 10.1 7.9
Utensiling 2.1 50.1 8.9 6.1

Bite 1.1 11.4 2.9 1.3
Drink 2.1 15.1 6.0 2.8

Each rater was given a final set of instructions for labeling the gesture definitions provided

to them. The list is given below:

1. Carefully read the provided gesture definitions.

2. Usually at the beginning of the meal the participant is answering questions from an interviewer,

this time can be ignored.

3. If the subject simultaneously eats and answer questions or has been interrupted while eating

to answer questions by an interviewer, you may label the appearing gestures.

4. Time used to put the device on and take it off should be ignored.

5. Labeling starts when subject is about to start eating.

6. When labeling, a tolerance of 0.5 sec (7 or 8 samples) before starting the action and after

finishing the action is permitted.

7. If an action is shorter than the initial bounding box then such action can be discarded.

Five raters were involved for ground thruthing the data. These raters labeled three meals

separately and these were used to evaluate the inter-rater reliability as explained in section 2.2.2.3.

Subsequently, a single rater hand labeled 17 meals and two other raters labeled 4 meals each to

complete a set of 25 labeled meals.

2.2.2.2 Other gestures

After labeling the data, there were short periods of unlabeled time between words created

by the transition from one gesture to another (e.g. utensiling to bite). We refer to these as “gaps”.

Because our sampling rate is 15Hz, some of these gaps could be as small as 67ms. We do not consider
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Figure 2.5: Histogram of other gestures for 20 meals between 0 to 15 sec.

these gaps to be the same in nature as larger sections of unlabeled data that correspond to other

activities. We therefore devised a strategy to remove the gaps from consideration. After labeling

the 20 meals a histogram of the unlabeled sections was studied. Figure 2.5 shows the distribution

of unlabeled sections of data from the 25 meals for periods of up to 15 sec. The figure shows a knee

in the curve at 4 sec (dashed line) which we used to indicate where the true distribution for other

unlabeled activities overlaps the gap distribution. Based on this analysis, we discarded unlabeled

sections of data that were less than 4 seconds, and identified unlabeled sections longer than 4 seconds

using the gesture other.

Table 2.5 shows the total count and total time of gestures from the 25 meals that includes all

unlabeled segments. Table 3.1 shows the final gesture count and word duration after removing gaps.

A total of 86.9% of the data was labeled using our 4 gesture language, while 13.1% was considered

to be other activities.
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Table 2.5: Total gestures and time before removing gaps.

Gesture Total Count Total Time (min)
Rest 582 80.6
Utensiling 700 84.7
Bite 1039 52.3
Drink 155 18.6
Other 2216 78.1

Total 4692 314.4

Table 2.6: Total gestures and time after removing gaps.

Gesture Total Count Total Time (min)
Rest 582 80.6
Utensiling 700 84.7
Bite 1039 52.3
Drink 155 18.6
Other 310 44.5

Total 2785 280.8

2.2.2.3 Inter-rater reliability

In order to determine the stability of our definitions and the ground truthing process, three

meals were chosen randomly and labeled independently by five raters. A “meta” ground truth was

created for each meal by taking the majority vote of the five raters for every unit of time (67 msec,

from the 15Hz rate of recording). After comparing the meta GT against labeled sequences, the total

labeled time was used as the parameter to estimate the percentage of the meal activities that could

be described using our 4 gestures. Additionally, the creation of meta GT provided insight regarding

how well raters agreed when labeling. Finally, a confusion matrix was computed from the three

meals to provide insight into the level of ambiguity of word definitions.

The three chosen meals have a total recording time of 12.7, 13.3, and 20.3 minutes, respec-

tively. The time needed for the participant to put on or take off the wrist-worn device was considered

as dead time, i.e., this amount of time was removed from the total time. After removing dead time

the respective times were 12.4, 12.3, and 17.7 minutes for the three meals.

Tables 2.7, 2.8, and 2.9 list how often each rater used each of the gestures in each meal.

In each cell are two values; the first value indicates how often the rater used the gesture and the

second value indicates the total time (as percentage of the total meal time) that the rater used the
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gesture. From these tables, it can be observed that there is more variability between raters in total

gesture count than in total time labeled with each gesture. Therefore we use total time as a metric

for further evaluation.

Rater Rest Utensiling Bite Drink Other
Gest.(%Time) Gest.(%Time) Gest.(%Time) Gest.(%Time) Gest.(%Time)

Rater 1 14(8.4) 30(18.1) 45(27.1) 4(2.4) 73(44.0)
Rater 2 20(11.0) 34(18.7) 39(21.4) 2(1.1) 87(47.8)
Rater 3 22(13.0) 46(26.6) 37(21.9) 2(1.2) 63(37.3)
Rater 4 4(2.6) 24(15.8) 43(28.3) 5(3.3) 76(50.0)
Rater 5 14(9.2) 42(27.5) 37(24.2) 2(1.3) 58(37.9)

Table 2.7: Number of gestures and total percentage labeled time for meal 1 per rater.

Rater Rest Utensiling Bite Drink Other
Gest.(%Time) Gest.(%Time) Gest.(%Time) Gest.(%Time) Gest.(%Time)

Rater 1 23(12.8) 17(9.5) 50(27.9) 5(2.8) 84(46.9)
Rater 2 29(13.5) 31(14.4) 47(21.9) 5(2.3) 103(47.9)
Rater 3 33(17.2) 42(21.9) 49(25.5) 5(2.6) 63(32.8)
Rater 4 10(6.0) 19(11.4) 49(29.3) 5(3.0) 84(50.3)
Rater 5 36(15.7) 47(20.5) 47(20.5) 5(2.2) 94(41.0)

Table 2.8: Number of gestures and total percentage labeled time for meal 2 per rater.

