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Abstract

This dissertation considers the problem of recognizing wrist motions during eating. The

wrist motion is tracked using accelerometer and gyroscope sensors worn in a watch-like device. The

goal is to recognize a set of gestures that commonly occur during eating, such as taking a bite of food

or consuming a drink of liquid. The wrist motion during a bite may consist of picking up a morsel

of food, moving it the mouth for intake, and returning the hand to a rest position. Hidden Markov

models (HMMs) are used to recognize these motions. An HMM is a doubly stochastic process

where one set of stochastic processes generates the observables, in this case the sensor readings, and

is controlled by another set of stochastic processes that is not observable, in this case the eating

gestures. A benefit of an HMM is that it can encode the temporal structure of the signal, in this

case the expected subsequence of motions comprising a gesture.

The ideas pursued in this dissertation are motivated by methods used to improve the capa-

bility of HMMs to recognize speech. For example, it is challenging to build a generic HMM to capture

all the varieties of accents and dialects of speakers. People in different regions may speak the same

language with variations in pronunciation, vocabularies, and grammars. Building HMMs for each

dialect group can improve the robustness of the system under speech variations. This dissertation

attempts the similar analysis of wrist motion during eating activities. Similar to dialects and accents

in speech, we propose that the demographics (gender, age, ethnicity), utensil being used, or types

of foods being eaten, may cause variations in the wrist motions while eating. Several variations on

this concept are explored and compared to baseline recognition accuracies.

In Chapter 2, work is first described to establish a baseline accuracy of a non-HMM method.

The method uses a simple pattern matching algorithm that only detects one type of gesture (called

“bites” but includes any food or liquid intake). The method was tested on 276 people eating a

meal in a cafeteria and was evaluated on 24,088 bites. It achieved 75% sensitivity and 89% positive
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predictive value. Chapter 3 describes a larger vocabulary of eating actions using segment-based

labeling. The set of gestures include taking a bite of food (bite), sipping a drink of liquid (drink),

manipulating food for preparation of intake (utensiling), and not moving (rest). All other activities

such as using a napkin or gesturing while talking are grouped into a non-eating category (other).

The lexicography was tested by labeling segments of wrist motion according to the gesture set. A

total of 18 human raters labeled the same data used described above. Inter-rater reliability was

92.5% demonstrating reasonable consistency of gesture definitions. Chapter 4 describes work that

explores the complexity of HMMs and the amount of training data needed to adequately capture

the motion variability across the large data set. Results found that HMMs needed a complexity of

13 states and 5 Gaussians to reach a plateau in accuracy, signifying that a minimum of 65 samples

per gesture type are needed. Results also found that 500 training samples per gesture type were

needed to identify the point of diminishing returns in recognition accuracy. Overall, it achieved

85.2% all gestures accuracy for HMM-S that models a single gesture as a sequence of sub-gestures.

It also achieved 89.5% all gestures accuracy for HMM-1, where a sequence of one previous gesture

was studied as context. Chapter 5 describes work that investigates contextual variables to recognize

gestures using top-down and bottom-up approaches. Specifically, we consider if foreknowledge of the

demographics (gender, age, hand used, ethnicity, BMI), meal level variables (utensil used for eating,

food consumed), language variables (variations of bite, utensiling and other), and clustering based

method can improve recognition accuracy. We investigate this hypothesis by building HMMs trained

for each of these contextual variables, and compare their accuracy against the simple non-HMM

algorithm and HMM-S. Results show that the highest accuracy of all gestures and intake gestures

in contextual HMMs is 86.4% and 91.7%, improved by 1.2% and 6.7% over HMM-S, respectively.

We also investigate the contextual variables along with one gesture history. It achieved all gestures

accuracy up to 88.9% and intake gestures accuracy up to 93.0%, with 0.6% decreased for all gestures

accuracy and 1.5% intake gestures accuracy improved over HMM-1.
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Chapter 1

Introduction

This work considers the problem of recognizing eating activities by tracking wrist motion.

The wrist motion is recorded by a watch-like device worn by participants while eating an unscripted

meal. Prior research has been investigating methods based upon wrist motion tracking [25, 26, 27, 97,

106]. Previous work [25, 26, 27] describes a pattern of motion indicative of hand-to-mouth gestures

and an algorithm to detect and count their occurrences, which we call bite counting. Previous work

[97, 106] describes methods using hidden Markov models (HMMs) to detect five different types of

gestures (food bite, drink bite, utensiling, rest, and other), and an algorithm that improves their

recognition through gesture-to-gesture sequential modeling.

In this dissertation, the proposed method is evaluated against two benchmarks. The first

one is a simple bite counting algorithm of only detecting a single gesture ”bite” that includes all

intakes of food or liquid [107]. The second one recognizes five different gesture types but models

all types of each gesture using a single generic HMM: HMM-S. However, a large variety of motions

exists in gestures and a generic model is not capable to recognize all the patterns. For example,

the wrist motion of taking a bite with fork is different from taking a bite with both hands. Under

this circumstance, this work studies the contextual variables to vary the gesture vocabularies and

reduce motion variations with the goal to improve recognition accuracy. First, a vocabulary of

actions is proposed to quantify gestural behaviors during eating based on discernible intent. Second,

the gesture information captured by each contextual variable is studied by HMMs. Two evaluation

metrics are considered here: general accuracy that evaluates the performance of recognizing all

the eating gestures, and intake accuracy that evaluate the performance of recognizing the gestures
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specific to energy intake.

The following sections provide background information regarding the fields of study being

discussed in this work. Section 1.1 describes some concepts from speech recognition that we apply to

the problem of recognizing eating gestures. Section 1.2 describes the health problem that motivates

this work. Section 1.3 introduces the mobile health and their applications in various fields. Section

1.4 discusses wearable sensors used for dietary monitoring. Section 1.5 gives the information of

Micro-Electro-Mechanical Systems (MEMS) sensors and the sensors used in this work. Section 1.6

explains the theory of hidden Markov models.

1.1 Language of Eating

This section introduces the background in speech recognition and the similar concepts we

used in eating gesture recognition.

1.1.1 Background of speech recognition

Figure 1.1 shows an example of a speech signal of three words from the TIDIGITS corpus

[66]. To determine the word type, each segment of signal can be recognized independently, which is

known as isolated word recognition. In this model, the basic speech unit is the word, where the goal

is to recognize a single spoken word. The speech is converted from the analog signal captured by a

microphone to a digital signal by sampling over a second. Each value is quantized to 16 bits. Each

signal segment is divided into frames/windows with the same duration, usually 20 to 30 ms (320 to

480 samples). Features are then extracted into a multiple-element feature vector per frame.

To recognize isolated words, one HMM is built for one word and used to learn the sequential

information. Frames with sliding window are used to extract feature vectors inside each frame.

These feature vectors are used to train HMMs. The amount of HMMs depends on the number of

words in the target. During test, feature vectors of each word are passed into these HMMs and the

one with the max score determines word type. Figure 1.2 illustrates the process. Details of training

HMMs is introduced in Section 1.6.

Other applications include connected word recognition, where each word is segmented from

a continuous speech signal and then recognized by building HMMs. During segmenting, silence

signals, as the pauses between speech, are helpful to obtain voiced part. Two approaches have been
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Figure 1.1: Speech signal of word “oh”, “zero”, “one” from TIDIGITS corpus [66] sampled using 8
kHz sampling frequency.

widely taken for silence removal: Short Time Energy (STE) and Zeros Crossing Rate (ZCR) [11, 19].

STE detects silence signal by the fact that energy in voiced sample is greater than silence/unvoiced

sample, while ZCR detects it by the amount of zero crossings within a portion of speech. Once

silence signals are removed, segments containing voiced information are passed into the process as

shown in Figure 1.2.

One problem in speech recognition is handling multiple dialects and accents. People in

different groups may speak the same language with variations in pronunciation, vocabularies, and

grammars. It is challenging in automatic speech recognition because the system must be able to

recognize all the potential variations. Thus being able to accurately classify dialects and accents

makes the system adapt the pronunciation, acoustic, and language features accordingly and can

improve the system robustness. One approach works on building dialect-specific models for each

dialect group and recognize the dialects with the max similarity score [48, 59]. Other approaches
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Figure 1.2: The process of extracting feature sequences of one word and recognizing the word from
digit 0-9.

include language modeling to capture statistics of phonotactic distributions [120], learning specific

lexical and acoustic features [17, 55], or adapting models trained on generic speech using Maximum

Likelihood Linear Regression to each test speaker [14, 47, 119, 125]. In this dissertation, we try

the same ideas of building models of different contextual variables to reduce motion variaties for

recognizing eating gestures.

1.1.2 Eating gesture recognition

In this section, we introduce our study on eating gesture recognition and its similarity and

difference with speech recognition. Both speech and the motion signals are captured over time and

contain temporal structures. Different from speech that is inherently a one-dimensional continuous

signal across time, our motion signals are tracked by a wrist-worn device with 3-axis gyroscopes

and 3-axis accelerometers MEMS sensors and hence contain more information. For example, a 3-

axis accelerometer sensor captures the instant orientation of the wrist and can indicate the poses

while eating. The gyroscopes capture rotational velocity of the wrist for yaw, pitch and roll motion.

Previous work in our group has discovered that the wrist of a person undergoes a characteristic

rolling motion that is indicative of the person taking a bite of food [46]. This characteristic roll
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motion can help differentiate wrist motions from different activities. For example, the roll motion

of moving food around a plate is different from non-eating-related activities and can help detect the

event of taking a bite of food.

Second, the vocabulary in speech and wrist motion is different. Spoken words can be broken

into eight categories of nouns, determiners, pronouns, verbs, adjectives, adverbs, prepositions, and

conjunctions [1]. In general, wrist motion words describe actions while eating. For example, word

“bite” describes a series of movements when food is put through mouth for consumption. On the

other hand, vocabulary size differs. The vocabulary size of the spoken words of a typical young adult

is 10,000-50,000 [1]. In speech recognition systems, the vocabulary size depends on the applications.

Generally, small, medium and large vocabulary size are the order of 100, 1000 and (over) 5000

words [39]. For example, a small vocabulary model can recognize only ten digits. In wrist motion

recognition, our target is to recognize actions while eating, thus the typical word set is 5-20, which

is much smaller than speech vocabulary. Specifically, five gestures are defined in this work based on

discernible intent: taking a bite of food (bite), sipping a drink of liquid (drink), manipulating food

for preparation of intake (utensiling), and not moving (rest). All other activities such as using a

napkin or gesturing while talking are grouped into a non-eating category (other).

Third, the “dialect” in speech and wrist motions are different. Dialect in speech refers to the

same word with varieties in pronunciation, vocabularies, and grammars, while the “dialect” in our

work refers to the varieties of wrist motions of accomplishing the same action. For example, cutting

or stirring food, or dipping food into sauces are all considered as the word utensiling, although

different motion patterns exist.

Figure 1.3 shows the sampled sensor data and the gesture sequence. Details of the gesture

vocabulary will be discussed in Chapter 3. Similar to isolated word recognition as outlined in Figure

1.2, after obtaining the gesture segments, we extract features from six sensors and use them to build

HMMs for gesture recognition.

1.2 Motivating health problem

The motivating health problem of this work is obesity. Overweight and obesity are defined as

abnormal or excessive fat accumulation that may impair health. Body mass index (BMI) is a simple

index of weight-for-height that is commonly used to classify overweight and obesity in adults. BMI
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Figure 1.3: Sensor data of eating gesture sequence. From top to bottom: acceleration of AccX,
AccY, AccZ in unit gravity (g) and rotational velocity measured by gyroscope of yaw, pitch and
roll, in unit degree per second (deg/sec). From left to right: utensiling, bite, other, rest and drink.
Shaded regions indicate the correponding gestures. The unit of AccX, AccY and AccZ is gravity (g)
and the unit of yaw, pitch and roll is degree per second.
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is defined as a person’s weight in kilograms divided by the square of his height in meters (kg/m2).

