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ABSTRACT

This thesis considers the problem of monitoring a person’s heartbeats using an electro-

cardiogram (ECG) and detecting and correcting misdetected beats in real-time. There are

only two basic types of errors in interbeat interval data. An event that was present can be

missed by the detector, or a spurious event can be added to the detection stream. This thesis

considers the correction of these errors in a variety of combinations and from a variety of

sources. It is important to detect and correct these errors because of the impact they can

have on further analyses, especially in the field of heart rate variability (HRV).

Incoming interbeat interval (IBI) values are placed into a buffer as they are received.

The corrections we consider involve a maximum of three IBI values. Our method buffers a

minimum of six seconds of incoming data in order to provide enough context for evaluating

corrections. The expected value of an incoming IBI is calculated as an acceptable deviation

from the last known good value. If an IBI is flagged as a possible error, it is evaluated within

its context by a series of rules designed to detemine the most likely error type that may have

occurred.

Evaluation of the method was based on IBI data gathered from 18 healthy Clemson

University students between the ages of 18 and 24. In all, fifty-four files containing 124,998

usable IBIs were collected and graded by two Clemson University graduate students. Six

of the fifty-four files were used for training, while the others were reserved as a test set.

This amounted to 15,095 IBI values to train on.

Results of analysis of the test set indicate a 97.4% agreement on classification in areas

that humans deem to be correctable. Agreement on classification is significantly lower,

but it follows the trend of human grader agreements. The method in its current state is

probably not complete enough for use in sensitive clinical studies, but it may form the

basis of a useful compoment of more complex systems designed for HRV analysis.
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Chapter 1

Introduction

1.1 Background

The electrical activity of the heart, as measured by the electrocardiogram (ECG) can be

used to construct an event series that indicates the time between individual heart beats. The

process of discretizing the raw electrical signal can introduce errors, however. Because the

generated event series is often used as an input to other analyses in the realm of heart rate

variability (HRV), it is essential that the errors in this data stream are kept to a minimum.

Since it may also be useful to perform these analyses as the data are collected, it it also

important that the data can be corrected as it is gathered. This thesis considers the problem

of monitoring a person’s heartbeats using an electrocardiogram (ECG) and detecting and

correcting misdetected beats in real-time.

In order to understand the process of correcting interbeat interval data, it is useful to

examine the underlying nature of the signal that is being sensed. The electrocardiogram,

or ECG, is a measure of the average electrical activity in the heart at a particular moment

in time. Because of the regular activity of the heart, the resulting waveform has a general

shape that is repeated over time. This waveform has a series of peaks and troughs that

correspond to significant cardiac events. Figure 1.1 shows an example of this waveform.
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Figure 1.1: An example of ECG data.
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Figure 1.2: Definition of a interbeat interval (IBI) in ECG data.

There are three major sections of an ECG signal. The P wave is the beginning of a

heartbeat and corresponds to atrial depolarization [9]. It is typically positive and rounded.

The P wave usually lasts less than 120 milliseconds [7]. The QRS complex is a series

of waveforms representing the ventricular muscle depolarization that are usually grouped

together for analysis. The Q wave is the first negative portion of the ECG after the P wave.

The R wave is a positive wave following the Q wave, and the S wave is another negative

portion following the Q wave. Not all wave forms are necessarily present (the Q wave in

particular may not be seen), but the grouping is known as the QRS complex even if some

elements are missing. It is typically of shorter duration than the P wave, and the R portion

has a relatively high magnitude [7]. The T wave is caused by the repolarization of the

ventricular muscles. It is typically the first positive activity after the QRS complex.

While the P wave marks the beginning of heart activity in each cycle, the QRS complex

is usually used to denote the time between cardiac events because its more prominant na-

ture allows more reliable detection and better accuracy [14]. Figure 1.2 shows the typical

definition of an interbeat interval (IBI), also known as an RR interval, in ECG data.

A number of different devices of varying quality can be used to gather IBI data, but they

all work on a common principle. Electrodes in contact with the skin measure the electrical
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impulses of the heart. Some sort of timer runs until an event is triggered by the detection of

a QRS complex. The time between events is reported as the length of the interbeat interval.

There are two common ways of detecting the QRS complex. If implemented in hardware,

the trigger typically utilizes a level detector, possibly in combination with a slope detector.

This method introduces some errors. Because it is not guaranteed to record the peak of

the R wave, there is some slight variation in the point at which the wave is recorded. The

more accurate approach is to use a software detector that detects the inflection point of the

R wave. This method is typically accurate to the nearest millisecond [27].

By definition, the detection of the QRS complex is a binary event: either the wave is

present or it is not. Because of this, there are only two basic types of errors in interbeat

interval data. An event that was present can be missed by the detector, or a spurious event

can be added to the detection stream. All other errors are combinations of these two error

types. There are two places artifacts can be introduced into the IBI stream. The ECG

itself may become noisy or corrupt or the IBI detector may do a poor job of detecting the

QRS complex. Problems in the ECG can arise from several reasons. Loose electrodes or

broken wires will cause a wavering baseline with unusual waveforms throughout as seen

in Figure 1.3. Muscular tremors, caused by tensed muscles, shivering, or health problems,

will appear as an irregular baseline that obscures true waveforms. This is demonstrated in

Figure 1.4. Figure 1.5 shows the effect of patient movements, which show up in a similar

manner as muscle tremors. Electrical interference can be another cause of a poor ECG [7].