Rater Rest Utensiling Bite Drink Other
Gest.(%Time) Gest.(%Time) Gest.(%Time) Gest.(%Time) Gest.(%Time)

Rater 1 30(13.5) 35(15.8) 44(19.8) 15(6.8) 98(44.1)
Rater 2 34(13.6) 35(14.0) 44(17.6) 15(6.0) 122(48.8)
Rater 3 35(16.5) 37(17.5) 44(20.8) 15(5.7) 84(39.6)
Rater 4 14(6.8) 30(14.6) 44(21.4) 15(7.3) 103(50.0)
Rater 5 39(18.8) 36(17.3) 43(20.7) 15(7.2) 75(36.1)

Table 2.9: Number of gestures and total percentage labeled time for meal 3 per rater.
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A collective meta GT sequence was calculated for each meal. Figure 2.6 shows a graphical

description of the process. The meta GT is built by majority vote of the label used by the five raters.

Voting is done independently at each time unit. If all individual rater labels are different, then the

meta GT is left unlabeled. The result of the majority voting scheme is shown at the bottom of figure

2.6 and is identified as the meta GT of the meal. The complete labeling from each rater and the

meta GT are shown for all 3 meals in figure 2.7. Visually it can be seen that raters agreed fairly

consistently. Table 2.10 summarized the meta GT for the three meals in terms of the total number

of gestures as well as the total percentage of labeled time for each word.

Rater 1

Rater 2

Rater 3

Rater 4

Rater 5

GT

Time

Bite Utensiling Rest Drink Other

Meta

Figure 2.6: Ground truth sequence.

Table 2.10: Meta GT sequence.

Meal Rest Utensiling Bite Drink Other
Gest.(%Time) Gest.(%Time) Gest.(%Time) Gest.(%Time) Gest.(%Time)

1 18(20.4) 35(39.0) 43(11.0) 3(4.1) 87(25.5)
2 28(25.0) 36(25.9) 50(14.8) 5(3.4) 102(30.8)
3 30(20.6) 38(28.6) 45(13.2) 15(9.0) 103(28.6)
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Figure 2.7: Meta ground truth from multiple raters.
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2.3 Results

To evaluate agreement quantitatively, individual rater labelings were compared against the

meta GT. The percentage of time that the participants agreed over the course of each meal was 89.6%,

93.6%, 89.1%, for meal 1, meal 2, and meal 3, respectively. The average inter-rater agreement across

the three meals was 90.7%. Additionally, a confusion matrix was computed to further determine

the level of confusion between gestures. The later evaluation was done independently for every unit

time, as above. The process begins by computing individual confusion matrices for each rater given

a meal. The word label for every unit of time or sample of the GT sequence is compared against the

label in the rater sequence, and the frequency of matching or confusing the sample with each other

gesture is recorded, as in equation 2.2.

CRk
(in, jn) = CRk

(in, jn) + 1 (2.2)

Here, CRmk
represents the confusion matrix of a rater for given a meal, where m = 1, 2, 3 (meal

index), n = 0, .., N − 1 (sample index of the meal), k = 1, ..., 5 (rater index), and i, j ∈ {Rest,

Utensiling, Bite, Drink, Other}. Second, rater’s confusion matrices for a given meal are combined

by using equation 2.3.

CMm =
5∑

k=1

CRk
(2.3)

Lastly, the confusion matrices from each of three meals are combined into a single confusion matrix

C, as seen in equation 2.4. This matrix captures the total presence of each word in the three meal

and it quantifies the percentage of samples confused with other words. Table 2.11 shows the result

of the confusion matrix C of the three meals combined.

C =

3∑
m=1

CMm

5(NM1 +NM2 +NM3)
× 100% (2.4)

2.4 Conclusion

Four eating activities were defined and an other category is considered to model all activities

which do not belong to our four main eating activities. To this point the study has been developed at
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Table 2.11: Inter-rater confusion matrix (units are % time during 3 meals).

Gestures Rest Utensiling Bite Drink Other
Rest 13.1 0.2 0.1 0.2 2.9
Utensiling 20.0 0.5 0.0 2.4
Bite 8.2 0.0 1.0
Drink 4.0 0.5
Other 38.9

the meal level, therefore sequential dependency of other daily activities are not included. Inter-rater

reliability was found to be 90.7% showing that our definitions are fairly objective. Although four

words is a fairly limited set, we found that they comprised on average 86.9% of the time during

a meal. A confusion matrix shows that the greatest ambiguity resides in the remaining 9.3% of

other activities, suggesting that additional words may be useful (e.g. cleaning hand or mouth with

napkin).
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Chapter 3

Recognition of Eating Gestures

Using Inter-Gesture Sequential

Dependencies

3.1 Introduction

This chapter considers the problem of recognizing eating gestures by tracking wrist motion.

Eating gestures are activities commonly undertaken during the consumption of a meal, such as

sipping a drink of liquid or using utensils to cut food. Each of these gestures causes a pattern

of wrist motion that can be tracked to automatically identify the activity. Previous works have

studied this problem at the level of a single gesture. In this chapter, we demonstrate that individual

gestures have sequential dependence. To study this, three types of classifiers were built: 1) a K-

nearest neighbor classifier which uses no sequential context, 2) a hidden Markov model (HMM)

which captures the sequential context of sub-gesture motions, and 3) HMMs that model inter-

gesture sequential dependencies. We built first-order to sixth-order HMMs to evaluate the usefulness

of increasing amounts of sequential dependence to aid recognition. On a dataset of 25 meals, we

found that the baseline accuracies for the KNN and the sub-gesture HMM classifiers were 75.8%

and 84.3%, respectively. Using HMMs that model inter-gesture sequential dependencies, we were

able to increase accuracy to up to 96.5%. These results demonstrate that sequential dependencies
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exist between eating gestures and that they can be exploited to improve recognition accuracy.

3.2 Methods

3.2.1 Data

The 25 meals described in table 2.2 were hand labeled using the custom tool depicted in

figure 2.4. Table 3.1 lists the total number, average time and cumulative duration of gestures in the

data set. This data was used for training and testing of the classifiers described next.

Table 3.1: Occurrences, average time per gesture, and cumulative time of gestures.

Gesture Occurrences Avg. Time (sec) Total Time (min)
Rest 582 8.3 80.6
Utensiling 700 7.3 84.7
Bite 1039 3.0 52.3
Drink 155 7.2 18.6
Other 310 8.6 44.5

3.2.2 Classifiers overview

Before introducing our new classifier, we describe two simpler classifiers used to establish

baseline accuracy. This provides a reference for evaluating the improvement obtained by our method.