The World Health Organization (WHO) defines overweight as a BMI≥25, obese as a BMI≥30, and

morbidly obese as a BMI≥40. More than half of the world population is overweight (39%) or obese

(13%). In the U.S., 17% of children and more than 30% of adults are considered obese, with 2.8%

of males and 6.9% of females are extremely obese (body mass index ≥ 40) [83]. The prevalence

of overweight and obesity has increased markedly in the last 2 decades in the United States [43].

Obesity is associated with increased risks for several diseases, including cardiovascular diseases

(mainly heart disease and stroke), diabetes, musculoskeletal disorders (especially osteoarthritis a

highly disabling degenerative disease of the joints) and some cancers (including endometrial, breast,

ovarian, prostate, liver, gallbladder, kidney, and colon) [72]. The increased prevalence of obesity is

responsible for almost $40 billion of increased medical spending through 2006, including $7 billion in

Medicare prescription drug costs [34]. Recent studies have concluded that if obesity were to remain

at 2010 levels, the combined savings in medical expenditures over the next 2 decades would be $549.5

billion, with a 33% estimated increase in obesity prevalence and a 130% increase in severe obesity

prevalence over the next 2 decades [33].

One problem in obesity is to measure energy intake over time. It is challenging and time

consuming to record the daily consumption of food and beverage. Conventional methods for mea-

suring energy intake include manual entry of self-reported intake into food diaries and 24-hour

recalls [44, 103]. However, these methods are prone to under-reporting and under-estimation and

are tedious to use resulting in non-compliance over the long term. Recently, body worn sensors

have been investigated to automatically measure energy intake by tracking eating related motions.

For example, various types of sensors have been worn on different body locations to detect eating

related activities such as chewing and swallowing to estimate intake calories [102]. This dissertation

investigates recognizing eating related gestures by using wearable sensors. A future goal would be

to convert detected gestures into an estimate of energy intake.

1.3 Mobile health

Mobile health, referred to as mHealth, offers the ability to improve a subject’s health by

monitoring their status, recognizing behaviors, diagnosing medical conditions, and providing inter-

ventions if necessary through the use of wireless portable devices [3]. For example, people can use
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applications that run on mobile phones and sensors that track vital signs and health activities for

the track of blood glucose, carbohydrate, insulin doses and activity [29]. Other work reports several

types of mobile medical applications [13]. One is used as an extension of a device such as a remote

display of data from a bedside monitor. A second group are the mobile applications that transfer

mobile platform into a medical device by using display screens, or sensors to those of currently

regulated medical devices. A third group are the mobile applications that allow the user to input

patient-specific information and through the use of formulae or processing algorithms, output a

patient-specific result, diagnosis, or treatment recommendation to be used in clinical practice or to

assist in making clinical decisions.

Recently, mHealth has been researched for self-monitoring of weight control [116]. Smart-

phones and smartwatches can provide an opportunity for real-time feedbacks on weight-related

behaviors. For example, mobile phones were used to weekly deliver short message service (SMS) of

diet and exercise information to each user. Result showed that this service is an effective method of

behavior modification in weight control [121]. On the other hand, custom applications can be built

into the smartphone to allow users to self-monitor caloric balance in real time [51, 69].

1.4 Wearable Sensors for Dietary Monitoring

Wearable sensors, as the typical mHealth tools, have been widely studied in the field of

dietary monitoring to automatically measure energy intake. Several sensing approaches have been

studied, including sensing location and modality to detect eating instances. Besides, several positions

on the human body can be instrumented to detect activities associated with eating. A general review

for wearable sensor based systems can be found for automatic dietary monitoring [94]. In this section,

we discuss some works of wearable sensors used for dietary monitoring based on the sensing modality:

acoustic sensing system, camera-based sensing system, motion-based sensing system and multimodal

sensing system.

1.4.1 Acoustic Sensing Systems

In acoustic sensing system, in-the-ear or on the neck regions are primarily instrumented with

sensors to detect sounds associated with chewing and swallowing, where microphones are widely

used. Amft et al. [8] investigated the chewing sound collected from a microphone located inside
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the ear canal to classify four food types. The system recognized eating activity from non-eating

activities with at most 99% accuracy and achieved 80% up to 100% accuracy in classifying the

food types for the isolated chewing events. However, the acoustic based approaches for detecting

chewing suffers from environmental acoustic noise, therefore several studies investigated proximity

sensors to measure the deformation in the ear canal walls while chewing. Sazonov and Fontana

[101] used a piezoelectric strain gauge positioned below the ear to monitor jaw movements produced

during chewing and a small microphone located over the laryngopharynx to capture chewing sound.

Liu et al. [68] developed a food logging application to capture audio and first-person point-of-view

images. The system processes all incoming sounds in real time through a head-mounted microphone

and a classifier identifies when chewing is taking place, prompting a wearable camera to capture a

video of the eating activity. The work was validated by the technical feasibility of the method with

a small user study. On the other hand, Paßler and Fischer [88], Paßler et al. [89] investigated the

use of additional reference microphones to eliminate environmental noise while monitoring chewing

sound.

Swallowing involves contraction and relaxation of muscles of the tongue, pharynx and esoph-

agus while food or liquid is passed from the mouth to the stomach [24]. Microphones can be placed

in the ear or on the throat, and surface electromyography can be used to monitor muscle contractions

and relaxations to capture swallowing. Amft and Troster [9] integrated gel electrodes and electret

condenser microphone placed around the neck to recognize swallowing activity by surface EMG and

sound signals. Olubanjo and Ghovanloo [84] automatically detected swallowing in real-time from the

acoustic signals captured by a throat microphone placed over the suprasternal notch of the trachea,

with an overall recall of 79.9% and precision of 67.6%. Several neck-worn systems have been studied

for swallowing detection and recognize eating and non-eating activities by sounds produced in the

user’s throat area [84, 128]. Recently, deep learning is used to detect chewing and swallowing while

eating [37, 57]. Gao et al. [37] proposed a Bluetooth headset to capture chewing sound and detect

eating episodes using Deep Boltzmann Machine, with an accuracy of 94.72% for in-the-field test-

ing. In general, the disadvantage of acoustic-based systems is its sensitivity to environmental and

background noise. Therefore the majority of the aforementioned studies collected data in the lab or

under controlled conditions. Table 1.1 summarizes several characteristics of the studies mentioned

here.
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Year Publication Sensors Subjects Objectives

2005 Amft et al. [8] microphone 4
Distinguished between a small prede-
fined set of different food types from
chewing sound.

2008 Nishimura and Kuroda [82] microphone -
Proposed robust chewing number
counting algorithm.

2010 Lopez-Meyer et al. [70] microphone 18 Discriminated between swallow events.

2010 Amft [6]
earpad sen-
sor

2
Classified 19 food type based on chew
sounds.

2010 Shuzo et al. [109] microphone 5

Count the number of chewing. Discrim-
inated between 4 eating types (eating a
hard food, eating a soft food, drinking
water, speaking).

2011 Walker and Bhatia [124] microphone 2
Discriminated between swallow, vocal
chord activation, clearing of throat,
coughing.

2012 Sazonov and Fontana [101]
piezoelectric
strain gauge
sensor

20
Detected periods of chewing/non-
chewing events.

2012 Paßler et al. [89] microphone 50
Classified 7 food types and 1 drink by
adapting chewing sound models.

2012 Liu et al. [68]
microphone,
camera

6
Detected chewing sound and combined
with images captured from camera to
provide dietary information.

2012 Yatani and Truong [128] microphone 10
Classified 12 activities, such as eating,
drinking, laughing and coughing by the
sounds recored in the user’s throat area.

2014 Olubanjo and Ghovanloo [84]
throat mi-
crophone

6
Detected acoustic-based real-time swal-
lowing.

2014 Paßler and Fischer [88] microphone -

Captured chewing sound by a micro-
phone located in the outer ear canal and
detected chewing activity by eight algo-
rithms in the presence of environmental
sounds.

2016 Gao et al. [37]
Bluetooth
headsets

28

Monitored chewing sound by the Blue-
tooth headsets to detect eating activity
from non-eating activities using a deep
learning algorithm.

Table 1.1: Summary of acoustic sensing systems.
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1.4.2 Camera-based Sensing Systems

Camera-based sensing systems monitor eating activities by analyzing images or videos cap-

tured while eating. Unlike methods that investigated swallowing or chewing as the proxy for eating

detection, camera-based sensing takes advantage of photos or videos during eating and utilizes

computer vision algorithms to estimate the consumed food amount. Besides, the system has been

successfully employed for recording the ground truth of eating activity [12, 15]. The accuracy of

intake estimation is determined by two factors: object detection and volume estimation. Multiple

classification algorithms such as Support Vector Machine (SVM) [115] are used to recognize food

types, followed by food calibration and volume calculation to estimate EI [50, 122]. Martin et al.

[75] proposed a method called Remote Food Photography Method (RFPM) to estimate food intake

from images sent before and after each meal in free-living conditions. Puri et al. [95] analyzed food

images taken at different positions captured by mobile phones to recognize 150 food types and esti-

mate 3D food volume, with the quantitative nutrition information returned to the mobile phone. A

card was used as the reference for the viewpoint and distance of the camera in images with image’s

color, scale, and orientation analyzed, and food was segmented and classified for volume estimation.

Pettitt et al. [92] proposed a system to record video images of food consumed using an ear-worn

micro-camera to estimate energy intake and dietary intake assessment. However, these methods ask

the individuals to capture images before sending to the server or researchers for analysis, or control

the on/off switch of the camera while eating, which is inconvenient and require the compliance of

the individuals.

Recently, several studies have been investigating the camera-based dietary monitoring sys-

tem that can automatically capture images while eating, such as SenseCam [45] and eButton [114],

without human attention. SenseCam, originally developed by Microsoft, is a lightweight digital

camera worn around the neck that automatically captures first-person point of view images and sen-

sor readings at regular intervals throughout the day [45]. Gemming et al. [38] assessed the context

of eating episodes captured by SenseCam. eButton, a miniature computer which has the similar

functionality of SenseCam, can be worn like a chest button to passively capture images while eating,

without interrupting the participant’s eating behavior [114]. Jia et al. [50] conducted dietary assess-

ment using eButton. In this study, images of 100 food samples were collected and each food volume

was estimated to evaluate the accuracy of the calculated food portion size from eButton pictures,
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Year Publication Sensors Subjects/Images Objectives

2008 Martin et al. [75] camera 52 (subjects)
Estimated food intake based on picture
sent before / after each meal.

2009 Puri et al. [95] camera
13K (im-
ages)

Recognized food types, estimated con-
sumed volumes and reported quantita-
tive nutrition information of 6 groups of
food.

2012 Almaghrabi et al. [5] camera 100 (images)

Proposed a food recognition system
which was coupled with nutrition tables
to obtain energy intake estimation in a
small data set. The system requires the
user to point at the food to start the
process.

2014 Sun et al. [114]
miniature
computer

-
Proposed a chest-worn electronic device
(eButton) for continuous monitoring of
health, safety and wellbeing.

2014 Jia et al. [50]
miniature
computer

7 (subjects)

Evaluated the accuracy of the calcu-
lated food portion size (volumes) from
eButton pictures, compared by manual
estimation of human raters.

2015 Meyers et al. [77] camera
101K (im-
ages)

Recognized contents of food and es-
timated nutritional contents, such as
calories.

.

2015 Gemming et al. [38] camera 40 (subjects)

Analyzed images of participants’ eating
episodes captured by a digital camera
and accessed the environmental and so-
cial context that surrounds eating and
dietary behaviours.

2016 Pettitt et al. [92]
micro-
camera

6 (subjects)
Investigated dietary intake assessment
using a lightweight, wearable micro-
camera.

2017 Doulah and Sazonov [28] camera 7 (subjects)

Clustered food into food and non-food
groups based on histogram matching
from images captured by a wearable
camera.