Figure 1.3 through Figure 1.5 are adapted from illustrations in Guide to ECG Analysis [7].

Physiological phenomena can also introduce errors or areas that appear to be errors

into the ECG. Heart irregularities are an obvious source of unusual ECG data, but normal

activity can also have an effect on the activity of the heart. In particular, the rate of breathing

has a significant impact on heart activity [28]. Methods have been proposed for the removal
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Figure 1.3: ECG data with loose electrodes[7].

Figure 1.4: ECG data with muscle tremors[7].

Figure 1.5: ECG data with patient movements[7].
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(a) IBI error, missed (b) IBI error, split

Figure 1.6: Example data causing errors in IBI detection.

of noise in the ECG, but since they can introduce errors in the QRS area they may not be

suitable for use in HRV analysis[31].

Figure 1.6 shows an example of a missed IBI and a spuriously detected IBI. In Fig-

ure 1.6(a), an R-wave is too low, causing the detector to miss and resulting in a doubled

IBI value. In Figure 1.6(b), a P-wave is too high, crossing the threshold of the detector and

causing it to return a false IBI that is a portion of the true IBI value. A variety of combina-

tions of these two error types can occur (these are considered more fully in Chapter 2).

Heart rate variability is one of the primary applications of IBI data, and errors in an

IBI stream can have a profound effect on this type of analysis [27]. There are three basic

inputs that control heart rate variability. The sonoatrial node, also known as the pacemaker,

has a tendency to keep the heart at a steady beat. Parasympathetic fibers have a tendency to

increase IBIs. Activity in the parasympathetic system is affected by external stimuli and the

sleep/wake cycle. Sympathetic nervous activity has a tendency to decrease IBIs. Activity

in this system is strongly influenced by the environment [1].

Heart rate variability can be examined in the time domain or the frequency domain.

Analyses in the time domain and frequency domain are both affected by artifacts. One

common measure of heart rate variability in the time domain, the standard deviation of the

differentiated RR (DRR) time series ( rmSDD), is particularly susceptible to the effects

of artifacts. Another common measure, the percentage of DRR values larger than 50ms

(pNN50), is less susceptible to errors since every interval over 50ms is treated the same,

but it has undesirable characteristics in the case of very low or very high HRV. Garcı́a-
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González and Pallàs-Areny [12] proposed a method that makes the rmSDD more robust by

discarding outliers on the histogram of DRR values. This technique is primarily useful in

patients with low heart rate variability, however, and does not supplant the need for artifact

correction in all cases.

There are also several ways to examine HRV in the frequency domain. Autoregressive

models and Fourier analysis are common choices. Autoregressive models tend to be better

for short data segments because of the tendency for there to be some leakage between

power segments with the fast Fourier transform (FFT) and the smaller resolution associated

with using the FFT. The autoregressive model does have some disadvantages, such as the

amplitude of the peaks not having a linear relationship with the sinusoidal power of the

data in some models [29].

An example from Fourier analysis provides a good example of the effects of artifacts

on HRV analysis. There are typically three components of the power spectrum of IBI data:

a peak from 2-5 CPM, a peak centered around 6 CPM, and a peak from 9-30 CPM [17].

These peaks have been recognized in heart rate variability analysis since the early 1970s.

The three peaks are related to respiratory frequency, arterial blood pressure control, and

peripheral vasomotor regulation, respectively. The frequency and amplitude of the peaks is

constantly changing in response to parasympathetic and sympathetic nervous activity [28].

Figure 1.7(a) shows an example of IBI data over a 60 second window, showing several

cycles of activity at various frequency levels. Figure 1.7(b) shows the frequency space of

a Fourier analysis of that data. The units on the x axis are cycles per minute (CPM). The

units on the y axis are milliseconds per beat squared divided by cycles per minute. Notice

the three peaks present in the data. Figure 1.8(a) shows an example of IBI data containing a

missed beat error. Figure 1.8(b) shows how this affects the frequency space. Notice that all

of the peaks are obscured by a huge influx of power across all frequencies. This is because

an outlying IBI value severely distorts the appearance of all frequencies [30].
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(a) Clean IBI series (b) Power analysis (Cycles Per Minute)

Figure 1.7: An example of power spectrum analysis of good IBI data.

(a) IBI series containing error (b) Power analysis

Figure 1.8: An example of power spectrum analysis of IBI data with errors.
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1.2 Related Work

The study of heart rate variability is a field with a rich literature. There are a wide variety

of applications for heart rate variability analysis. A number of studies have been done to

explore the link between HRV analysis and autonomic nervous activity. A strong link has

been established between HRV and parasympathetic nervous activity in the heart [2, 15,

16, 19, 23]. Abnormal parasympathetic nervous activity in the heart can be an element of

diagnosing disease or other heart problems [5].