Figure 3.1 illustrates the windows of time over which features are calculated for each classifier. The

first classifier is a K-nearest neighbor (KNN) and calculates features across an entire gesture. The

second classifier is an HMM and calculates features across sub-gesture periods of time. This is the

classic gesture spotting approach. It is assumed that the second classifier will perform better than

the first due to its use of sequential context within a gesture. The third classifier is also an HMM

but it calculates features across an entire gesture, modeling inter-gesture sequential dependencies.

Using the first two classifiers, each gesture is recognized independently, while the third classifier uses

the context of one or more previous gestures to improve recognition accuracy. The following sections

provide the details for each classifier.
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Figure 3.1: Periods of time used to calculate features for the classifiers.

3.2.3 K-nearest neighbor

For our first baseline we used a KNN classifier [137]. Each vector in a training data set

is associated with a class label. The process of classification places an unlabeled sample x in the

feature space among the training data. The classification searches for the K closest labeled samples

to x. The number of occurrences of each label are calculated among the K closest samples. The

label with the largest number of occurrences is assigned to x. Features are normalized by computing

the Z-norm. Euclidean distance was used for feature comparison.

We calculated the following features across the duration of a gesture: the total motion in

each of the 6 axes, the 15 correlations between all pairs of axes, and the ratio of rotational motion

to linear motion (called manipulation in [59]). This feature set was reduced to those most useful for

classification using a feature forward selection method [10]. This is an iterative process that begins by

selecting the single feature that by itself provides the highest classification accuracy. Subsequently,

all the remaining features are paired with the first selected feature to find the pair that provides

the highest classification accuracy. This process continues until adding another feature results in

a negligible increase in classification accuracy. This feature selection process was performed for
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Table 3.2: KNN features.

No. KNN Features
1 Manipulation
2 Amount of motion of AccX
3 Amount of motion of AccY
4 Amount of motion of AccZ
5 Amount of motion of Pitch
6 Correlation(AccX,AccZ)
7 Correlation(AccY,AccZ)
8 Correlation(Yaw,Pitch)
9 Correlation(Yaw,Roll)
10 Correlation(AccX,Yaw)

K = 1, 3, ..., 19, using 18 meals for training and 7 meals for testing. This process yielded K = 7 and

the 10 features shown in table 3.2.

3.2.4 Sub-gesture HMMs

For our second baseline we used HMMs to model the temporal sequencing of the sub-

components of each gesture. States represent gesture fragments (see Figure 3.1). Five HMMs were

built, one for each of the four defined eating gestures and one for the other category. The HMMs

were designed with a left-to-right architecture with skip using an HMM toolbox for MATLAB1. For

observables, a set of features were computed using a sliding window of 0.5 seconds with 50% overlap.

The features included the mean, standard deviation, and slope for each of the six axes. Emission

probabilities were calculated by modeling features as continuous observations using Gaussian mixture

models (GMMs), where the model orderM is the number of Gaussians. We calculated GMMs using

the expectation maximization algorithm [139]. The GMM for sub-gesture γ is given by equation 3.1,

where cγm , µγm , and Σγm represent the mixture weight, mean, and covariance matrix of the mth

Gaussian, respectively. In this work, only diagonal covariance matrices were used.

Gγ = {cγm , µγm ,Σγm} , where m = 1, ...,M (3.1)

For model parameter selection, we tested several numbers of states (3 to 15) and Gaussians (1 to

10) using a 5-fold cross validation, selecting 13 states and 5 Gaussians as the best parameters for

1http://www.cs.ubc.ca/~murphyk/Software/HMM/hmm.html
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Figure 3.2: Sub-gesture HMM gesture recognition.

each gesture. For recognition, the Viterbi algorithm was used to calculate the log probability of each

of the five sub-gesture HMMs given the observed feature sequence. The HMM with the highest log

probability determined the classification of the gesture, as shown in figure 3.2.

3.2.5 Gesture-to-gesture HMMs

The purpose of this classifier is to capture sequential context between gestures; in other

words, to use the history of one or more preceding gestures to improve the recognition of the current

gesture. States represent whole gestures. Figure 3.3 shows an HMM that uses a history of 1 gesture,

which we denote as HMM1. Each state corresponds to one of the five gestures (rest, utensiling, bite,

drink, and other). This HMM is ergodic, meaning every state can be reached by any other state.

To incorporate additional history we first build a conditional higher-order HMM and then

convert it to an equivalent first-order HMM [110]. We denote HMMn as an nth-order HMM that

uses the previous n gestures for sequential context. For example, HMM2 has the capability to

recognize state qt based on the previous states qt−1 and qt−2. Figure 3.4 shows an example second-

order HMM for only two of our gestures (for clarity), bite (B) and utensiling (U). The temporal
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Figure 3.4: Example second-order HMM of bite (B) and utensiling (U). A transition probability a
is conditional and has three subscripts indicating the gesture history at times t− 2, t− 1, and t.

sequencing is left-to-right. For example, aUBU indicates a state transition where the previous two

states were U then B, and the next state is U at times t − 2, t − 1, and t, respectively. Figure 3.5

shows the equivalent first-order HMM. Each state models a sequence of two gestures. The state

notation (e.g. BB) shows the memory (left-to-right) of the most recently seen gestures. Logically,

transitions between some states are impossible. For example, the state BU cannot transition to BB

because the former’s most recently recognized gesture is U, which does not match the memory of the

latter. As another example, figure 3.6 shows the same part of HMM3 after it has been reduced to

first-order. The state and transition notation reads left-to-right and defines the memory of the most

recently seen gestures. In general, any HMM of order n (HMMn) can be converted into a first-order

equivalent.

For observables we used the 5 log probailities obtained from the sub-gesture HMMs described

in section 3.2.4. Emission probabilities were calculated by modeling these observables using GMMs

as in equation 3.1. We selected the number of Gaussians by performing a 5-fold cross validation for

M = 1, ..., 20 in HMM1, choosing M = 7.