2017 Liang and Li [67] camera
2978 (im-
ages)

Released a food image dataset and pro-
posed an estimation method of con-
sumed food calorie using a deep learn-
ing method (Fast R-CNN).

Table 1.2: Summary of camera-based systems.
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with -2.8% of mean relative error between the estimated volume and the actual volume. Table 1.2

summarizes several characteristics of the studies mentioned here.

1.4.3 Motion-based Sensing Systems

In motion based sensing systems, inertial sensors are mounted on different locations of the

body to detect eating activities. Several studies investigated the use of hand/wrist-worn wearable

devices with accelerometers, gyroscopes and smart watches to detect gestures related to eating.

Amft and Troster [10], Junker et al. [52] used five inertial sensors placed on the wrists, upper arms

and on the upper torso to capture eating gestures. Zhang et al. [135] investigated a kinematic model

of forearm movements to recognize eating and drinking gestures, with accelerometers located on the

wrists, features extracted by an extended Kalman filter and classifier using hierarchical temporal

memory network. However, only eating and drinking gestures were analyzed so it is unclear about the

systems’ ability to recognize other eating related activities. Kim et al. [56] investigated recognition of

29 predefined eating activities of Asian style w.r.t. spoon, chopsticks and hands, and food types using

wrist-band accelerometers. The study obtained the recognition of an average F-measurement of 21%

but failed to classify the hand actions. Thomaz et al. [118] investigated identifying eating moments

using 3-axis accelerometer sensor data from an off-the-shelf smartwatch. 11 gestures of 20 subjects

were recognized with eating and non-eating related activities and eating moments were estimated

when a minimum number of inferred intake gestures were within a certain temporal distance of each

other. The study obtained F scores of 76.1% and 71.3% for two free-living conditions (7 participants,

1 day; 1 participant, 31 days) and is promising for practical eating detection. However, a fixed size

of gesture was used to compute features within the gesture and so it is unclear about the system’s

ability to recognize gestures with variable duration.

Recently, smart eyeglasses based sensing systems have been widely investigated. Google

Glass has been used for automatic eating detection [96, 129]. A research group proposed a 3D-printed

smart eyeglasses with EMG electrodes to monitor temporalis muscle’s activity, detect chewing and

eating events [131, 132, 133]. Food hardness was analyzed on chewing EMG and classified the selected

3 food types with an accuracy of 94.7%, with approximately 80% recall and precision achieved of

chewing detection in fully unconstrained daily life. Farooq and Sazonov [31] monitored chewing

cycles by attaching a piezoelectric sensor on the temporalis epidermis in the form of eyeglasses,

which can monitor eating activity even in walking condition. Chung et al. [22] proposed a wearable
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Year Publication Sensors Subjects Objectives

2008 Junker et al. [52]

microphone,
surface
EMG, elon-
gation sensor

4

Segmented gesture motions and classify
into 10 types with four gestures related
to eating (cutlery, drink, spoon, han-
dled).

2009 Zhang et al. [135] accelerometers -
Recognized eating and drinking ges-
tures by tracking wrist motion.

2009 Dong et al. [25]
accelerometers,
gyroscope

10
Detected in real-time information con-
cerning bites taken during a meal.

2012 Kim et al. [56] accelerometers 13
Recognized 29 pre-defined Asian style
eating activities.

2012 Dong et al. [26]
accelerometers,
gyroscope

49
Expanded #participants and food vari-
eties in [25] to detect bite/drink events.

2015 Thomaz et al. [118] accelerometers 7
Recognized 11 gestures and estimated
eating moments.

2015 Rahman et al. [96]

Google
Glass (ac-
celerometers,
gyroscope,
magnetome-
ter)

38
Classified eating activity from non-eating ac-
tivities based on head movement data.

2016 Zhang et al. [133]
EMG elec-
trode

8

Proposed a 3D printed smart eyeglass
to detect chewing events and classi-
ficy food texture under controlled con-
ditions.

2016 Farooq and Sazonov [31]

piezoelectric
strain sensor,
accelerome-
ter

10

Captured signals collected by a combination of
piezoelectric strain sensor, accelerometer and
Bluetooth connected to the temple of glasses
to detect periods of food intake in the presence
of physical movements.

2017 Shen et al. [107]
accelerometers,
gyroscope

271
Further expanded #participants and
food varieties (374) in [26] to detect
bite/drink events.

2017 Chung et al. [22] load cells 10
Detected facial signals to detect eating
activity from talking, head movement
and wink.

2018 Zhang and Amft [132]
EMG elec-
trode

10

Improved the design in [133] and eval-
uated a meal detection based on 1-
minute chewing rate estimates under
free-living condition.

Table 1.3: Summary of motion-based sensing systems.
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system (GlasSense) to recognize facial activities by monitoring temporalis muscles. Two load cells

were integrated in GlasSense in the form of a 3D printed eyeglasses to recognize chewing, talking,

head movement and wink. This system obtained an average F1 score of 94% to classify six activities.

In previous work our group developed a method that detects a pattern of wrist motion

during the ingestion of a bite [25, 26]. An experimental evaluation of 49 people eating a meal of their

choice in a laboratory setting found that the method counted bites with a sensitivity (ratio of true

detections to total actual bites) of 86% and a positive predictive value (ratio of true detections to true

detections plus false positives) of 81% [26]. The experiment also revealed that an inexpensive MEMS

gyroscope was as accurate as a more sophisticated magnetic, angular rate and gravity (MARG) sensor

in tracking the relevant motion pattern [26]. These experiments were conducted using wrist-worn

devices that were tethered to a stationary computer in order to facilitate the recording of raw motion

data. Subsequently, the method was instantiated in a wearable version that resembles a watch.

The watch executes the algorithm to detect the relevant motion pattern on a microcontroller. A

button is pressed at the beginning of an eating activity (e.g. meal or snack) to begin bite counting,

and pressed again at the end of the eating activity to end bite counting. The total bite count

for the eating activity is stored for subsequent downloading to an external computer. To test

its relevance for measuring energy intake, 77 people wore the device for 2 weeks and used it to

automatically count bites during all eating activities [105]. Participants completed the automated

self-administered 24 hour recall to measure kilocalories consumed [113]. A total of 2,975 eating

activities were evaluated, an average of 39 per participant. A comparison of automated bite count

to kilocalories found an average per-individual correlation of 0.53, with 64 participants having a

correlation between 0.4 and 0.7 [105]. This range of correlation is similar to what has been found in

evaluations of energy expenditure measured by accelerometer-based devices (pedometers, physical

activity monitors). Table 1.3 summarizes several characteristics of the studies mentioned here.

1.4.4 Multimodal-based Sensing Systems

Compared to unimodal sensing systems, multimodal sensing systems take advantage of mul-

tiple sensors from different perspective of on-body locations and are expected to be more robust for

dietary monitoring. Examples of sensor fusions that have been investigated include the combi-

nation of microphone for detecting chewing/swallowing sound and the accelerometers for detecting

hand/wrist motions, or EMG sensors for monitoring temporalis muscle’s activity while eating. Bedri
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Year Publication Sensors Subjects Objectives

2015 [129]

Google
Glass, Peb-
ble Watch
(accelerome-
ters)

10

Combined signals collected from Google
Glass and Pebble Watch to detect head
motion from chewing and to detect
hand-to-mouth (HtM) gestures.

2015 [108]
smartwatch,
smartphone

5

Recognized 13 different activities in-
cluding eaing, drinking, writing, jog-
ging, etc. with a combination of smart-
phone and smartwatch.

2016 [76]
accelerometer,
microphone

6
Fused audio sensor with motion sensors
mounted on head and both wrists to
recognize eating g in realistic scenarios.

2017 [16]
microphone,
EMG sensors

20
Compared individual acoustic and
EMG sensing and combined them to de-
tect eating activity.

2017 [15]

microphone,
in-ear prox-
imity sensor,
inertial
motion unit

10
Recognized chewing activity at a 1-
second resolution from signals collected
from a novel sensing system (EarBit).

2018 [21]
accelerometer,
proximity
sensor

32

Captured jawbone movements to detect
eating episodes in a controlled labora-
tory study, a controlled field study, and
an in-the-wild study.

Table 1.4: Summary of multimodal-based sensing systems.
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et al. [15] introduced a multi-modal wearable system (Earbit) including microphone around the neck,

in-ear proximity sensor, 9 Degree-of-Freedom IMU (inertial motion unit) to detect eating events in

relatively unconstrained environment. The system obtained an accuracy of 90.1% and an F1-score

of 90.9% in the semi-controlled lab study to detect chewing instances, at a 1-second resolution and

an accuracy of 93% and an F1-score of 80.1% in the unconstrained conditions. Study in [16] inves-

tigated the combination of acoustic and EMG signals to detect eating activity, with an accuracy

of 91.5%, precision of 95.1% and recall of 87.4% in an uncontrolled-food condition. [21] designed

an instrumented necklace combining accelerometer and range sensing to capture head and jawbone

movements for detecting eating episodes. Three phases of experiments were conducted: a controlled

laboratory study, a controlled field study, and an in-the-wild study, with the precision of 91.2%,

95.2% and 78.2% and the recall of 92.6%, 81.9% and 72.5%. Smart devices, such as smartphone,

smartwatch and Google Glass are fused to monitor dietary behavior. Ye et al. [129] incorporated

Google Glass and Pebble Watch to detect head motion from chewing and detect hand-to-mouth

(HtM) gestures when eating. Shoaib et al. [108] fuse a smartwatch and a smartphone to recognize

13 different activities, such as eating, drinking coffee, walking upstairs, walking downstairs, sitting,

etc, with the results showing that complex activities such as eating and drinking are recognized with

a higher accuracy by combining sensors from the smartphone in the pocket position and a smart-

watch. Merck et al. [76] combined head and wrist motion (Google Glass, smartwatches on each

wrist), with audio signal (custom earbud microphone) to detect eating activity, with a precision of

92% and recall of 89% in detecting meals and detecting intakes by motion sensing signals. Table 1.4

summarizes several characteristics of the studies mentioned here.

1.5 Micro-electromechanical Systems Sensors (MEMS)

The tools described in this work make use of micro-electro-mechanical systems (MEMS)

sensors, a class of devices that builds very small electrical and mechanical components on a single

chip, to track wrist motion while eating. The advantages of MEMS sensors, including small size

and low power consumption, make MEMS sensors widely used in monitoring of physical and eating

activities. Typical sensor types include accelerometers, gyroscopes, microphones, electrocardiogra-

phy sensors (EEG), magnetometers and optical sensors. This work makes use of accelerometers and

gyroscopes.
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(a) Accelerometer of X, Y, Z axis. (b) Gyroscope of yaw, pitch and roll axis.

Figure 1.4: MEMS accelerometer and gyroscope.

1.5.1 Accelerometers

An accelerometer is an electromechanical device used to measure acceleration forces. Such

forces may be static, like the continuous force of gravity or, as is the case with many mobile devices,

dynamic to sense movement or vibrations. Figure 1.4a displays the acceleration along x, y and z

axis. Accelerometers are typically used in the following modes:

1. An inertial measurement of velocity and position;

2. A sensor of inclination, tilt, or orientation in 2 or 3 dimensions, as referenced from the accel-

eration of gravity (1 g ≈ 9.81 m/s2);

3. A vibration or impact (shock) sensor.

When used in the field of wrist motion tracking, an accelerometer measures the linear motion of the

wrist.

The basic principle of accelerometer is based on Newton’s second law of motion and Hooke’s

law in Figure 1.5. According to Newton’s second law of motion, a force on an object follows Equation

1.1:

F = m× a (1.1)

where F is the force, m is the mass of object and a is the acceleration.

According to Hooke’s law, the displacement of a spring is proportional to the force applied
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Figure 1.5: A mass spring system.

to it, as shown in Equation 1.2.