The examination of heart rate variability can play an important role in diagnosing the

health of a patient [32]. Reduced heart rate variabilty can be an indication that patients are

at a higher risk for mortality after acute myocardial infarction [10, 20, 21, 22, 24, 25]. This

can provide a crucial element for the stratification of subjects after initial treatment. Heart

rate variability can be an indicator of patients who may be at risk for a number of other

health problems as well. Reduced HRV is an indicator of a higher general mortality risk in

the elderly [33], and is a predictor of a number of possible heart problems in patients who

otherwise appear to be healthy [34]. Several other health issues have links to heart rate

variability. Studies have shown that particulate air pollution has a negative impact on heart

rate variability [13, 26], and both depression [6] and panic disorder have been shown to be

associated with abnormal HRV [11].

The activity of the autonomic nervous system can also be used to draw possible con-

clusions about the stress level or cognitive load of the subject [23]. Some researchers wish

to use this information about the cognitive state of a person to create closed loop systems

[17]. This could see a wide variety of applications in the field of augmented cognition.

While heavily edited data are not a replacement for good data and should only be used

when no other option is available [18], the removal of some artifacts is usually necessary

before subsequent analysis of the data is performed. The problem of IBI correction can be

broken up into two parts: detection of erroneous IBI values and replacement of erroneous

IBI values with a reasonable value [29]. There is no established method for automatically
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handling IBI error detection and correction. The correction of IBI data by hand is tedious

and requires human graders to make subjective judgments in data with high variability.

Some combination of automatic and manual correction is generally the preferred method,

often allowing the machine to mark potential errors and letting the human decide if it is

in fact an error and what correction to apply [3]. This work considers the problem of

correcting IBI data without human intervention. Assuming a valid ECG signal, the only

errors that can be introduced by an IBI detector are a falsely triggered threshold or a missed

heartbeat. Cheung [8] shows that it is possible to develop an algorithm that can detect all

errors of these types if some basic assumptions are met. Many errors that occur in IBI

data are some combination of an IBI being split or combined with another IBI. Cheung’s

method is not guaranteed to succeed on these combinations, though the iterative nature of

his algorithm allows it to correct many combinations of split and merge errors. Berntson et

al [4]. describe another such method for the automatic correction of errors. It detects errors

by evaluating an IBI population to determine the largest expected beat to beat difference for

a normal IBI and the smallest expected difference for an error. A threshold is determined

based on this information. If an IBI is above this threshold, it is further evaluated to see

whether it matches a known error type. Based on the results of this evaluation, an error

is corrected, marked as uncorrectable, or returned to a normal state. Berntson and his

colleagues suggest an on-line implementation is possible with this algorithm examining

a discrete window of accumulated statistics, but they do not provide further details of its

implementation.

Sapoznikov et al [29]. describe several methods for detecting erroneous IBIs. First they

tried removing values based on mean heart rate. Using a global heart rate was completely

unacceptable for identifying errors. If a threshold was set that would detect all (or a rea-

sonable number) of errors, it would cause a high rate of false positives. A moving updated

mean performed better, but still had a high rate of false positives when heart rate under-

went changes. Another method was to fit the HR data to a polynomial and mark values that
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deviated by a certain threshold as being in error. The changes in the polynomial caused by

the errors causes problems, especially in areas with multiple errors. A third method is to

examine the differences between consecutive beats. This method works best if the beats

are compared to the last known good value, but fails in areas where overall changes in heart

rate are contaminated with errors. After comparing these various solutions, the recommen-

dation is to use both the updated mean and the last normal HR value as benchmarks. When

tested on sleep data, using both values failed to detect 6% of artifacts and mislabeled a

small number of correct values as artifacts.

1.3 Overview

Some of the above methods assume that the entire IBI trace has been collected and is avail-

able during error correction. Others collected data in carefully controlled clinical settings

with limited activity that reduced the type and number of errors present. We consider the

case where IBI errors must be detected and corrected in real-time. Such is the case, for ex-

ample, if heart rate variability analysis is to be used for real-time monitoring or feedback.

The applications of such a device are numerous. It could be used for alertness monitor-

ing in long term vigilance tasks, increasing the safety of critical alertness activities such

as truck driving. It could also be used to close the loop and allow computer systems that

can respond to a user’s physiological state. A system such as this would be desirable, for

instance, in managing cognitive load for optimal performance during crucial tasks. Re-

searchers desire to enhance soldiers of the twenty first century with such computer assisted

cognitive capabilities [17].

We also consider the possibility of additional types of errors. While any errors derived

from a valid ECG signal will result in combinations of simple split or combine solutions,

errors caused by an inability to properly sense this signal or by faulty equipment are equally

important to detect, even if they can not be corrected.



11

To our knowledge, this work is the first to consider IBI error detection and correction

in real-time on mobile subjects and with multiple devices. This thesis describes a method

for correcting IBI data as it is gathered that is designed to run online. It introduces min-

imal lag into the IBI signal and is capable of detecting and classifying a wide variety of

errors. Section 2.1 describes the actual correction process. It is a rule based approach

that works within the bounds of a contextual buffer. Section 2.2 describes our data set of

124,998 usable IBI values collected from 18 subjects. We evaluate the performance of the

method against that of a set of human graders using the train and test paradigm. Results are

presented in Chapter 3.