The transition probabilities aαβ...ϕω are equivalent to P ({qt = ω}|{qt−1 = ϕ, .., qt−n−1 =

β, qt−n = α}), where α, β, ..., ϕ, ω ∈ {rest, utensiling, bite, drink, other} and αβ...ϕω represent the

states visited (from left to right) at times t− n, t− n− 1, ..., t− 1, and t, respectively. Thus, for a
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Figure 3.5: Equivalent first-order HMM of figure 3.4. The state notation (e.g. BB) shows the
memory (left-to-right) of the most recently seen gestures. A transition probability a has three
subscripts indicating the gesture history at times t− 2, t− 1, and t..

given set of data, these can be calculated as

aαβ...ϕω =

Total # of transitions from gesture sequence

αβ...ϕ to gesture ω

Total # of αβ...ϕ gesture sequences
(3.2)

Similarly, the prior probabilities can be calculated from a given set of data as

παβ...ϕ =
Total # of αβ...ϕ gesture sequences

Total # of n-gesture sequences
(3.3)

The Viterbi decoding algorithm outputs the most probable n-gesture αβ....ϕ state sequence Q, but

only ϕ from each state is retained in the output. The other portions of each state are the running

memory and are redundant.

A drawback of this approach is that the number of states and transition probability matrix

grow exponentially as the order grows. In our case, as we increase the model order, the total

number of states are 5n and the transition probability matrix contains 52n elements. Although not

all transitions are logically possible due to the constraint of the history of gestures, there are no

fully-empty columns or rows in the transition matrix. Due to software limitations we were only able

to test this approach for our data up to n = 6.

60



BBB BBU BUU

BUB UBU

UBB UUB UUU

aBBBB aBBBU aBBUU

aBUBU

aUBUB

aUUUB
aUUBB

aUUUU

aUBBB

aUBBU

aBBUB

aBUBB
aUUBU

aUBUU

aBUUB

aBUUU
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seen gestures.
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Table 3.3: Transition probabilities.

PPPPPPPPFrom
To

Rest Utensiling Bite Drink Other

Rest 0.072 0.338 0.364 0.093 0.133
Utensiling 0.134 0.007 0.811 0.007 0.040

Bite 0.309 0.364 0.141 0.022 0.165
Drink 0.253 0.226 0.137 0.151 0.233
Other 0.285 0.256 0.292 0.167 0.000

3.3 Results

The transition probabilities found for HMM1 are shown in table 3.3. The amount of se-

quential dependence between gestures can be seen in entries with values larger or smaller than 0.2.

For example, the likelihood of transitioning from utensiling to bite is 81.1%. The tables for HMM2

to HMM6 are too large to display easily.

All classifiers were trained and tested using leave-one-out cross validation. Training the sub-

gesture and gesture-to-gesture HMMs consisted of calculating GMM values (equation 3.1). Training

the KNN consisted of populating the feature neighbor space with the training data for purposes of

calculating nearest neighbors for the test data.

For all classifiers, accuracy was measured as the total percentage of time in all the meals

that gestures were labeled correctly. Table 3.4 presents a summary of the accuracy achieved by each

of the classifiers. For the baseline classifiers, the sub-gesture HMMs performs better than the KNN

with an 8.5% improvement. Our gesture-to-gesture classifier that incorporates gesture history shows

further imporvement, from 3.4% to 12.2% across HMM1 to HMM6. For example, HMM3 uses a

history of 3 gestures and achieved 89.6% accuracy while HMM6 uses a history of 6 gestures and

achieved 96.5% accuracy.

Table 3.5 shows the results broken down by gesture type. It can be seen that gesture history

improves the recognition accuracy of every gesture type except drinks. Table 3.6 shows the confusion

matrix for HMM6 for each gesture. The most confusion occurs between drink and rest gestures, and

utensiling and other gestures. This is likely due to the similarities of motions between these gesture

types. Drink gestures can have pauses that can be confused with brief periods of rest, and both

utensiling and other gesture types encompass a wide variety of motions.

We conducted an additional test of our classifier to determine if the most recent gesture

history is the most important. This was done also to provide assurance that our results are not
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Table 3.4: Total recognition accuracy.

Method Accuracy (%)
KNN 75.8

Sub-gesture HMM 84.3
HMM1 87.7
HMM2 88.0
HMM3 89.6
HMM4 92.2
HMM5 94.6
HMM6 96.5

Table 3.5: Recognition accuracy for each gesture.

Method Rest Utensiling Bite Drink Other
(%) (%) (%) (%) (%)

KNN 88.8 76.8 84.3 71.5 31.7
Sub-gesture HMM 91.7 83.2 86.9 86.5 56.0

HMM1 93.5 87.5 93.0 75.1 63.1
HMM2 93.8 87.9 92.8 75.5 64.6
HMM3 94.3 89.5 92.8 77.5 69.0
HMM4 96.8 92.6 95.1 79.2 75.5
HMM5 97.7 94.4 96.2 82.7 82.8
HMM6 99.3 97.3 98.5 82.0 88.4

Table 3.6: HMM6 confusion matrix.

XXXXXXXXXXActual
Classifier Rest Utensiling Bite Drink Other

(%) (%) (%) (%) (%)
Rest 99.3 0.3 0.1 0.0 0.3
Utensiling 1.2 97.3 0.3 0.0 1.3
Bite 0.5 0.2 98.5 0.0 0.8
Drink 8.5 1.9 3.0 82.0 4.6
Other 2.0 7.5 0.9 1.2 88.4
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Figure 3.7: Classifier accuracy with increasing gesture history and increased skip in history.

an effect of over-fitting. We constructed an HMMn-skip for each value of n, where the gesture

history captured in HMMn skipped over the most recent n gestures and instead used the history

of the n gestures preceding them. For example, HMM1-skip models history by skipping over the

most recent gesture and instead uses the identity of the one preceding it; HMM2-skip models the

history by skipping over the two most recent gestures and instead uses the sequenece of the two

preceding them; etc. Formally, equation 3.2 was modified to skip n gestures between αβ...ϕ and ω.