F = −k × x (1.2)

where F is the force, k is the spring constant, x is the displacement of the spring’s current position

w.r.t. its equilibrium position and negative acceleration refers to the compression of the spring. By

combining these two equations, the acceleration can be obtained in Equation 1.3.

a = −k × x
m

(1.3)

1.5.2 Gyroscopes

A gyroscope is a device that measures the angular velocity. Its design consists of a freely-

rotating disk called a rotor, mounted onto a spinning axis in the center of a larger and more stable

wheel. As the axis turns, the rotor remains stationary to indicate the central gravitational pull and

hence the angular velocity can be measured. We use gyroscope to measure angular velocity along

3 axes of yaw, pitch and roll, which were initially used to describe an aircraft rotation. Yaw axis

has its origin at the center of gravity and is directed towards the bottom of the aircraft. A yaw

rotation is a movement around the yaw axis of a rigid body that changes the direction it is pointing,

to the left or right of its direction of motion. Pitch axis has its origin at the center of gravity and is

directed to the right. A pitch rotation is a movement up or down about an axis running from wing

to wing. Roll axis has its origin at the center of gravity and is directed forward. A roll rotation is a
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movement that lifts the left wing and lowers the right wing or vice versa. Figure 1.4b displays the

rotational motion of yaw, pitch and roll.

The principle of gyroscope is based on Coriolis effect shown in Equation 1.4.

F = −2mΩ× v (1.4)

where F is the force, m is the object mass, Ω is the angular velocity and v is the object velocity.

The main difference between the accelerometer and gyroscope is that gyroscope can measure

rotation, whereas accelerometer cannot. In a way, the accelerometer can gauge the orientation of

a stationary item with relation to Earth’s surface. When accelerating in a particular direction, the

accelerometer is unable to distinguish between that and the acceleration provided through Earth’s

gravitational force. The gyroscope maintains its level of effectiveness by being able to measure the

rate of rotation around a particular axis. When gauging the rate of rotation around the roll axis

of an aircraft, it identifies an actual value until the object stabilizes out. Using the key principles

of angular momentum, the gyroscope helps indicate orientation. In comparison, the accelerometer

measures linear acceleration based on vibration.

1.5.3 Bite Counter Device

In this work, a custom wrist-worn device based bite counter containing MEMS accelerome-

ters (STMicroelectronics LIS344ALH) and gyroscopes (STMicro-electronics LPR410AL) was used to

record the wrist motion of each participant at 15 Hz. Detailed description of the device can be found

in [46]. A brief description of the device is provided here. Accelerometer used STMicroelectronics

LIS344ALH to measure three-axis linear acceleration. The measurement unit is gravity units (g).

Other than gravity, the accelerometer measures a deviation from free fall i.e. if the sensor is laying

on a horizontal surface this will measure 0 g in the X and Y axis whereas the Z axis will measure

1 g. Gyroscopes used STMicro-electronics LPR410AL to measure three-axis rotational velocity, i.e.

along yaw, pitch and roll axes. The measurement unit is degrees per second. A voltage signal is

output by each gyroscope, with 2.5 mV representing 1 degree per second. Figure 1.4 displays the

example of accelerometer and gyroscope.
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1.6 Hidden Markov Models

This section is adapted from [2, 61] to introduce the principles of HMM. HMM is a statistical

Markov model in which the system being modeled is assumed to be a Markov process with unobserved

(i.e. hidden) states. Markov process is a stochastic process that satisfies the Markov property. A

stochastic process has the Markov property if the conditional probability distribution of future states

of the process (conditional on both past and present states) depends only upon the present state,

not on the sequence of events that preceded it, as illustrated in Equation 1.5.

P (Xn = xn|Xn−1 = xn−1, ..., X0 = x0) = p(Xn = xn|Xn−1 = xn−1) (1.5)

where X = (Xt : t ≥ 0) is a stochastic process.

In a Markov chain, the state is directly visible to the observer, and therefore the state

transition probabilities are the only parameters, while in the hidden Markov model, the state is

not directly visible, but the output (observations) dependent on the state is visible. Each state has

a probability distribution over the possible observations. Therefore, the sequence of observations

generated by an HMM gives some information about the sequence of states.

In an HMM there exists an observation sequence O = o1, o2, ..., oT and a state sequence Q =

q1, q2, ..., qT . An observation ot can be discrete or continuous and an element of the state sequence

qt represents any of the N possible states. According to the Markov property that observations are

independent from each other, we can obtain:

p(q1, ..., qT |o1, ..., oT ) =
P (o1, ..., oT |q1, ..., qT )p(q1, ..., qT )

p(o1, ..., oT )

∝
T∏
i=1

p(qt|qt−1)

T∏
i=1

p(ot|qt)
(1.6)

where p(qt|qt−1) and p(ot|qt) are the state transition probabilities and observable probabilities.

1.6.1 Elements of an HMM

Here several basic elements in a HMM are introduced:

1) N , the number of states in the model. We denote the individual states as S = s1, s2, ..., sN
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and the state at time t as qt.

2) M , the number of distinct observation symbols per state. We denote the individual

symbols as V = v1, v2, ..., vM .

3) The state transition probability distribution A = aij where

aij = P (qt+1 = si|qt = si), 1 ≤ i, j ≤ N (1.7)

4) The obervation symbol probability distribution in state j, B = bi(k), where

bi(k) = P (vk at t |qt = sj), 1 ≤ j ≤ N, 1 ≤ k ≤M (1.8)

A continuous representation of the observations has the advantage of better capturing the under-

lying statistical model. Then, bi(k) has the form of a probability density function. One common

probability density function used for a HMM is the Gaussian density:

bj(ot) =
1√
2πσ

exp(− (ot − µj)2

2σ2
j

)

=
1

(2π)d/2|Σj |1/2
exp(−1

2
(ot − µj)′Σ−1

j (ot − µj))
(1.9)

If there are M number of Gaussians to model the density function, then cm is a weighting value

with
∑M
m=1 = 1 and bjm(ot) = N(ot;µjm,Σjm) and

bj(ot) =

M∑
m=1

cmbjm(ot) (1.10)

5) The initial state distribution Π = πi where

πi = P (q1 = si), 1 ≤ i, j ≤ N (1.11)

Given appropriate values of N,M,A,B and Π, the HMM can be used as a generator to give

an observation sequence

O = O1O2 ... OT (1.12)

as follows:
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1) Choose an initial state q1 = si according to the initial state distribution π.

2) Set t =1.

3) Choose Oi = vk according to the symbol probability distribution in state si, i.e., bi(k).

4) Transit to a new state qt+1 = sj , according to the state transition probability distribution

for state si, i.e., aij .

5) Set t = t + 1; return to step 3) if t<T; otherwise terminate the procedure.

For convenience, we use the compact notation

λ = (A,B, π) (1.13)

1.6.2 Types of HMM

Two common architectures are used in HMM: ergodic and left-right [61]. In ergodic HMM

or fully connected HMM, every state of the model could be reached (in a single step) from every

other state of the model. For an N = 4 state model, this type of model has the property that every

aij coefficients is positive and the state transition matrix can be:

A =



a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

a41 a42 a43 a44


(1.14)

In left-right model, the underlying state sequence associated with the model has the property

that as time increases the state index increases (or stays the same), i.e., the states proceed from left

to right. The left-right typeof HMM has the desirable property that it can readily model signals

whose properties change overtime e.g., speech or action. The fundamental property of all left-right

HMMs is that the state transition coefficients have the property

aij = 0, j < i (1.15)

i.e., no transitions are allowed to states whose indices are lower than the current state. Furthermore,
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the initial state probabilities have the property

πi =


0, i 6= 1

1, i = 1

(1.16)

since the state sequence must begin in state 1 (and end in state N). Often, with left-right models,

additional constraints are placed on the state transition coefficients to make sure that large changes

in state indices do not occur, with the form:

aij = 0, j > i+ δ (1.17)

For example, if the value of δ is 2, i.e., no jumps of more than 2 states are allowed, the state

transition matrix can be:

A =



a11 a12 a13 0

0 a22 a23 a24

0 0 a33 a34

0 0 0 a44


(1.18)

1.6.3 Three basic problems in HMM

In this part, three basic problems in HMM are introduced and discussed.

1.6.3.1 Evaluation on observation sequence

Given a model and a sequence of observations, the problem is to compute p(O1, O2, ..., OT |λ).

The observation probability can be directly computed as:

p(O|λ) =
∑

q1,...qT

πq1bq1(O1)aq1,q2bq2(O2)...aqT−1qT bqT (QT ) (1.19)

However, the complexity is O(2T · NT ) since at every t = 1, 2, ..., T , there are N possible

states which can be reached (i.e., there are NT possible state sequences), and for each such state

sequence about 2T calculations are required for each term in the sum of Equation 1.19. Clearly

a more efficient procedure is required to solve this problem. Actually there is an algorithm called
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forward-backward algorithm: Consider the forward variable αt(i) defined as:

αt(i) = p(O1, ..., Ot, qt = si|λ) (1.20)

which can be solved inductively as follows:

1) Initialization:

α1(i) = πibi(O1), 1 ≤ i, j ≤ N (1.21)

2) Induction:

αt+1(j) = [

N∑
i=1

αt(i)aij ]bj(Ot+1), 1 ≤ t ≤ T − 1, 1 ≤ j ≤ N. (1.22)

3) Termination:

p(O|λ) =

N∑
i=1

αT (i). (1.23)

With the forward-backward algorithm, the complexity is O(N2T ).

1.6.3.2 State sequence decoding

Given the observation sequence O = O1O2, ..., OT , and the model λ, the problem is to

choose the optimal state sequence that could best “explain” the observations. One solution is to

use Viterbi algorithm [61]. To find the best state sequence Q = q1, q2, ...qT for the given observation

O = O1, O2, ..., OT and the quantity is defined:

δt(i) = maxq1,...qt−1p(q1, ..., qt = i, O1O2, ...Ot|λ) (1.24)

where δt(i) is the best score along a single path at time t.

The best states can be decoded as follows:

1) Initialization:

δ1(i) = πibi(O1), 1 ≤ i ≤ N

ψ1(i) = 0.

(1.25)
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2) Recursion:

δt(j) = max1≤i≤N [δt−1(i)aij ]bj(Ot), 2 ≤ t ≤ T, 1 ≤ j ≤ N

ψt(j) = argmax1≤i≤N [ψt−1(i)aij ], 2 ≤ t ≤ T, 1 ≤ j ≤ N
(1.26)

3) Termination:

P ∗ = max1≤i≤N [δT (i)]

q∗T = argmax1≤i≤N [δT (i)].

(1.27)

4) Path (state sequence) backtracking:

q∗t = ψt+1(q∗t+1), t = T − 1, T − 2, ..., 1. (1.28)

1.6.3.3 Parameter estimation

The most difficult problem of HMM is to determine a method to adjust the model parameters

(A,B, π) to maximize the probability of the observation sequence given the model. One popular

method is Baum-Welch method (or equivalently the EM (expectation-modification) method. First,

we introduce a variable:

ξt(i, j) = p(qt = si, qt+1 = si|O, λ)

=
αt(i, j)aijbj(Ot+1)βt+1(j)

P (O|λ)

=
αt(i, j)aijbj(Ot+1)βt+1(j)∑N

i=1

∑N
j=1 αt(i, j)aijbj(Ot+1)βt+1(j)

(1.29)

We defined γt(i) as the probability of being in state sj at time t, given the observation

sequence and the model, giving

γt(i) =

N∑
j=1

ξt(i, j). (1.30)
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A method for reestimating the parameters of the HMM can be accomplished by using

Equations 1.29 and 1.30. The parameters can be estimated as:

π̄i = γ1(i)

āij =

∑T−1
t=1 ξt(i, j)∑T−1
t=1 γt(i)

¯bj(k) =

∑T
t=1 ξt(j)∑T
t=1 ξt(j)

.

(1.31)

In Appendix A we provide a tutorial of using a MATLAB toolbox for modeling HMMs.