Chapter 2

Methods

Section 2.1 describes our engine for automated IBI error detection and correction. Section

2.2 describes the data set, consisting of 124,998 IBIs, used to evaluate our method. Our en-

gine accepts several adjustable parameters that can be modified for optimum performance.

Section 2.3 describes the parameters and the process used to choose the best set.

2.1 Engine

Incoming IBI values are placed into a buffer, illustrated in Figure 2.1, as they are received.

This buffer provides context for the two questions that must be asked as an IBI is evaluated.

The first is, should this IBI be marked as an error? The second is, if this IBI is an error,

what is the most appropriate correction? This buffer must be of sufficient size to allow

all the necessary information contained in the sequence of IBIs to be used in the decision

making process. Past research has shown that temporally related heartbeats contain more

information about the predicted state of an IBI value under consideration. [4] This indicates

that the buffer does not need to be very large to make an appropriate evaluation of the state

of a heart beat. The possible corrections applied provide another constraint on the size of

the buffer. The corrections we consider (see Table 2.1) involve a maximum of three IBI

values. The maximum value for an IBI is approximately 1500ms, and they are significantly
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Figure 2.1: A snapshot of the buffer used for correction context.

shorter under most circumstances. It is also necessary to have at least one IBI received after

the currently evaluated IBI in order to decide on the appropriateness of any corrections we

may wish to try. Our method buffers a minimum of six seconds of incoming data in order to

provide enough context for evaluating corrections. Since IBI data arrive asynchronously,

in practice we are unable to guarantee a fixed amount of time in the buffer. We try to

keep the time in the buffer close to six seconds to minimize lag introduced into the system.

The reason our buffer maintains a fixed amount of time instead of simply working on

a fixed number of IBI values is primarily to facilitate the resampling of IBI values into

synchronous data for consumer processes that may need to work on IBI values in this

format. Specifically, spectral analysis through the use of the Fourier transform requires

synchronously sampled data to provide meaningful results. As data arrive and are added

to the buffer, a timestamp is also associated with each value. If the device generating the

IBI values has a separate clock from that on the recording system, this can provide some

measure of useful redundancy.

Past history is not necessary for feeding a synchronously sampled consumer, which is

reflected in our implementation. As values are deemed to be correct or to have a correction

applied, they are moved into a portion of the buffer that contains a fixed number of values

rather than a certain time period. The number of values contained in this section of the

buffer was a variable we trained to and is more fully examined in Section 2.3. Statistics on

the values in this section of the buffer are used to predict the expected value of the next IBI.
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The expected value is calculated as an acceptable deviation from the last known good

value. Equation 2.1 shows how the threshold for determining if a new value has exceeded

this deviation is calculated. In the equation, T is the threshold, N is the number of values

in the past buffer, pb represents the past buffer, and m is a multiplier. N and m are fixed at

runtime, but were tried with several different reasonable values. Results from this portion

of the experiment can be found in Section 2.3. In plain language, the mean successive

difference of the trusted values in the buffer is multiplied by some value to generate the

threshold. The generated value is limited to a predefined range of possible values, also

determined at runtime and also trained for as described in Section 2.3. If the buffer is not

yet full, a reasonable estimate is used until the buffer is full and meaningful statistics can

be calculated. During the experiments described in this thesis, a default value of 100ms

was used. An IBI may also be marked as an error if the timestamp data have a significant

deviation from the recorded value. This is most useful for catching errors where the data

were corrupted between the IBI generating device and the recording system.

The portion of the engine that detects errors can be temporarily suspended if too many

errors occur in a particular neighborhood. This capability was introduced to minimize the

effect of the engine generating a sequence of data that appears to be valid but in fact deviates

from the original data. In practice, an observation of human graders indicates that more

than 2 or 3 consecutive corrections are rarely, if ever, used. If corrections are occurring

with higher frequency, the area is almost certainly uncorrectable. In order to establish

this behavior, a counter is incremented each time a correction is applied and decremented

each time an IBI is marked as OK. If the counter exceeds a value of 3, the next IBI is not

examined for potential errors and the counter is again decremented. The only exception to

this rule is for IBI values at or exceeding the maximum reportable hardware value. These

IBIs are replaced with a valid timestamp or marked as uncorrectable even if the counter is

at its maximum value.
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T =

∑N−2
i=0 |pvi − pvi+1|

N − 1
∗m (2.1)

There are at least two possible approaches to correcting IBIs. In the first, the sequence

of values could be viewed as a continuous function over time with some kind of smoothing

function applied to deviations. Alternatively, since we have already established that the

only types of errors that can occur in a stream of IBI data are the omission of an event

and the addition of a spurious event, we could try to reconstruct the series of events that

may have caused a particular error or sequence of errors from the surrounding good IBI

values. From this we could make a reasonable approximation of the original values of the

erroneous IBIs. Our method takes the second approach, using a set of rules to try to classify

the error sequence that led to an abnormal IBI.