Figure 3.7 shows the accuracies of all the classifiers as the amount of history and skipped history is

increased. The KNN and sub-gesture HMMs have constant accuracy because they do not incorporate

gesture-level history. Our gesture-to-gesture HMM increases in accuracy as the history of gestures

is increased. The HMMs with skip perform much worse. This indicates that the most recent gesture

history is in fact the most relevant.
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3.4 Conclusions

This work demonstrates that the recognition of eating gestures can be improved through

knowledge of the sequential dependence of individual gestures. We believe this is due to the patterned

nature of activitues during eating. For example, a common pattern is to use utensils to prepare a

bite of food, consume the bite of food, and then rest hands while masticating and swallowing.

Another common pattern is to intersperse drinks with food bites. Our HMMs capture this “language

of eating” and use it to improve recognition accuracy. The results in figure 3.7 show evidence

supporting this conclusion. A skipped history of 2 gestures shows improvement over a skipped

history of 1 gesture, but additional skipped history shows a continually decreasing accuracy. This

is likely due to HMM2-skip capturing some of the cyclical phrasing of gesture patterns, such as

utensil-bite-utensil-bite, where the skip of 2 matches the repetition in the phrasing. We assume

that other HMMn-skip classifiers capture less phrasing and hence show increasingly worse results.

A phrase-level study of the sequential context during eating is a topic for future work.

Methods for activity recognition that are developed in a controlled setting will potentially be

brittle in a natural setting. This problem affects all studies where some instrumentation is necessary

to record behavior. In our case, our data was collected in a cafeteria which is as natural a setting

as possible where wrist motion trackers and discreetly positioned video cameras could be used to

record eating. Participants selected their own foods from everything available in the cafeteria and

consumed them however they wished, with no instructions on how or what to eat. This is arguably

more natural than asking participants to conduct a sequence of scripted gestures in a lab or asking

participants to eat a small set of controlled foods (as in [85]). Although our data set was acquired

from 25 people each eating a meal, the total gestures recorded numbered 2,786 (see Table 3.1). We

believe this captures sufficient variety in pace and style of each gesture type that the improvement

we found in recognition is not brittle.

Other limitations of this work include the number of activities modeled and the use of man-

ually segmented data. We found that 15.9% of the total time during meals is comprised of other

activities, such as wiping hands on a napkin or gesturing while talking. Increasing the number of

activities may affect overall classifier accuracy. However, we still expect that modeling sequential

dependencies would produce an improvement in accuracy. For our experiments, we used manually

segmented data in order to determine the impact of sequential dependence modeling on classifier

65



accuracy independent of possible segmentation errors. In the future we plan to explore automated

segmentation methods. It may be that sequential dependencies can be exploited to improve auto-

mated segmentation as well as classification. Finally, it should be noted that other classifiers besides

HMMs can model sequential context such as conditional random fields and dynamic Bayesian net-

works. The comparison of these classifiers on the problem of eating gesture recognition is a topic of

future work.

The method presented in this chapter could be used to improve the accuracy of automated

methods that track wrist motion to monitor the number of drinks [17] or bites [57] taken by a person.

Our method could also potentially be used to analyze eating habits of individuals that may correlate

with variations in energy intake. For example, slowing the pace of eating has been found to be

associated with decreased intake during a meal [152]. It may be that other activity patterns have

similar associations. In this case, a tool that automatically measures these patterns could prove

useful in diagnosis and behavior treatment. These topics are subjects for future work.
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Chapter 4

Automatic Classification and

Segmentation of Eating Gestures

4.1 Introduction

In this chapter, we explored methods to recognize wrist motion gestures related to eating ac-

tivities from unsegmented data. In the last chapter, we studied the performance of recognizing these

gestures using hand segmented data; in practical use the data must be automatically segmented.

Since the beginning and ending points of a gesture are not known, we fragmented the wrist motion

signal into frames and classify each frame as belonging to a gesture. Figure 4.1 shows the wrist mo-

tion signal fragmented into frames using a 0.5 sec window with a 50% overlap (dashed rectangles).

Features are computed using the six motion signals inside the window. Using our classifiers, the

frames are labeled either as rest, utensiling, bite, drink or other. Figure 4.2 depicts the labeling of

the frames, where U is utensiling, B is bite and R is rest. Finally, consecutive frames pertaining to

the same gesture are grouped together, thus segmenting the wrist motion signal as shown in figure

4.3.

For classifiers, the same techniques studied in the previous chapter were used again: KNN,

sub-gesture HMMs, and gesture-to-gesture HMMs. In the case of the sub-gestures HMMs, segmenta-

tion and classification of wrist gestures is accomplished by connecting the individual HMMs together.

For the gesture-to-gesture HMMs, they use the output from the sub-gesture HMM as a preliminary
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Figure 4.1: Fragmenting the wrist motion signal into frames.
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Figure 4.3: Grouping frames into gestures to segment wrist motion.

segmentation that is later reclassified using gesture-to-gesture sequential dependency analysis. For

evaluation, the segmented output from the three methods is compared with the hand labeled data.

The baseline algorithms achieved a 59.9% and 71.1%, respectively. The gesture-to-gesture HMMs

showed an accuracy of 90.0%.

4.2 Methods

4.2.1 Training Data

In chapter 2, ground truth (GT) sequences of eating gestures were established using manual

labeling of 25 meals. In this GT there are gaps which are unlabeled sections less than 4 sec that rep-

resent transitions between gestures with no real intention; these could be as small as 66.7 msec. The

segmentation task of wrist motion data will consist of analyzing a small section of the wrist motion

signal to determine which gesture corresponds to that particular segment. So, from a segmentation

perspective, it is not necessary to distinguish these gaps from actual unlabeled sections with real

intention, i.e. the other gesture. Hence, the hand labeled gesture sequences are preprocessed to
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eliminate these gaps as shown in figure 4.4. Gaps are located in a meal and are labeled using the

labels of the gestures located in the extremes of the gap. Half of the gap is filled using the gesture

label on the left side of the gap and the other half is labeled using the gesture label on the right of

the gap. If the gap is only one sample point, then this is labeled with the gesture label on the left of

the gap. These labels are used for training purposes for the classifiers. It is important to note that

the original hand labeled GT is still used to evaluate segmentation and classification performance.

Hand

Labeled 

GT

Gaps

Bite Utensiling Rest Drink Other

Training

data

Figure 4.4: Smoothing gaps for training data.