Please refer the implementation details in the Appendix.
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Chapter 2

Assessment of the Accuracy of the

Bite Counting Method across

Demographic and Food Variables

The experiment described in this chapter evaluates a non-HMM algorithm designed to detect

a single gesture type. Although the gesture is called “bite” it includes all instances of food or liquid

intake. It provides a baseline accuracy which is used to compare against the performance of HMM-

based algorithms on the same data set. It also assesses its accuracy across demographic (age, gender,

ethnicity) and bite (utensil, container, hand used, food type) variables. The work in this chapter

was published in the Journal of Biomedical and Health Informatics [107].

2.1 Introduction

In previous work our group developed a method that detects a pattern of wrist motion during

the ingestion of a bite [25, 26]. An experimental evaluation of 49 people eating a meal of their choice

in a laboratory setting found that the method counted bites with a sensitivity (ratio of true detections

to total actual bites) of 86% and a positive predictive value (ratio of true detections to true detections

plus false positives) of 81% [26]. The experiment also revealed that an inexpensive micro-electro-

mechanical systems (MEMS) gyroscope was as accurate as a more sophisticated magnetic, angular
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rate and gravity (MARG) sensor in tracking the relevant motion pattern [26]. These experiments

were conducted using wrist-worn devices that were tethered to a stationary computer in order to

facilitate the recording of raw motion data. Subsequently, the method was instantiated in a wearable

version that resembles a watch. The watch executes the algorithm to detect the relevant motion

pattern on a microcontroller. A button is pressed at the beginning of an eating activity (e.g. meal

or snack) to begin bite counting, and pressed again at the end of the eating activity to end bite

counting. The total bite count for the eating activity is stored for subsequent downloading to an

external computer. To test its relevance for measuring energy intake, 77 people wore the device

for 2 weeks and used it to automatically count bites during all eating activities [105]. Participants

completed the automated self-administered 24 hour recall to measure kilocalories consumed [113].

A total of 2,975 eating activities were evaluated, an average of 39 per participant. A comparison

of automated bite count to kilocalories found an average per-individual correlation of 0.53, with 64

participants having a correlation between 0.4 and 0.7 [105]. This range of correlation is similar to

what has been found in evaluations of energy expenditure measured by accelerometer-based devices

(pedometers, physical activity monitors).

This chapter describes an experiment conducted to further evaluate the accuracy of the

automated bite counting method. The goal was to record a large number of people eating a wide

variety of foods and beverages to evaluate its accuracy in terms of demographic variables (gender,

age, ethnicity) and bite variables (food type, hand used, utensil, container). One approach to such

an experiment is to script activities and ask each participant to complete the script. For example, a

participant could be asked to consume 5 bites of 20 different types of food in a controlled order. This

approach has been taken in some other studies of eating activities (e.g. [9, 88, 101]). Advantages

to this approach include limiting the set of food types, simplifying the ground truth identification

of events due to the use of a controlled script, and ensuring an equal quantity of each event type

through repetition. However, this is unnatural in terms of food choices, eating pace, food order, and

overall behavior during normal eating. Instead, we instrumented a cafeteria setting. Participants

were allowed to select their own foods and eat naturally. This resulted in unequal distributions of

bite variables which is offset by recording a large number of participants.
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Figure 2.1: The table instrumented for data collection. Each participant wore a custom tethered
device to track wrist motion.

2.2 Methods

2.2.1 Instrumentation

The experiment took place in the Harcombe Dining Hall at Clemson University. The cafe-

teria seats up to 800 people and serves a large variety of foods and beverages from 10-15 different

serving lines. Figure 2.1 shows an illustration and picture of our instrumented table [49]. It is capable

of recording data from up to four participants simultaneously and is similar to others in the cafeteria

so that its appearance would not be distracting. Four digital video cameras in the ceiling (approxi-

mately 5 meters height) were used to record each participants mouth, torso, and tray during meal

consumption. A custom wrist-worn device containing MEMS accelerometers (STMicroelectronics

LIS344ALH) and gyroscopes (STMicro-electronics LPR410AL) was used to record the wrist motion

of each participant at 15 Hz. Cameras and wrist motion trackers were wired to the same computers

and used timestamps for synchronization. All the data were smoothed using a Gaussian-weighted

window of width 1 s and standard deviation of 2
3 s:

St =

0∑
i=−N

Rt+i
exp

(
−t2
2σ2

)
N∑
x=0

exp

 − (x−N)2

2σ2


(2.1)
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2.2.2 Participants

The Clemson University Institutional Review Board approved data collection and each sub-

ject provided informed consent. A total of 276 participants were recruited and each consumed a

single meal [99]. Participants were free to choose any available foods and beverages. Upon sit-

ting at the table to eat, an experimental assistant placed the wrist motion tracking device on the

dominant hand of the participant and interviewed them to record the identities of foods selected.

The participant was then free to eat naturally. If additional servings were desired, the participant

was instructed to notify the experimental assistant to assist with removing the wrist motion tracker

before moving through the cafeteria to obtain more food or beverage, returning to the table to begin

a new segment of recording. Each such segment is referred to as a course. For 5 participants, either

the video or wrist motion tracking data failed to record, and so are excluded from analysis. Total

usable data includes 271 participants, 518 courses with a range of 1-4 and average of 1.8 courses per

participant. Demographics of the participants are 131 male, 140 female; age 18-75; height 50-77 in

(127-195 cm); weight 100-335 lb (45-152 kg); self-identified ethnicity 26 African American, 29 Asian

or Pacific Islander, 190 Caucasian, 11 Hispanic, 15 Other.

2.2.3 Ground truth

The goal of the ground truthing process was to identify the time, food, hand, utensil and

container for each bite. Because our data set is so large and was collected during natural (unscripted)

eating, the total process took more than 1,000 man-hours of work. Figure 2.2 shows a custom pro-

gram we built to facilitate the process. The left panel displays the video while the right panel shows

the synchronized wrist motion tracking data. Keyboard controls allow for play, pause, rewind and

fast forward. The horizontal scroll bar allows for jumping throughout the recording and additional

keyboard controls allow for jumping to previously labeled bites. A human rater annotates a course

by watching the video and pausing it at times when a bite is seen to be taken, using frame-by-frame

rewinding and forwarding to identify the time when food or beverage is placed into the mouth.

Figure 2.3 shows an example of a sequence of images surrounding a bite. Once the bite time is

identified, the rater presses a key to spawn a pop-up window that allows the user to select from a

list of foods recorded as having been eaten by the participant during the course, and a list of hand,

utensil and container options. The process of ground truthing a single course took 20-60 minutes.
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Figure 2.2: A custom program created for manual labeling of ground truth bites. The left panel
shows the video and the right panel shows the wrist motion tracking. Vertical purple lines indicate
the times marked as bites, the vertical green line indicates the time currently displayed in the video.
Variables (hand, utensil, container, food) are identified for each bite.

(a) frame=0 (a) frame=7 (a) frame=14 (a) frame=21 (a) frame=28

Figure 2.3: Example identifying the time index of a bite (frame 14).
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Figure 2.4: Examples of foods. From left to right: cheese pizza; cereal Apple Jacks; chunky chocolate
chip cookie; California chicken wrap, shoestring french fries; hamburger, shoestring french fries.

In total, 374 different food and beverage types were chosen by participants. Food and bev-

erage names were taken from the menus of the cafeteria. Some foods are given the generic name of

the food line from which they are served due to the heterogeneous mixture of ingredients that could

be custom selected by the participant, for example from a salad bar. In cases where a participant

mixed 2 or more uniquely chosen foods, a single name was used that identified the combination. In

cases where a participant ordered a custom version of a food in a food line, the modifier custom

was included in the name. Example food identities include salad bar, shoestring french fries, Asian

vegetables, pasta tour of Italy, cheese pizza, homestyle chicken sandwich, hamburger, custom sand-

wich, garlic breadsticks, fried shrimp and grapefruit. Example beverage identities include whole

milk, coca cola, water, sweet tea, coffee and apple juice. Figure 2.4 shows some example images of

foods. Foods and beverages were served in four types of containers: plate, bowl, glass and mug.

Four different utensils were used: fork, spoon, chopsticks and hand. Hand could be identified as left,

right or both.

Two human raters independently labeled each course. A total of 22 raters contributed.

Raters were trained during a 1 hour training session to understand the process and how to use

the program for labeling. Quantifying rater agreement is complicated because labeling is a two

step process. First, each rater had to decide when bites occurred. Second, they had to quantify

food, hand, utensil and container for each bite. Therefore we developed a two stage approach to

determining rater agreement.

For each bite labeled by one rater, a ±1 sec window was searched for a corresponding bite

from the second rater. If the food identity, hand, utensil and container all matched, then the bite

was considered matched and the time index was taken as the average of the time indicated by the

two raters. If a corresponding bite was found within the window but one or more of the variables

did not match, then the bite was reviewed by a third rater who judged which variable values were
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Figure 2.5: Examples of foods that are difficult to identify bite by bite. From left to right: collard
greens, macaroni and cheese, corn bread; edamame, jasmine rice, stir fry; char sui braised pork,
brown rice, peas and carrots; pork chop suey with white rice, turkey sliced; Mexican rice, refried
beans, roast pork loin.

(a) frame=0 (a) frame=15 (a) frame=30 (a) frame=45 (a) frame=60

Figure 2.6: Example of difficulty identifying the time index of a bite due to obscuring head motion.

correct. If no corresponding bite was found within the window, the third rater reviewed the bite to

determine if it was missed by one of the raters or if it was off by more than 1 sec from a bite labeled

by the other rater, in which case the third rater judged the correct time.

Using this process, rater performance can be evaluated using four metrics: mistaken identity

(food identified incorrectly), time error (bite labeled more than 1 second from actual time), missed

bite (the rater missed the bite completely) and data entry error (hand, utensil or container was

mislabeled). Figure 2.5 shows some examples of foods that can be difficult to identify, for example

when 2 or more foods of similar color and texture are served overlapping each other. Figure 2.6

illustrates an example of when the time of a bite can be difficult to determine due to the head of the

participant obscuring the precise time of food intake. Data entry errors occurred most commonly

when a rater mistakenly labeled a bowl as a plate or a mug as a glass, either of which would propagate

to all the related bites in the course. Table 2.1 summarizes the errors found as judged by the third

rater.

The usefulness of a fourth rater independently labeling each course and then comparing it

to the union judged by the third rater was explored. After 71 courses were labeled, the process

was stopped. In those 71 courses the following total errors were found: 17 missed bites, 0 timing
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missed bites 900 (3.7%)
time error 1217 (5%)

identity error 714 (3%)
data entry error 1059 (4.4%)

Table 2.1: Manual labeling error rates.

errors, 18 identity errors and 8 data entry errors (0.2% of the total bites). Given the large amount

of time needed to independently label the data and the tiny amount of new errors discovered, it was

determined that the quality of ground truth provided by two human raters and then judged by a

third rater was sufficient.

2.2.4 Bite counting algorithm

The bite counting algorithm described in [26] is briefly repeated here for background. The

algorithm detects a pattern of wrist roll motion associated with a bite through the detection of four

events. First, the wrist roll velocity must surpass a positive threshold. Second, a minimum amount

of time must pass. Third, the velocity must surpass a negative threshold. Finally, a minimum time

must pass between the negative wrist roll for one bite and the positive wrist roll for the beginning

of a next bite. The minimum times help reduce false positives during other motions. The algorithm

for detecting a bite based on this motion pattern can be implemented as follows:

Let EVENT = 0

Loop

Let Vt = measured roll vel. at time t

If Vt > T1 and EVENT = 0

EVENT = 1

Let s = t

if Vt < T2 and t-s > T3 and EVENT = 1

Bite detected

Let s = t

EVENT = 2

if EVENT = 2 and t-s > T4

EVENT = 0
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Figure 2.7: Classification of results.

The variable EV ENT iterates through the events just described and the parameters T1 and T2

define the threshold for roll detections.