A human considering IBIs can frequently discern errors where IBIs have been split or

combined due to some faulty detection. These errors become apparent when IBI values are

plotted in sequence with the value on the Y axis. Figure 2.2 demonstrates the appearance

of several common error types when plotted in this manner. When a specific error pattern

has been recognized, it allows the human grader to determine the proper correction to

apply. Human experts can also recognize faulty IBIs if the reported values are outside

of the physiologically expected range. Additionally, most IBI detecting hardware has a

maximum value it will report. Any IBIs at this maximum value can be quickly recognized

as errors.

Our automated correction procedure attemps to classify errors in a manner similar to

human graders. If an IBI has been flagged as a possible error in the detection phase, the

IBI is evaluated within its context by a series of rules designed to determine the most

likely error type that may have occurred. Each rule represents a possible error type. The

rules, in the order they are applied, are listed in Table 2.1. The order in which possibilities
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Split error Combine error Combine and split error

Figure 2.2: Appearance of errors in IBI data

are inspected is significant, as the first classification that is accepted terminates the search

process. In order to be deemed an acceptable error, the corrected value must lie with some

threshold of the reference IBI and the IBI value following the inspected IBI. This threshold

is generated in a manner identical to the threshold for detection described in Equation 2.1,

but the values for the multiplier, threshold minimum, and threshold maximum may differ

from the values used for detection. Like the values used in the detection process, these

were trained for optimum performance as described in Section 2.3.

2.2 Data

Evaluation of the method was based on IBI data gathered from 18 healthy Clemson Uni-

versity students between the ages of 18 and 24. The subjects performed a series of motions

designed to simulate active conditions and have a high probability of inducing errors. Par-

ticipants completed 2 sets of the following tasks followed by an 8 minute baseline period:

punching arms, jumping jacks, running in place, and crunches. Each subject repeated the

experiment three times with a different device each time. These were the Polar S810 (Lake

Success, NY), the Biolog 3991 (UFI Corp., Morro Bay, CA) with standard electrodes, and

the Biolog 3991 with fetrodes. In all, fifty-four files containing 124,998 usable IBIs were

collected and graded by human raters. Two Clemson University graduates students were
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Correction Description Cause
Hardware trigger replace value outside of max-

imum or minimum values al-
lowed by hardware

transmission error

Split Divide an IBI into two equal
values

Missed heartbeat

Split 3 Divide an IBI into three equal
values

Missed two heartbeats

Combine Add two IBIs together False trigger
Combine 2 / Split 2 Replace two IBI values with

their average
Combination of missed heart-
beat and false trigger

Combine 2 / Split 3 Get three new IBI values by
adding two and dividing them
by three

Combination of missed heart-
beat and false trigger

Combine 3 / Split 3 Replace three IBI values with
their average

Combination of missed heart-
beat and false trigger

Physiological trigger Replace value outside maxi-
mum or minimum physiologi-
cal value

Probably some uncaught error
from above

Uncorrectable Could not apply any rule, but
IBI appears faulty

Table 2.1: Possible corrections applied by program
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Figure 2.3: IBIedit program

given basic training on the correction of IBI data and asked to independently inspect the

data for errors. Their decisions were combined into a single ground truth by accepting all

corrections the human graders agreed on. Decisions the human graders did not agree on

were deemed uncorrectable and not used for training purposes.

The human graders corrected the files using a program developed specifically for that

purpose. The program (see Figure 2.3) allowed them to view the IBI data at multiple reso-

lutions and apply any of the corrections allowed by our method. Human graders were also

allowed to add their own custom correction. The program generated a list of corrections

applied on each IBI present in the original file. This list was designed to allow easy auto-

mated comparison between the human graders and the automated method to facilitate the

training of our method as described in Section 2.3.
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2.3 Training

In order to achieve the best results, we used a portion of the data set to train the adjustable

parameters introduced in Section 2.1 according to the train and test paradigm. The param-

eters all deal with the threshold generation process. Table 2.3 shows a summary of the

variables along with the values used for testing.

Six of the fifty-four files were used for training. This amounted to 15,095 total IBI

values to train on. We tried several different sets of parameters until one was found that

seemed stable. For each training pass, we used five values for each of the seven possible

parameters. Each of the six files was run through the engine with every possible combina-

tion of values. For each file at every combination we used the sum of the IBI values that

both humans and the computer agreed were correct and those that all agreed were a specific

error as a metric for the performance of the engine with that parameter set. The values for

each file were added and stored as a total metric for the performance with that particular

parameter set. The maximum value in this N-cube consisting of 57 values was deemed the

best result.

Several different N-cubes were used. We sought one that had most of the values in the

middle instead of the edges of the cube. The final N-cube used for the results presented in

this thesis was generated using the parameters in table 2.3. The parameters in thie N-cube

determined to give the best results were pb=5, m1=10, t1min=50, t1max=200, m2=25,

t2min=10, and t2max=100. It should be noted that throughout this training process, an

offline version of the engine was used so that we could use the same set of files repeatedly.

The offline version maintains an identical amount of context to the online version and is

functionally identical.
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Parameter Description Possible values
past buffer size The number of ibi values that are put in the

buffer used to determine the threshold for fu-
ture error detection.