4.2.2 KNN segmentation and classification

The goal is to segment an unlabeled continuous wrist motion signal and classify segments

into one of five gestures: rest, utensiling, bite, drink, and other. For the KNN segmentation and

classification, features from table 3.2 are computed on the accelerometers and gyroscopes signals

using a frame window of 0.5 sec with 50% overlap. Each one of these frames are labeled using the

training data of figure 4.4. If a frame overlaps two gestures, it gets assigned to the gesture it overlaps

the most. Using this classifier, segmentation and classification happen simultaneously. Features are

normalized using the Z-norm and Euclidean distance is use as measure of distance. Using the 25

meals, a five fold cross validation was performed for K = 1, 3, 5, ..., 101, selecting K = 45.

4.2.3 Sub-gesture HMMs segmentation and classification

Sub-gestures HMMs are interconnected to create a single HMM to classify and segment

simultaneously the frames of a continuous wrist motion signal. Figure 4.5 shows the implementation
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where each box represents a sub-gesture HMM. The last state has a transition probability to the first

state of each sub-gesture HMM. The value of these transitions are 1−p
5 , where p is the self transition

probability of the last state in a subg-gesture HMM. In this manner the probability of transitioning

from one sub-gesture HMM to another is the same.

Rest HMM

Bite HMM
Utensiling HMM

Drink HMM Other HMM

(1-p)/5

p

(1-p)/5

(1-p)/5

(1-p)/5

(1-p)/5

Figure 4.5: Interconnection of sub-gesture HMMs. Each box represents a left-to-right with skip
sub-gesture HMM. The last state of each HMM is connected to the first state of the other HMMs.
Equal probabilities are assigned to these transitions based on the probability p of the last state of
the HMM, i.e. 1−p

5 .

The complete process for the implementation of figure 4.5 involves computing the features

from the wrist motion signals, training the transition probabilities for each sub-gesture HMM, and

lastly connecting each sub-gesture HMM to all the other sub-gesture HMMs. As in the KNN,
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Figure 4.6: Training bite sub-gesture HMM.

features are calculated using a frame window of 0.5 sec with 50% overlap. The features in each

frame include the mean, standard deviation, and slope for each of the six axes. Frames are labeled

in the same manner as in the KNN to train the sub-gestures HMMs. Because each sub-gesture HMM

is trainined independently, the transition probability for the last state of each sub-gesture HMM has

a self transition with probability of one. This means that no knowledge of subsequent activities is

modeled. To address this issue, when training a sub-gesture HMM, all frames corresponding to a

particular gesture are gathered with 10 additional frames which represents 5 sec after the gesture.

This additional information is included in the training so that the last state resembles the transition

and beginning of the upcoming gesture as shown in figure 4.6.

The last state is then removed (the sink state with the single transition probability of 1)

and all transitions connecting from the other preceding states to the last are modified. Figure 4.7

shows an example for the rest sub-gesture HMM. For simplicity the HMM is illustrated consisting of

four states. The upper box represents the HMM built for the rest gesture after initial training. The

bottom box shows the final sub-gesture HMM for rest after removing the last state and readjusting

the transition probabilities. Finally, the sub-gestures HMMs are connected together as explained
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Figure 4.7: Preprocessing of sub-gesture HMMs.

To process a continuous unlabeled wrist motion signal, the features from the frames are used

as input into the fully connected sub-gesture HMM and the Viterbi algorithm is used to find the

most likely state path. Since specific states represent a gesture, the output sequence path has to be

mapped into one of five gestures to be able to compare with the hand labeled GT. For example, for

simplicity, if each sub-gesture HMM has three states then there are 15 states in the fully connected

sub-gesture HMM. States 1 to 3 represent the rest gesture, state 4 to 6 represent the utensiling

gesture, states 7 to 9 represent the bite gesture, states 10 to 12 represent the drink gesture, and

states 13 to 15 represent the other gesture. Figure 4.8 shows an example of the Viterbi state sequence

output and how frames are grouped to finalize the segmentation of gestures.

A five fold cross validation was performed using the 25 meals to obtained the number of
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Figure 4.8: Grouping state output sequence to segment wrist motion signal.

states for the sub-gesture HMMs and the number of Gaussians to model each state. The validation

tested the range of states (Q = 3, 4, 5, ..., 20) and the range of Gaussians (M = 1, ..., 10), selecting

17 states and 10 Gaussians as the best parameters.

4.2.4 Gesture-to-gesture HMMs segmentation and classification

For this classifier, the sub-gesture HMM segmentation is used as an initial segmentation

and classification. The gesture-to-gesture HMM calculates new features across each entire segment

and then re-classifies them using inter-gesture sequential dependencies. Although this will not

substantially change the segmentation, in can change it somewhat in cases where a segment is

relabeled to the same label as a preceding or succeeding segment, which in effect also changes the

final segmentation.

For training purposes, the original hand labeled GT for each meal was used. Figure 4.9

shows the process of building the training data using the hand labeled GT and the segmentation

sequence from the sub-gesture HMM. The latter is used to propose an initial segmentation of gesture

sequences which are relabeled using the information on hand labeled GT. The bottom line shows
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the new training data that will be use in the gesture-to-gesture HMMs. It can be observed that a

single gesture in the hand labeled GT can be split into two or more in the same period of time in

the new training data.

Hand

labeled

GT

Bite Utensiling Rest Drink Other

Sub-gesture

HMM

Training data

gesture-to-gesture

HMM

Figure 4.9: Training data for gesture-to-gesture HMM.