2.2.5 Evaluation metrics

The evaluation method follows the procedure previously established [26]. Algorithm bite

detections are compared to ground truth manually marked bites. Figure 2.7 illustrates the possible

classifications. For each computer detected bite (small square in the figure), the interval of time from

the previous detection to the following detection is considered. The first actual bite taken within this

window, that has not yet been paired with a bite detection, is classified as a true detection (T). If

there are no actual bite detections within that window, then the bite detection is classified as a false

detection (F). After all bite detections have been classified, any additional actual bites that remain

unpaired to bite detections are classified as undetected bites (U). This approach defines an objective

range of time in which an actual bite must have occurred in order to classify a detected bite as a

true positive. The window extends prior to the actual bite because it is possible in some cases for

the wrist roll motion to complete just prior to the actual placing of food into the mouth. Accuracy

(true detection rate) is calculated as (total Ts)/(total Ts+ total Us). Because this method does

not allow for the definition of a true negative, specificity (false detection rate) cannot be calculated.

We therefore calculate the positive predictive value as a measure of performance regarding false

positives. The positive predictive value (PPV) is calculated as (total Ts)/(total Ts+ total Fs).
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demographic #partic. #bites #detected (%) SPB

age
51-75 21 1634 1404 (86%) 18
41-50 33 2790 2227 (80%) 17
31-40 27 2531 1949 (77%) 15
24-30 76 7426 5326 (72%) 13
18-23 114 9707 7050 (73%) 13

gender
female 140 11811 9401 (80%) 15
male 131 12277 8555 (70%) 13

ethnicity
African American 26 1958 1583 (81%) 18
Caucasian 190 15990 12327 (77%) 15
Hispanic 11 1195 877 (73%) 13
Other 15 1635 1115 (68%) 14
Asian or Pac. Isl. 29 3310 2054 (62%) 12

Table 2.2: Detection rate and seconds per bite (SPB) for age, gender, and ethnicity.

2.2.6 Parameter Tuning

In the original experiment involving 49 people eating a meal in a laboratory setting, T1 =

T2 = 10, T3 = 2 and T4 = 8 were determined to be optimal [26]. It was also found that a range

of values provided reasonable results. The present work reports results using these same values but

also reports results using a shorter time for T4. During evaluation is was discovered that people ate

faster on average in the cafeteria experiment than in the previous laboratory experiment. It was

found that setting T4 = 6 produced a more balanced accuracy and positive predictive value. This

is further discussed in sections 2.3-2.4.

2.3 Results

Table 2.2 lists the accuracies found across demographic variables age, gender and ethnicity.

Accuracy trended higher as age increased. Females showed a 10% higher accuracy than males.

The largest discrepancy observed was due to ethnicity, with African Americans showing the highest

accuracy and Asians/Pacific Islanders showing the lowest accuracy. Table 2.2 also reports the average

eating rate for each demographic in seconds per bite (SPB). SPB trends lower for every demographic

as accuracy trends lower, suggesting that a faster eating rate results in lower accuracy.

Figure 2.8 plots the accuracy of the method for the foods of which more than 100 bites were
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bite variable #bites #detected (%)

container
bowl 3939 3091 (79%)
mug 116 87 (75%)
plate 16434 12389 (74%)
glass 3599 2389 (66%)

utensil
fork 10308 8627 (83%)
spoon 2389 1711 (73%)
hand 10989 7419 (68%)
chopsticks 400 198 (50%)

hand used
l-handed using left hand 1363 1106 (81%)
r-handed using right hand 18344 14267 (78%)
l-handed using both hands 162 116 (72%)
r-handed using both hands 1233 860 (70%)

Table 2.3: Detection rate and seconds per bite (SPB) for container, utensils, and hand used.

consumed. The average accuracy (75%) is given for reference. For most foods the accuracy trends

consistently in the range of 60-90%. For a small number of foods the accuracy drops precipitously.

For a food like ice cream cone the decrease in accuracy is likely due to the natural minimization of

wrist roll during consumption (for fear of having the ice cream fall out of the cone). For other foods

we manually observed the motion in the hundreds of hours of video to try to infer commonalities.

In many cases a bite involves head-towards-plate motion in combination with hand-towards-mouth

motion. The former seems to be larger when a food is more prone to spillage, so a participant

positions their head over the container to facilitate delivery of the food to the mouth (for example,

compare figure 2.3 to figure 2.6). To explore this hypothesis we calculated the amount of motion of

the wrist during a 2 second window centered on every bite and took the average value for each food

type, finding a modest correlation of 0.4.

Table 2.3 summarizes the accuracies found across other bite type variables. Container

accuracy was fairly consistent with the exception of glass which was 9% lower than average. For

utensils, chopsticks showed a relatively low detection rate (50%) but were also found to be used twice

as fast (7 seconds per bite) as a fork or hand (14-15 seconds per bite). Handedness showed a small

variation in accuracy, while the use of both hands as opposed to a single hand reduced accuracy by

8-9%.

Overall, across all 24,088 bites the accuracy was 75% with a positive predictive value of 89%.
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Figure 2.8: Detection rate for all foods of which participants consumed greater than 100 bites.
Average detection rate (75%) highlighted for reference.
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The algorithm parameters were originally determined using data recorded in a laboratory setting

[26] in which the average eating rate was slower (n=49, seconds per bite = 19.1 ± 6.4) compared

to what was observed in the cafeteria setting (n=271, seconds per bite = 14.7 ± 5.6). We therefore

experimented with shortening the parameter controlling the minimum time between detections of

bites to 6 seconds. With this value the algorithm produced 81% accuracy with a positive predictive

value of 83%.

2.4 Conclusion

The primary goal of this chapter was to establish a baseline method to detect eating activities

and assess its accuracy across a wide variety of demographics and food types. While minor variations

occurred across most variables, the method showed robustness to this challenging data set. The

original laboratory test found 81% accuracy with 86% positive predictive value [26]. After tuning

the algorithm to the faster eating pace observed in the cafeteria, the same accuracy was achieved with

only a 3% decrease in positive predictive value. This experiment provides the most comprehensive

evidence to date that the method is reliable during normal unscripted eating.

The experiment identified two areas where the algorithm could be improved. First, varia-

tions in eating pace affect the accuracy. One parameter of the algorithm is designed to minimize

false positives by requiring a minimum amount of time between detected bites. It may be possible to

adjust this parameter in real-time while the algorithm is running similar to how a pedometer learns

the stride duration of a person while running or walking and adjusts its step detection parameters

accordingly. Second, variations in the amount of wrist motion versus the amount of head-towards-

plate motion affect the accuracy. Two parameters of the algorithm are designed to detect the typical

amount of motion. Again it may be possible to adjust these parameters in real-time to learn the

typical amount of wrist motion of a person during a meal. This work provides the data set necessary

to explore these ideas.

Studies have shown that participants change their eating behavior in clinical settings [23, 93].

As this method is intended to be used in free-living scenarios, a naturalistic evaluation of its accuracy

is important. However, although we tried to make the cafeteria setting as natural as possible, it is

still possible that behaviors in free-living environments could affect the accuracy of the method in

ways that could not be captured with this study (e.g. grazing, other types of distraction).
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Chapter 3

Lexicography of Hand Gestures

During Eating

This chapter considers the problem of the lexicography of defining gestures a person makes

while eating. We propose and test a vocabulary of actions to quantify gestural behaviors while

eating based on discernible intent. The set of gestures include taking a bite of food (bite), sipping

a drink of liquid (drink), manipulating food for preparation of intake (utensiling), and not moving

(rest). All other activities such as using a napkin or gesturing while talking are grouped into a non-

eating category (other). We test the lexicography by labeling segments of wrist motion according to

the gesture set. This chapter describes detailed definitions of the gestures to inform human raters

manually labeling the data.

3.1 Lexicography of Eating Gestures

A common lexicography of eating gestures is needed to support research in automated

dietary monitoring. It helps research groups compare results and share data, measure progress, and

identify areas where current methods fail. However, the lexicology in this domain is challenging

due to the lack of standard definitions of terms defining actions one might take while eating. For

example, a bite may refer to the action of placing food into the mouth for consumption, but may

also refer to the compressive motion of the jaw on food already in the mouth. A drink may refer to
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a single instance of beverage intake, or a full container of beverage. Several terms may be used to

describe the manipulation of food prior to intake, such as cutting (to disassemble large pieces into

smaller pieces), stirring (to combine foods), and dipping (to apply condiments). Some actions do not

have standard terms, such as moving food onto a fork in preparation for bringing it to the mouth. In

order to quantify eating behaviors it is necessary to establish objective, repeatable definitions. These

can then be used to label ground truth for research into automatic segmentation and classification

of wrist motion to quantify eating behaviors [97, 106].

Several methods have been used for the lexicography of gestures: top-down, bottom-up and

the protocol used in the field of eating activity recognition.

3.1.1 Top-down Approach

In the top-down approach, meanings are defined first, with gestures designed to communicate

the meanings. The most common example is sign language. Sign languages are a languages that

use manual communication to convey meaning. This can include simultaneously employing hand

gestures, movement, orientation of the fingers, arms or body, and facial expressions to convey a

speaker’s ideas. A large lexicon of both single-handed and two-handed gestures has been defined for

common words and finger spelling for communication of obscure words or proper nouns [111, 112].

Another example is vision-based interfaces in video games, where sets of gestures have been defined

to characterize commands of playing a game [54, 123]. One study [54] defined 10 intuitive gestures

that were used as commands of a one-person action game, with each gesture reflecting an intuitive

movement in the real world. A third example is traffic navigation, in which different hand and body

gestures have been defined [110, 126]. Other examples can be found in human-computer interaction

(HCI), in which gestures have been defined as the commands to help user interact with the computer

[90, 98]. One study [90] lists a taxonomy of hand gestures for HCI, where meaningful gestures are

differentiated from unintentional movements, and gestures used for manipulation of objects are

separated from the gestures which posses inherent communicational character.

3.1.2 Bottom-up Approach

In the bottom-up approach, the problem is to define gestures describing common activities

that are not intended to communicate meaning [18, 32, 62]. Motion sequences include walking,
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running, climbing in the field of ambulation, riding a bus, driving in the field of transportation,

eating, drinking, reading, brushing teeth in the field of daily activities, rowing, spinning, lifting

weights in the field of fitness, kneeling, situation assessment and opening a door in the field of

military [62]. In the domain of daily activity recognition, a common lexicon includes walking,

jogging, up/down stairs, cycling and similar physical activities [20, 60, 73, 78, 87, 127]. Independent

of domains, [64] suggests some common rules for encoding hand gestures. Three modules were

proposed in [64], which were kinetic gesture coding in which trajectory and dynamics of a hand

movements were defined to represents a type of analysis that could be submitted to a 3-D video

analysis, and bimanual relation coding in which the spatial relation and functional relation were

defined to describe relation between left and right hand, and functional gesture coding in which

gesture units that have been defined in kinetic gesture coding and bimanual relation coding were

coded with respect to their function and were further classified as types such as hand-showing, deictic

and body-deictic. This paradigm is followed in this work and described more later.

3.1.3 Approaches to Labeling Eating Activities

In the domain of eating activity recognition, three approaches have been taken to label data:

window-based, index-based and segment-based. Figure 3.1 illustrates an example of each.

3.1.3.1 Window-based

In the window-based approach, equal intervals of data are labeled to indicate whether a

particular type of eating event (for example, swallowing) occurs or not. Work in [100] labeled the

events of chewing, swallowing and bite with 10 sessions each containing 3 parts of 20 min inactivity

period, the meal period and a second 20 min inactivity period. Work in [85] recorded the eating

and physical activities and manually partitioned each sensor file into consecutive intervals marked

as eating or not. Inter-rater reliability was evaluated based on the number of counts of swallowing,

chewing and bite in a fixed duration of data. An advantage of the window-based approach is that

it simplifies the manual labeling of data. However, it does not indicate the exact time instant or

duration of the event.
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(a) Window-based. +/-: event occurs or not.