3, 5, 10, 15, 25

multiplier 1 Multiplier used in generating threshold for er-
ror detection

1, 5, 10, 25, 50

threshold 1 min Minimum threshold generated when creating
threshold for error detection

10, 50, 70, 100, 150

threshold 1 max Maximum threshold generated when creating
threshold for error detection

10, 50, 100, 150, 200

multiplier 2 Multiplier used in generating threshold for
correction acceptance

1, 5, 10, 25, 50

threshold 2 min Minimum threshold generated when creating
threshold for correction acceptance

10, 50, 70, 100, 150

threshold 2 max Maximum threshold generated when creating
threshold for correction acceptance

10, 50, 100, 150, 200

Table 2.2: Parameters used in training.
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Results

In order to provide a ground truth for testing the method, the human graders were first

evaluated against one another. We computed the rate of agreement for each error type as

Rate =
Agree

Human1 +Human2− Agree (3.1)

Where Agree is the number of values the human graders agreed upon for each correc-

tion type, Human1 is the number of times the first human grader used that correction type,

and Human2 is the number of times the second human grader used that correction type.

Results can be seen in Table 3.1.

Several important observations can be made from the results of the human versus hu-

man data. First, there are a few corrections that dominate the decisions made by the human

graders. The most common decision was to label an IBI or sequence of IBIs as uncor-

rectable. This was followed by the combine and split correction and then by the split cor-

rection. In areas the human graders agreed upon, these three corrections made up 89% of

the total corrections. There are several factors that may contribute to these errors occurring

more frequently than others. The motions used in this study may be prone to causing these

types of errors. The prominence of certain errors may be related to the conditions under
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which data was collected. In errors caused by motion, there is a high chance that many of

the errors are caused by insufficient contact of the electrode with the subject. This would

be likely to cause missed beats, which would be fixed by splitting an IBI if it occurred in

isolation or by marking an area as uncorrectable if it occurred frequently enough to cause

the data to be impossible to reconstruct. Another factor that may contribute to the high

usage and high rate of agreement of the split error would be that it is one of the easiest to

identify. It stands out plainly in a series of data and is simple enough to be the obviously

correct solution if found in isolation. Similar factors may contribute to the high use of the

combine and split operation. Because it is essentially a smoothing operation, some of its

use may be due to over smoothing the original data.

Several of the corrections were used an insignificant portion of the time. Combine 3,

delete, replace, and replace N were all used on less than 0.1% of the total data set, and

combine 3 and delete were never agreed upon by the human graders. These corrections

should probably not be part of any automated algorithm because of their extremely low

rate of use. It should be noted that delete and replace N are not included in the current

version of the algorithm, and replace is only used if the external timestamp seems to be

valid when the received IBI value is not.

Another important observation is that the agreement rate between the human graders

was relatively low when deciding upon what correction to apply. While they were able to

agree if an area was in need of correcting 96% of the time, the best rate of agreement for

choosing what correction to apply was the split correction at 77%. There is a rapid fall off

in the rate of agreement after this, with only 2 of the other 12 possible corrections having a

rate of agreement over 50%. The low agreement rates imply that the problem is difficult. It

also suggests that the human graders require additional training. If the correct data stream

is not obvious, then the area should be marked as uncorrectable.

The number of corrections that the human graders agreed upon was used as the ground

truth for calculating the computer’s rate of success. Areas that either human grader marked
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Correction Human 1 Human 2 Agree Percent
Type (# of IBIs) (# of IBIs) (# of IBIs) Agreement

Nothing 115843 115015 113291 96%
Combine 268 175 162 58%

Combine 3 0 0 0 –
Split 1488 1390 1256 77%

Split 3 253 266 195 60%
Delete 2 11 0 0%

Replace 54 63 4 4%
Uncorrectable 3510 5258 2790 47%

Combine and Split 2653 2099 1370 41%
Combine 3 / Split 2 319 165 102 27%
Combine 2 / Split 3 301 313 104 20%
Combine 3 / Split 3 275 223 69 16%

Replace N 32 20 3 6%

Table 3.1: Human vs human agreement rates by correction type.

Uncorrectable
Combine and Split
Split
Split 3
Combine
Combine 2 / Split 3
Combine 3 / Split 2
Combine 3 / Split 3
Replace
Replace N
Combine 3
Delete

Figure 3.1: Percent correction application by human graders in areas the human graders
agreed on the correction used
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as uncorrectable or that the human graders disagreed on were not used in the training pro-

cess.

As mentioned in Chapter 1, the problem of correcting ibi data can be broken up into the

two distinct areas of detection and classification. Table 3.2 shows the computer’s detection

performance on the training data in correctable areas the human graders agreed on. The

table is broken down by file to demonstrate how the results varied across different subjects.

Some files, such as Sub09Polar, demonstrated a very high rate of agreement on handling

errors, while others, such as Sub08Electrode, had a noticably poorer performance. This

indicates that certain types of areas with errors are handled better than others by the auto-

mated method. Overall, the humans and computer agreed on the classification of 99.0%

(97.0 + 2.0) of the data. The computer made the conservative choice to leave an area alone

on 60% of the erroneously labeled IBI values, leaving improperly applied corrections on

only 0.4% of the data. It is usually preferable to miss some corrections instead of over

correcting the data [8], so the tendency towards leaving unsure areas alone is promising.