The classification is a two-step process. First, using the new training data from figure 4.9,

features (mean, standard deviation, and slope) are calculated on each gesture segment through an

overlapping 0.5 sec window. These features are used to model the states in a sub-gesture HMMs; 13

states and 5 Gaussians are used as in the previous chapter. After modeling, the features correspond-

ing to a gesture segment are fed into each of the sub-gesture HMMs as shown in figure 3.2. Second,

the log probability score for each gesture segment is output by each model and are collected to form

a 5-element feature vector. These features are used to model the states in the gesture-to-gesture

HMMs as in figures 3.3, 3.5, and 3.6; 7 Gaussians per state are used as before. Also, the transition

probabilities and prior probabilities for all gesture-to-gesture HMMs. This is because in the new

training data has a different gesture sequence as to compare with the hand labeled GT, i.e. one

rest segment could be two or more segment in the same period of time. Hence, transitions from

gesture to gesture may increase or decrease. Lastly, the Viterbi algorithm is used as described in

the previous chapter to find the most probable path. The final evaluation is done by comparing the

Viterbi state sequence and the hand labeled GT.
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4.3 Results

The transition probabilities found for HMM1 are shown in table 4.1. The training data

shows over-segmentation, i.e. there are two or more segments for one gesture segment in the hand

labeled data. Some gestures of rest, utensiling, drink, and other tend to be long, so more transitions

to themselves will occur, thus having an increase in the transition probability. We can see that

phenomenon in the table as compared to table 3.3. Even with over-segmentation, we can still see

consistencies in the transitions from a gesture to another gestures as in transitioning to bite from

utensiling and transitioning to rest from bite.

Table 4.1: Transition probabilities.

PPPPPPPPFrom
To

Rest Utensiling Bite Drink Other

Rest 0.311 0.241 0.290 0.071 0.087
Utensiling 0.094 0.379 0.483 0.005 0.040

Bite 0.316 0.304 0.235 0.017 0.128
Drink 0.198 0.150 0.092 0.401 0.159
Other 0.137 0.104 0.126 0.084 0.549

All classifiers were trained and tested using leave-one-out cross validation. For all classifiers,

accuracy was measured as the total percentage of time in all the meals that gestures were labeled

correctly. Table 4.2 presents a summary of the accuracy achieved by each of the classifiers. For the

baseline classifiers, the sub-gesture HMMs performs better than the KNN with an 11.2% improve-

ment. Our gesture-to-gesture classifier that incorporates gesture history shows further imporvement,

from 6.8% to 18.9% across HMM1 to HMM6.

Table 4.3 shows the results broken down by gesture type. For utensiling, bite, and other,

Table 4.2: Total recognition accuracy.

Method Accuracy (%)
KNN 59.9

Sub-gesture HMM 71.1
HMM1 77.9
HMM2 78.7
HMM3 79.5
HMM4 81.4
HMM5 84.5
HMM6 90.0
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Table 4.3: Recognition accuracy for each gesture.

Method Rest Utensiling Bite Drink Other
(%) (%) (%) (%) (%)

KNN 89.7 68.0 56.5 37.2 4.2
Sub-gesture HMM 85.7 73.9 75.3 85.5 28.1

HMM1 84.3 84.3 78.9 77.7 49.3
HMM2 84.3 85.1 79.6 81.4 50.4
HMM3 85.3 85.5 79.6 84.6 51.4
HMM4 87.0 84.2 81.6 90.9 58.4
HMM5 89.7 87.0 85.4 87.9 65.4
HMM6 95.3 91.9 89.6 87.2 76.7

the gesture-to-gesture HMMs show cumulative improvement of recognition as each level of history

is incorporated. In the case of drinks, the improvement peaks at a history of 4, which is consistent

with recognition of gestures using hand labeled data in the previous chapter. In the case of rest,

the KNN and HMM5 are comparable but HMM6 shows even better accuracy, which suggests that

modeling a history greater than 5 preceding gestures the rest gesture can be recognize better within

the framework of fragmenting the wrist motion signal into small overlapping frames.

A confusion matrix of the gestures was created based on HMM6. Table 4.4 shows the

confusion matrix for each gesture. The greatest confusion for the word rest is utensiling, which may

be because small tremors and posture adjustments are allowed in the rest definition. Thus during

the preliminary segmentation these get separated from a rest period. The utensiling and bite shows

the greatest confusion between each other. We believe this is because utensiling can have several

hand motiones that are similar to bites, hence causing the confusion. In the case of a drink gesture,

there can be a brief rest period during the action of liquid intake (while the container is held to the

mouth), which may cause over-segmentation of a drink gesture with a rest in-between. The other

category shows a fairly even confusion between rest, utensiling, and bite. The other gestures have

duration greater than 4 sec, among these gestures the average time is 8.6 sec and the maximum

other gesture is 42 sec. Since the other gesture is an catch-all gesture this gives the possibility that

several pieces get confused with the other gestures.

77



Table 4.4: HMM6 confusion matrix.

XXXXXXXXXXActual
Classifier Rest Utensiling Bite Drink Other

(%) (%) (%) (%) (%)
Rest 95.8 1.7 1.3 0.2 1.1
Utensiling 2.4 91.9 4.3 0.0 1.4
Bite 1.6 4.5 91.5 0.2 2.2
Drink 6.2 0.9 2.3 88.9 1.7
Other 7.0 7.7 6.7 0.0 78.6

4.4 Conclusions

In this chapter, we automatically classified and segmented eating gestures from a continuous

wrist motion signal. The process involved fragmenting the wrist motion signal into small overlapping

frames where features were computed and fed into the classifiers. The classifiers labeled each frame

as a specific gesture. The segmentation of eating gestures is finalized by grouping consecutive

frames that pertain to the same gesture. These gesture sequences were compared with the GT

hand labeled data and the accuracy was calculated on the total time gestures matched. Three

classifiers were studied: KNN, sub-gesture HMM, and gesture-to-gesture HMM. The first two are

baseline algorithms; after classifying and segmenting, these showed an accuracy of 59.9% and 71.71%,

respectively. The gesture-to-gesture HMM incorporates knowledge of the inter-gesture sequential

dependencies. The accuracy obtained with this method ranged from 77.9% to 90.0%. Using hand

labeled data of the 25 meals, the highest accuracy of recognizing eating gestures through the gesture-

to-gesture HMMs was 96.5%. The unsegmented case does 6.5% worse than the hand labeled data,

nevertheless it can be observed that by adding sequential dependence knowledge in both cases the

recognition of eating gestures is improved.