(b) Index-based. Vertical bar indicates event.

(c) Segment-based. Variable length of segments with different colors indicate different
event types and durations.

Figure 3.1: Different approaches to annotating activity data during eating.
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3.1.3.2 Index-based

In the index-based approach, a single time index is labeled when an event (for example, a

bite or drink) occurs [26, 27, 88, 107]. Work in [88] recorded sound data of eating and annotated

onset and end of every chew event of the intake cycle, with reference mark for a chew event at the

center of the chew event label. Previous work in our group also labeled the index of eating and

drinking activities in a cafeteria setting, along with utensil type, hand used, food type, container of

the food [26, 27, 107]. This approach can be used to more precisely identify specific times of key

events, but cannot describe events that occur across a range of time, such as cutting or stirring.

3.1.3.3 Segment-based

In the segment-based approach, sequences of time of variable duration are labeled, including

the start and end index and the event type [7, 97, 106, 134]. Work in [134] labeled the start and end

index of chewing with food (biscuit), water, cough and speak collected by smart EMG eyeglasses.

Previous work in our group also investigated segment-based labeling for eating gestures, with start

and end indices labeled for each gesture with variable durations [97, 106]. Segment-based approach

provides more information but can be difficult to use for manual labeling as additional criteria must

be determined by the human rater. This work uses segment based labeling for intake data.

3.2 Methods

3.2.1 Data

The same dataset in Chapter 2 was used here for the study of lexicography. A total of 276

participants were recruited and each consumed a single meal. For 5 participants, either the video

or wrist motion tracking failed to record, and for 2 participants non-dominant hands were used for

recording; these are excluded from analysis.

3.2.2 Definitions of Gestures

Our proposed lexicon was motivated by separating intake related gestures from non-intake

related gestures. There are arguably fewer of the former compared to the latter. Since the primary
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goal in research into automated monitoring of dietary intake is to quantify intake, our proposed

lexicon uses a relatively small set of non-intake gestures.

We define four eating-related gestures (two intake and two non-intake): bite, utensiling,

drink, rest. All other activities (e.g. gesturing while talking, cleaning with a napkin etc.) are

referred to as a fifth gesture other. Following the paradigm proposed in [64], each gesture is defined

consisting of the following parts with at least 1 second duration:

(a) the description of the activity;

(b) the start time of the activity;

(c) the end time of the activity;

(d) particular events that should be included or excluded;

Bite

(a) The subject puts food into their mouth.

(b) Starts when a hand or utensil starts moving towards the mouth.

(c) Ends when the hand or utensil finishes moving away from the mouth.

(d) Bites need not begin and end at a plate. Motion towards and away from the mouth should

define the boundaries; with food consumption taking place in between.

(e) A single bite may include multiple successive back-and-forth motions from a utensil or hand

to the mouth, that individually did not complete the hand motion away from the mouth, and

that were separated by less than 1 second of time.

Drink

(a) The subject puts beverage into their mouth.

(b) Starts when a hand begins moving a beverage towards the mouth.

(c) Ends when the hand has finished moving away from the mouth.

(d) Each individual sip should be a different drink (if multiple sips are taken).

Utensiling
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(a) The subjects uses an utensil or their hand(s) to manipulate, stir, mix or prepare food(s) for

consumption.

(b) Starts when manipulating the food.

(c) Ends when manipulating has finished.

(d) This includes moving food around the plate, dipping foods in sauces, cutting foods, and other

similar activities.

Rest

(a) The subject’s dominant hand has little or no motion. The range of motion that may be con-

sidered rest depends upon the individual. Different people have different levels of physiological

tremor (motion that occurs in everyone and has no medical significance) and thus the threshold

for maximum motion during rest will vary subject to subject.

(b) The determination of rest should be based on the instrumented dominant hand only.

(c) Starts when there is no intent (subject’s hand stop moving).

(d) Ends when new intent becomes apparent (subject’s hand begins moving again with clear intent

for at least 1 second).

(e) A period of rest may include time when a person is holding a utensil, food or drink, but where

the instrumented hand is relatively motionless.

Other

(a) All other actions should be left unlabeled. Examples include reaching towards food (e.g. prior

to a bite gesture), gesturing while talking, cleaning with a napkin, and moving a plate.

(b) In cases where the action of the instrumented hand alone is unclear, the subject’s face and

body can be viewed to help discern intent. For example, if the subject is talking and there is a

slight motion in the instrumented hand, one may assume it is gesturing while talking (other)

instead of rest.

(c) In cases where it is difficult to differentiate between rest and other, or utensiling and other,

the other label is preferred.
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3.2.3 Custom tool for gesture labeling

Figure 3.2 shows a custom program we built to facilitate labeling. The tool was coded

using Microsoft Visual Studio. The left panel displays the video while the right panel shows the

synchronized wrist motion tracking data. Top to bottom on the right panel shows the 6 axes of

motion (AccX, AccY, AccZ, yaw, pitch and roll) with a seventh line at the bottom indicating tray

weight as measured from a table embedded scale. Keyboard controls allow for play, pause, rewind

and fast forward. Vertical green line indicates the time currently displayed in the video. A human

rater annotates a meal by watching the video and uses frame-by-frame rewinding and forwarding to

identify the start and end time and type of a gesture according to our definitions. Boxes laid over

the seventh line indicate periods of time labeled as gestures (for example, red = bite). Unlabeled

segments with duration longer than 4 seconds are considered as type other, unlabeled segments

shorter than 4 seconds are considered transitions between gestures and are ignored [97]. The process

of labeling a single meal took 60-120 minutes.

Due to the work-intensive nature of this labeling process, only 95 meals (20%) were labeled

by two raters. In total 18 raters contributed to the process. Raters were trained in several training

sessions to understand the process and the definitions of gestures.

3.2.4 Inter-rater Reliability

In order to test inter-rater reliability we developed methods to compare multiple labelings

of the same meal recording. The data provided by raters is also intended to be used in the future

for training classifiers and evaluating automatic segmentation, and thus the process for combining

multiple raters’ labels into a union is described. Since our data set is so large and was collected

during natural (unscripted) eating, the total process took more than 700 man-hours of work.

Quantifying rater agreement is complicated because labeling contains multiple steps. First,

each rater had to decide the start and end index of a gesture. Second, they had to identity the

type of a gesture. Therefore we developed a custom approach that includes the following 6 cases

to determining gesture matching as illustrated in Figure 3.3. For each gesture labeled by one rater,

any overlapped gesture labeled from the second rater was examined.

Agreement.

If only one corresponding gesture with the same identity was matched and the disagreement of both
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Figure 3.2: A custom program for gesture labeling. Box with different colors indicate gesture types:
red = bite, aqua = drink, orange = utensiling, black = rest and grey = other.

(a) Agreement. (b) BA I. (c) BA II. (d) BA III. (e) Mistake-
missed.

(f) Mistake-
identity.

Figure 3.3: Different cases of gesture matching between two raters. Segments with different colors
represent different identities. BA: boundary ambiguity.
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start and end index is within 1 second, then the start and end time index were taken as the averaged

time indicated by two raters.

Boundary Ambiguity I.

If only one corresponding gesture with the same identity was matched and the disagreement of

start or/and end index is longer than 1 second, and there are no other gestures labeled within the

boundaries, then the start and end index were taken as in Equation 3.1.

t =


(t1 + t2)/2, ||t1 − t2|| ≤ 1 sec

max(t1, t2), otherwise

(3.1)

where t1 and t2 represent index labeled by rater #1 and rater #2, and max indicates the index

providing the maximum gesture extent. For intake gestures, this is usually caused by a pause at the

start or end of a gesture, e.g. during taking a bite the participant did not complete moving food

towards the mouth until a pause for masticating food from a previous bite. For non-intake gestures,

this is usually caused by some unintentional ambiguity in the definitions. For example, when dipping

food in a sauce, one rater may label the motion of reaching towards the sauce as utensiling while a

second rater starts the utensiling when the food touches the sauce.

Boundary Ambiguity II.

If multiple corresponding gestures with the same identity were matched, two cases are discussed here.

For intake gestures, a corresponding match with single index-based labels created in chapter 2 were

compared. Gestures from the rater which matched the index-based labels in terms of the amount of

intake events were considered correct, and the longer duration of the two raters were taken as the

union. For non-intake gestures, the max extent of the start and end index of the gesture was taken.

Boundary Ambiguity II (N:N or N:1 matching) is usually caused by one rater labeling a single whole

period of time as a single gesture while another rater segmented it into multiple sub-periods.

Boundary Ambiguity III.

If only one corresponding gesture with the same identity was matched and the disagreement of start

or/and end index is longer than 1 second, and there is another gesture labeled within the boundaries

but it was matched against a different gesture, then the start and end index were taken as in Equation

3.1. If the extra gesture did not match anything, then the gesture in query is considered as matched

but the extra gesture is considered as mistake-identity.
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Figure 3.4: Example of gesture matching. From top to bottom: gestures labeled by rater #1, rater
#2 and the union. (a)-(f) illustrate different cases of gesture matching. Red = bite, aqua = drink,
orange = utensiling, black = rest.

Mistake-missed.

If no corresponding gesture was matched, then the gesture in query was taken as the union. For

intake gestures, this is usually caused by one rater missing an action. For non-intake gestures,

this is usually caused by the ambiguity of definitions. For example, one rater may label rest for a

participant while another rater may consider the same period of time as a gap.

Mistake-identity.

This happens when one corresponding gesture with a different identity was found. This is usually

caused by a rater incorrectly identifying a gesture.

Using this process, rater performance can be evaluated using three metrics: agreement,

boundary ambiguity (I, II, and III), and mistake (mistake-missed and mistake-identity). Figure 3.4

shows an example of gesture matching and the union labels.

3.2.5 Comparing Intake Gestures with Index-based Labels

In Chapter 2 we labeled this same data set with single time indices indicating when bites

and drinks occurred. The time indices indicated when the food or beverage first touched the mouth

initiating intake. We used this set of time indices to further test the segment labels. Note that this

could only be done for intake gestures as events corresponding to utensiling, rest and other were not

labeled in Chapter 2.

Each intake gesture (bite and drink) was searched for any corresponding index-based labels.

If one gesture contained exactly one index-based label within its boundaries, then it was considered

as agreement. If one gesture contained multiple index-based labels within its boundaries, then it

was considered as ambiguity. This usually happened when a rater labeled one long segment that

contained multiple short bites or drinks. If no index-based label was contained within a gesture, or
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Type #Gestures Duration (sec)
Average ± Stddev Min Max

Bite 18462 2±1 1 11
Drink 2182 6±2 1 18

Utensiling 14861 5±5 1 186
Rest 14761 8±12 1 341

Other 1348 9±6 4 73

Table 3.1: Statistics of gestures.

an index-based label was not matched against any gesture, then it was considered as missed. Note

that the index-based labels searched for matching intake gestures were only considered if they were

performed by the dominant hands of the participants.

3.3 Results

Table 3.1 lists the distribution statistics of the five gestures labeled by all raters. The

minimum durations of bite, drink, rest and utensiling were enforced to be 1 second; the minimum

duration of other was enforced to be 4 seconds by definition. Notice that utensiling and rest could

last up to 3 and 6 minutes, respectively. For utensiling, this happened when a subject took a long

time peeling a tangerine. For rest, this happened when a subject talked to other people for a long

time while the hand wearing device was at rest. The variable duration of gestures demonstrates the

challenge of labeling segments: it is difficult to accurately label the start and end index.

Table 3.2 lists the inter-rater reliability for meals labeled by two raters. Note that only four

gestures (bite, drink, rest and utensiling) are evaluated since gesture “other” will be automatically

determined if the gap between gestures are longer than 4 seconds. The overall agreement is 92.5%

with exact agreement of 75% and 17.5% of boundary ambiguity. The agreement for bite and drink

is 99.4% and 98.1%, respectively. This indicates a high degree of agreement between raters on

intake related gestures. The overall mistake rate is 7.5% with most of the mistakes from non-intake

gestures. This is due to the nature of ambiguity on non-intake gestures. For example, raters may

have different understanding on levels of physiological tremor in the definition of rest and one rater

labeled a small amount of motion as rest while another rater did not label it.