Results were similar on the test set, seen in Table 3.3, though performance was not as good.

The humans and computer agreed on 97.4% (95.6 + 1.8) of the labels. The computer made

erroneous corrections on 58.3% of mislabeled data (1.4 / (1.4 + 1.0)), and 1.4% of the data

was labeled with an erroneous correction. This shows that the disposition towards conser-

vative correction did not hold in the test set. More complex training may be able to change

this trend in future experiments. The difference between classification perfromance on the

test and training sets is illustrated in Figures 3.2 and 3.3. The area with at least one entity

(humans or computer) marking an error is broken out to show the significant change in the

treatment of erroneous portions of the data.

Table 3.4 illustrates the computer’s performance at classification for the combined test

and training set. The computer’s rate of agreement with the combined human graders

is similar to the human graders’ rate of agreement with one another. Figure 3.5 shows

the percent agreement of the human graders with one another for each correction along
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H = OK H = OK H = Error H = Error
File Name C = OK C = Error C = OK C = Error Total

(# of IBIs) (# of IBIs) (# of IBIs) (# of IBIs) (# of IBIs)
Sub08Electrode 2353 17 32 33 2435
Sub08Fetrode 2785 1 4 12 2802
Sub08Polar 2480 9 4 43 2536

Sub09Electrode 1643 19 28 61 1751
Sub09Fetrode 1662 14 6 74 1756
Sub09Polar 2550 2 7 55 2614

Totals 13473 62 81 278 13894
Percent 97.0% 0.4% 0.6% 2.0% 100%

Table 3.2: Classification performance on training set

H = OK H = OK H = Error H =Error
File C = OK C = Error C = OK C = Error Total

(# of IBIs) (# of IBIs) (# of IBIs) (# of IBIs) (# of IBIs)
Totals 98347 1409 1071 1835 102662
Percent 95.6% 1.4% 1.0% 1.8% 100%

Table 3.3: Classification performance on test set

Humans OK, Computer OK
Humans OK, Computer Error
Humans Error, Computer Ok
Humans Error, Computer Error

Figure 3.2: Classification performance on training set
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Humans OK, Computer OK
Humans OK, Computer Error
Humans Error, Computer Ok
Humans Error, Computer Error

Figure 3.3: Classification performance on test set

with the agreement rate for the computer with both humans. The results appear to be

highly correlated, suggesting that areas that the humans are more sure about provide more

positive feedback to the algorithm. A training set with a higher rate of agreement between

the human graders may be able to enhance performance of the algorithm.

Figure 3.4 shows the usage of various error types by the automated method. It is inter-

esting to note the difference in distribution between the automated method and the human

graders, whose error usage is shown in Figure 3.1. This would seem to indicate that the

automated method needs improvement in the classification stage of error detection. Ideally,

the automated method would apply corrections with the same frequency as human graders.

Figures 3.6 through 3.29 demonstrate the results of corrections on each of the files in

the training set. Areas that drop to 0 in the corrected data are spots that have been marked

as uncorrectable. Notice that the computer handles most of the isolated errors, like those

in figure 3.10, quite well and has difficulty handling areas of concentrated errors like those
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Correction Computer Humans Agree Percent
Type (# of IBIs) (# of IBIs) (# of IBIs) Agreement

Nothing 113986 113291 111820 97%
Combine 383 162 132 32%

Combine 3 0 0 0 –
Split 1324 1256 993 63%

Split 3 170 195 130 55%
Delete 0 0 0 –

Replace 416 4 0 0%
Uncorrectable 1636 2790 1101 33%

Combine and split 645 1370 469 30%
Combine 3 / Split 2 212 102 52 20%
Combine 2 / Split 3 495 104 46 8%
Combine 3 / Split 3 79 69 18 14%

Replace N 0 3 0 0%

Table 3.4: Computer vs human agreement rates by correction type.

Uncorrectable
Combine and Split
Split
Split 3
Combine
Combine 2 / Split 3
Combine 3 / Split 2
Combine 3 / Split 3
Replace
Replace N
Combine 3
Delete

Figure 3.4: Percent correction application by the automated method
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Figure 3.5: Human vs human and humans vs computer agreement by error type

in Figure 3.18. These areas of concentrated error show the need to mark an entire area as

uncorrectable instead of considering each IBI individually.
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Figure 3.6: Subject 8 Electrode uncorrected
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Figure 3.7: Subject 8 Electrode corrected by Human 1



30

 200

 400

 600

 800

 1000

 1200

 1400

 0  500  1000  1500  2000  2500  3000

"JenSub08Electrode-fixed.txt"

Figure 3.8: Subject 8 Electrode corrected by Human 2
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Figure 3.9: Subject 8 Electrode corrected by Computer
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Figure 3.10: Subject 8 Fetrode uncorrected
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Figure 3.11: Subject 8 Fetrode corrected by Human 1
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Figure 3.12: Subject 8 Fetrode corrected by Human 2
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Figure 3.13: Subject 8 Fetrode corrected by Computer
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Figure 3.14: Subject 8 Polar uncorrected
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Figure 3.15: Subject 8 Polar corrected by Human 1
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Figure 3.16: Subject 8 Polar corrected by Human 2
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Figure 3.17: Subject 8 Polar corrected by Computer
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Figure 3.18: Subject 9 Electrode uncorrected
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Figure 3.19: Subject 9 Electrode corrected by Human 1