There are some limitations to this work. The gesture-to-gesture HMMs are dependent of the

segmentation output provided by the sub-gesture HMMs implemented here. Once gesture sequences

are available, these are relabeled using the hand labeled GT data to use as training data. Hence,

there are several stages the gesture sequence must go through, these may delay a system to provide

feedback in real-time. Another drawback is that the automatic classification and segmentation in

this work are offline methods which need the complete wrist motion signal.

From this work we conclude that the segmentation and recognition of the our eating gestures

from a continuous wrist motion signal can be accomplished. The performance increases if knowledge
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of the history of actions is incorporated into the classifier. More work will move towards minimizing

the stages for the gesture-to-gesture HMM for practical implementations. Also, the process will need

to be adjusted to be online to present immediate feedback from the device to the user.
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Chapter 5

Conclusions

This work is motivated by recent advances in body sensing and mobile health technology

that have created new opportunities for empowering people to take a more active role in managing

their health [97]. We are researching methods to build a watch-like tool that tracks wrist motion to

help automatically monitor dietary intake [56, 58, 57, 59]. Obesity now afflicts one in three adults and

one in six children in the United States [69, 122] and has been recognized as a major health problem

in need of new tools [63, 112, 169]. Self-monitoring of dietary intake, body weight and physical

activity have been consistently found to be associated with successful weight loss and maintenance

[34]. However, food diaries and other tools currently used for monitoring dietary intake require users

to manually estimate and record energy intake, making them prone to error and difficult to use for

long periods of time [168]. Body-worn sensors offer the opportunity to automatically track dietary

intake [22, 144, 129].

Prior work by this research group has demonstrated methods for detecting periods of eating

(i.e. meals, snacks) by tracking wrist motion continuously all day [57, 59], and for detecting and

counting bites taken during a meal [56, 58]. This dissertation considers the problem of recognizing

eating gestures by tracking wrist motion. Eating gestures are activities commonly undertaken during

the consumption of a meal, such as taking a bite of food, sipping a drink of liquid, or using utensils to

cut food. Each of these gestures causes a pattern of wrist motion that can be tracked to automatically

identify the activity. Previous works have studied this problem at the level of a single gesture

[21, 17, 85]. This work demonstrates that individual gestures have sequential dependence. For

example, the action of using utensils to cut food is typically followed by the action of taking a bite
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of food, which is typically followed by the action of resting the wrist during mastication of the food.

We have developed hidden Markov models (HMMs) that model these sequential dependencies, and

demonstrate that they improve recognition accuracy compared to simpler classifiers.

In chapter 2 we identified the a set of gestures related to eating activities. For this work we

defined four actions related to eating: rest, utensiling, bite, and drink. All other actions for which

intent was not defined, including both eating and non-eating activities (e.g. gesturing while talking,

cleaning with a napkin, waving at a friend, etc.) are referred to as other. The definitions of these

are based on discernible user intent, i.e. the subject’s intent is determined by observing the hand

wearing the device. The duration of an action lasts from when the intent can first be observed

in the synchronized video, to when that intent has ended. Using three meals and five raters, an

inter-rater reliability study was conducted to determine the stability of the gesture definitions and

hand labelings, finding 90.7% total time agreement. Although four words is a fairly limited set, we

found that they comprised on average 86.9% of the time during a meal.

In chapter 3, using hand labeled gesture sequences from 25 meals, we demonstrated that

individual gestures have sequential dependence. Three types of classifiers were built: 1) a K-nearest

neighbor classifier which uses no sequential context, 2) a hidden Markov model (HMM) which cap-

tures the sequential context of sub-gesture motions, and 3) HMMs that model inter-gesture sequen-

tial dependencies. We built first-order to sixth-order HMMs to evaluate the usefulness of increasing

amounts of sequential dependence to aid recognition. We found that the baseline accuracies for the

KNN and the sub-gesture HMM classifiers were 75.8% and 84.3%, respectively. Using HMMs that

model inter-gesture sequential dependencies, we were able to increase accuracy to up to 96.5%. These

results demonstrate that sequential dependencies exist between eating gestures and that they can be

exploited to improve recognition accuracy. Among the limitations to this point of our work include

the number of activities modeled and the use of manually segmented data. We found that 15.9%

of the total time during meals is comprised of other activities, such as wiping hands on a napkin

or gesturing while talking. Increasing the number of activities may affect overall classifier accuracy.

However, we still expect that modeling sequential dependencies would produce an improvement in

accuracy.

In chapter 4 we were able to automatically classify and segment our wrist motion gestures

from unsegmented data. Initially, a wrist motion signal is fragmented into overlapping frames

computing features in this period of time. Each frame was classified as part of a particular gesture.
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The final gesture sequence segmentation is achieved by grouping consecutive frames pertaining to

the same gesture. We used the three classifiers from chapter 3 (KNN, sub-gesture HMMs, and

gesture-to-gesture HMMs). In the case of the sub-gestures HMMs, segmentation and classification

of wrist gestures is accomplished by connecting the individual HMMs together. For the gesture-

to-gesture HMMs, it uses the output from the sub-gesture HMM as a preliminary segmented data.

These segments are relabeled using the hand labeled data and serve as input. The final classification

follows the two-step process explained in chapter 3. For evaluation, the segmented output from the

three methods is compared with the hand labeled data. Our baseline algorithms achieved a 59.9%

and 71.1%, respectively. The gesture-to-gesture HMMs showed an accuracy of 90.0%. Working with

unsegmented data does 6.5% worse than the hand labeled data, nevertheless it can be observed

that by adding sequential dependence knowledge in both cases the recognition of eating gestures is

improved.

5.0.1 Future work

This dissertation has shown the existence of sequential dependence among wrist motion

gestures during the consumption of a meal. The results obtained in this work can point several

directions for future research projects. The analysis of gestures may help identify if a lower or

higher calorie meal is being consumed. For example, eating a salad may have a faster movement

from the wrist when collecting food from the plate or bowl, and a steak may have less movement since

the eater needs time to masticate and swallow the portions. At the same time, knowing the type

of meal could help to automatically adjust the parameters for calorie intake and provide immediate

feedback to the user. Another application could be for studying eating habits in humans. This could

benefit people that suffer from obesity or some types of eating disorders by providing an objective

and automated measure of within-meal eating patterns.
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