36

 200

 400

 600

 800

 1000

 1200

 1400

 0  500  1000  1500  2000  2500

"JenSub09Electrode-fixed.txt"

Figure 3.20: Subject 9 Electrode corrected by Human 2

 200

 400

 600

 800

 1000

 1200

 1400

 0  500  1000  1500  2000  2500

"Sub09Electrode-fixed.txt"

Figure 3.21: Subject 9 Electrode corrected by Computer
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Figure 3.22: Subject 9 Fetrode uncorrected
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Figure 3.23: Subject 9 Fetrode corrected by Human 1
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Figure 3.24: Subject 9 Fetrode corrected by Human 2

 200

 400

 600

 800

 1000

 1200

 1400

 0  500  1000  1500  2000  2500

"Sub09Fetrode-fixed.txt"

Figure 3.25: Subject 9 Fetrode corrected by Computer
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Figure 3.26: Subject 9 Polar uncorrected
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Figure 3.27: Subject 9 Polar corrected by Human 1
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Figure 3.28: Subject 9 Polar corrected by Human 2

 200

 400

 600

 800

 1000

 1200

 1400

 0  500  1000  1500  2000  2500  3000

"Sub09Polar-fixed.txt"

Figure 3.29: Subject 9 Polar corrected by Computer
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Conclusions

This thesis presents a method for the automatic correction of IBI data. This automated

method was evaluated against a pair of human graders using the train and test paradigm.

The current results indicate a 97.5% agreement in areas that humans deem to be correctable.

This is probably not a high enough rate of agreement for use in sensitive clinical studies,

but it may be useful in situations where the errors introduced by invalid data are more

problematic than any issues that may be introduced by a poor agreement rate.

4.1 Contribution

This study adds to the body of literature on the automated correction of heart interbeat in-

tervals. In particular, this is the only study the author is aware of that contains a detailed

evaluation of the practices of human graders in correcting IBI data gathered under condi-

tions that may interfere with the acquisition of good data. This alone provides a significant

foundation for future studies. The attempt to correct heavily corrupted data with an algo-

rithm designed to be applied while data are gathered is also, to the author’s knowledge,

unique. This has the potential to be a tremendous boon to researchers who wish to perform

analysis of IBI data in situations where an offline correction process is not feasible.
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4.2 Future work

One improvement that could be made to this experiment is in the area of human grading.

The human graders used in this study had only minimal training before they began correct-

ing the IBI data. Before seeing the results of the human scoring, we did not anticipate how

differently two humans would correct IBI data, nor did we anticipate the effect this would

have on our training method. The low agreement rate between the humans appears to have

had a negative impact on training the method to properly identify errors, since the com-

puter’s agreement rate tracks the human agreement rate in Figure 3.5. This graph allows us

to make the hypothesis that an increased rate of agreement between human graders would

increase the computer’s agreement with the humans in a similar fashion. One way to im-

prove the human grading would be to give the human graders a better understanding of the

physiological principles underlying the correction of IBI data before they began the correc-

tion process. Understanding the physiological causes of errors allows the human graders to

have a metric outside of the data to gauge the appropriateness of a particular correction. If a

suitable physiological explanation for a particular error cannot be determined, any applied

correction should be viewed as suspect.

The training used in the current version of the program was primarily focused on error

detection. Additional training methods should be examined in order to increase the fre-

quency of appropriate classification. There are a number of potential improvements to the

algorithm that could make classification training easier. One such improvement would be

to fire each of the rules for every flagged IBI instead of terminating the search after the first

acceptable correction. The best rule could be chosen based on which one fit the neighbor-

ing data best. This improvement would allow the possibility of different weights on the

rules based on their frequency of application by human graders.

While the current method has some measures in place to evaluate IBIs within the con-

text of their neighbors, each IBI is still evaluated individually. The ability to evaluate an

entire neighborhood of IBIs is an important improvement that should be examined in fur-
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ther detail. This is particularly necessary when marking IBI values as uncorrectable. The

frequency of errors plays a large role in determining the recoverability of a particular sec-

tion of IBI data, and this information should be used appropriately. Identifying areas of

uncorrectable data are dependent on more than a simple frequency count, however, and

further study is required to determine the best approach.

An evaluation of the method’s impact on analyses that may be dependent on the output

would be an appropriate extention to the current work. IBI data are being examined and

corrected with the intent of introducing them to other processes for further calculation. It is

important to know the effect of the corrections not just on the data itself, but on the output

of these additional stages. If the errors that the computer makes have little impact on further

stages, the current implementation may be acceptable for some applications.

In conclusion, this thesis provides a foundation for further exploration of the automated

correction of heart interbeat interval data. The current method may not be sufficient for the

rigorous standards of clinical studies, but as the field of research on real time analysis of

IBI data grows it may prove to be a useful component of more complex systems.
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