The usefulness of a third rater independently labeling each meal and then comparing it to

the union from two raters was explored. After 7 meals were labeled, the process was stopped. In

those 7 meals, the mistake and ambiguity rate did not change.
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Cases #Gestures Bite Drink Rest Utensiling
(%) (%) (%) (%) (%)

Agreement 13184 5814 594 2926 3850
(75.0%) (89.6%) (66.9%) (58.9%) (73.5%)

BA I 1030 136 160 548 186
(5.9%) (2.1%) (18.0%) (11.1%) (3.6%)

BA II 784 21 73 443 247
(4.5%) (0.3%) (8.2%) (8.9%) (4.7%)

BA III 1250 478 44 232 496
(7.1%) (7.4%) (5.0%) (4.7%) (9.5%)

Mistake 1079 23 9 700 347
-missed (6.1%) (0.4%) (1.0%) (14.1%) (6.6%)
Mistake 249 14 8 117 110
-identity (1.4%) (0.2%) (0.9%) (2.4%) (2.1%)
Overall 1328 37 17 817 457
mistake (7.5%) (0.6%) (1.9%) (16.5%) (8.7%)
Overall 3064 635 277 1223 929

BA (17.5%) (9.8%) (31.2%) (24.6%) (17.7%)
Overall 16248 6449 871 4149 4779

agreement (92.4%) (99.4%) (98.1%) (83.5%) (91.3%)
#Gestures 17576 6486 888 4966 5236

Table 3.2: Inter-rater reliability for meals with two raters. BA: boundary ambiguity.

One rater Two raters
Agreement 16029 3461

(%) (94.4%) (95.8%)
Ambiguity 93 21

(%) (0.5%) (0.6%)
Missed 862 128

(%) (5%) (3.6%)
# Gestures 16984 3610

Table 3.3: Inter-rater reliability between intake gestures and index-based labels.

Table 3.3 lists the inter-rater reliability of comparing intake gestures with index-based labels.

It can be seen that the agreement and missed rate were both improved by 1.4% when the second rater

contributed to labeling. The agreement and mistake rate when a third rater contributed did not

change compared to gestures labeled by two raters. The small amount of improvement of multiple

raters illustrates that a single labeling is sufficient for use in classifier development.

Table 3.4 lists the inter-rater reliability of raters who labeled at least 8 meals. Overall the

total agreements range from 89% to 98%. It should be noted that even for rater YS who labeled a

large amount of gestures, the total agreement had 92% indicating a high degree of consistency for

gesture definitions across the large data set.
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Rater #Gestures Total Agreement Boundary ambiguity Mistake
agreement (%) (%) (%) (%)

YS 8481 7821 6363 1458 660
(92%) (75%) (17%) (8%)

RB 942 864 743 121 78
(92%) (79%) (13%) (8%)

AS 1107 983 783 200 124
(89%) (71%) (18%) (11%)

JW 1182 1077 937 140 105
(91%) (79%) (12%) (9%)

JP 818 800 656 144 18
(98%) (80%) (18%) (2%)

PJ 649 619 470 149 30
(95%) (72%) (23%) (5%)

TH 699 649 499 150 50
(93%) (71%) (21%) (7%)

JD 1099 1012 875 137 87
(92%) (80%) (12%) (8%)

Table 3.4: Inter-rater reliability for raters labeling at least 8 meals.

3.4 Conclusion

This chapter considers the problem of the lexicography of hand gestures during eating. Com-

pared to the lexicography of hand gestures in sign language where the gesture vocabulary is designed

top-down, the lexicography of hand gestures during eating must be designed bottom-up to encode a

large variety of existing natural gesture behaviors. The goal of this chapter was to establish objective

and repeatable definitions based on discernible intent during eating. A set of vocabulary of eating

actions was built to quantify gestural behaviors. A total of 51,614 gestures were manually labeled

and definitions were tested in a large data set for 276 participants. Duration of gestures varying

from 1 second to 341 seconds indicates the difficulty of labeling segments. Inter-rater reliability of 18

raters showed 92.5% total agreement (75% exact agreement and 17.5% boundary ambiguity). The

intake gestures had total agreement of 99.4% and 98.1% for bite and drink, respectively. Inter-rater

reliability was further tested against a previously labeled data set of single time index-based labels.

This test showed agreement of 94.4% and 95.8% for meals labeled by one and two raters, respectively.

The performance of raters who labeled at least 8 meals was assessed, with total agreement ranging

from 89% to 98%. Overall these findings show that the definitions are consistent and repeatable

across a large data set.

Although the overall mistake rate is 7.5%, most mistakes are from non-intake gestures. By
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design, a large variety of patterns resides in our existing definitions of non-intake gestures. For

utensiling, stirring food and cutting food contain different patterns, where stirring involves more

rotational motions while cutting involves periodic horizontal motions. Other actions such as peeling

a fruit or vegetable or mixing food are also typical in utensiling. For rest, people have different

levels of physiological tremor which is the natural variation in capability of holding perfectly still.

Therefore our limited set of gesture labels has some difficulty in labeling all natural behaviors.

Potential future work could explore an extension of our vocabulary to include additional gesture

types or subdivide some gestures into multiple types. However, the purpose of this lexicography

is to support research into the automated monitoring of dietary intake, where emphasis is on the

detection and quantification of intake events. Recognizing a wider body of non-intake events may

not be helpful towards this goal. Labeling a wider body of gesture types may also reduce inter-rater

reliability.

A limitation of this work is that it was only tested on meals eaten in a cafeteria setting.

It is possible that eating related gestures in other environments may require modifications to this

encoding scheme. However, mitigating that problem is the fact that a relatively large number of

people (276) were recorded eating a completely unscripted meal. Another limitation of this work is

that it only considers gestures related to wrist motion. Other works [53, 71, 86, 100, 101] focus on

eating actions related to the head or throat such as chewing and swallowing. This work could be

extended to include lexicography for those types of events and should provide some background to

assist with its development.
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Chapter 4

The Impact of Quantity of

Training Data on Recognition of

Eating Gestures

Several studies have shown viable proofs-of-concept of recognizing eating gestures in labo-

ratory settings with small numbers of subjects and food types [7, 97, 117, 129], but it is unclear

how well these methods would work if tested on a larger population in natural settings. As more

subjects, locations and foods are tested, a larger amount of motion variability could cause a decrease

in recognition accuracy. This chapter explores the necessary complexity for a HMM to adequately

capture the motion variability in eating gestures. We also test the effect of the quantity of training

data needed to adequately train the HMMs. The work in this chapter has been submitted to the

Journal of Biomedical and Health Informatics.

4.1 Introduction

Gesture recognition has been widely studied in the domain of sign language recognition

[30, 130], motivating a similar approach for eating gesture recognition [97]. However, the variability

in motion of an eating gesture is much larger than the variability in motion of a sign language

gesture. Sign language gestures are specifically designed to communicate intent, and subject training
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is conducted to minimize variability in repeated execution of the same gesture. In contrast, eating

gestures are a result of a physiological activity (eating) and their execution varies depending on

many variables including the subject, utensil, and food or beverage consumed.

For sign language recognition, one study found that an HMM constructed with 3 states and

3 Gaussians achieved 92% accuracy in recognizing 5,113 different words [30]. Another study found

that 4 states with only 1 Gaussian achieved 91% accuracy in recognizing 25 different words [58]. For

training data, one study found that 24 training samples per word achieved 95% accuracy for differ-

entiating 300 different words [80]. Another study found that 60 training samples per word achieved

91% accuracy for differentiating 30 different words [4]. The general approach in all these works is to

vary model complexity and/or quantity of training data to identify the point of diminishing returns

in recognition accuracy. This chapter describes a similar effort for the recognition of eating gestures.

The question is whether or not a similar model complexity (3-4 states, 1-3 Gaussians) and amount

of training data (24-60 samples per word) are sufficient.

For eating gesture recognition, one study found that an HMM constructed with 5 states and

1 Gaussian achieved 94% in recognizing 384 gestures from 2 subjects [7]. Another study found that

an HMM constructed with 13 states and 5 Gaussians achieved 84.3% in recognizing 2,786 gestures

from 25 subjects [97]. For training data, one study found that 760 intake gestures from 10 subjects

could train models that achieved 93% accuracy [129]. Another study found that 1,184 intake gestures

from 14 subjects could train models that achieved up to 76% F1 score [117]. While the accuracies

reported in these studies provide evidence of viable proofs-of-concept, it is unclear what accuracies

would be achieved if the same methods were deployed on a larger population outside the laboratory.

The purpose of this chapter is to provide context on the relationship between a laboratory

experiment that demonstrates a proof-of-concept, and a potential deployment of the same method

on a larger population. Because of the inherent variability in eating gestures, one would expect that

a classifier or algorithm trained on a small amount of laboratory data would not necessarily achieve

the same accuracy when tested on a larger population. The experiments here provide some evidence

on the size of training data and model complexity needed to provide confidence in that translation.
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Study #Subjects #Gestures
[97] 25 2,786
[7] 2 384

[129] 10 760
[117] 14 1184

This work 269 51,614

Table 4.1: Statistics of data set in eating gestures.

4.2 Methods

4.2.1 Data Collection

The data set from Chapter 3 is used here, where a total of 276 subjects were recruited

and each consumed a single meal. For 5 subjects, either the video or wrist motion tracking failed

to record, and for 2 subjects non-dominant hands were used for recording; these a excluded from

analysis.

4.2.2 Data Preprocessing

Let the data set be comprised of d eating sessions, where each session is a recording of wrist

motion during contiguous consumption. For example, a meal might be divided into multiple eating

sessions (appetizer, entree, dessert) separated by periods of non-eating that are not recorded. The

wrist motion data is defined as Rdt = [xdt , y
d
t , z

d
t , α

d
t , β

d
t , γ

d
t ], where d indicates the eating session, t

represents the time index, x, y, z are accelerometer sensor readings and α, β, γ are gyroscope sensor

readings. All the data were smoothed using a Gaussian-weighted window of width 1 s and standard

deviation of 2
3 s:

R̃dt =

0∑
i=−N

Rdt+i

exp
(
−t2
2σ2

)
N∑
x=0

exp

 − (x−N)2

2σ2


(4.1)

4.2.3 Hidden Markov models

Figure 4.1 illustrates the architecture of our HMMs. There are two levels, HMM-S and

HMM-N. The first level observes the motion subcomponents of a single gesture and classifies the

motion sequence according to which gesture it most resembles. The second level observes the prob-

able identities of a preceding set of gestures and classifies the current gesture according to which
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Figure 4.1: Architecture for single gesture HMM-S and gesture-to-gesture HMM-N. Examples of
three manually segmented gestures are displayed. In HMM-S, the observables are a sequence of
features computed from the raw sensor data (only gyroscope signals are shown for brevity) in sliding
windows, each with 50% overlap denoted by the shaded area. Each gesture type (rest, uten., etc.) is
recognized using a different HMM. For each input sequence, the HMM with the maximum logarithmic
probability determines the gesture type. Gesture sequence recognition uses the set of logarithmic
probabilities as observables for HMM-N, in which each state represents a sequence of N gestures.
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gesture sequence it most resembles. The details of each level of HMM are as follows.

4.2.3.1 Single Gesture HMM-S

We use HMM-S to model a single gesture as a sequence of sub-gestures with each sub-

gesture represented by a state [97]. For example, the action of taking a bite may consist of raising

food towards the mouth, ingestion, and the return of the wrist to a rest position. This sequence is

modeled through a state sequence where each state models part of the motion pattern.

We use the notation λ = (π,A,B) for each HMM, where A, B and π are the state transition

matrix, emission probability and initial state distribution, respectively. We denote individual states

as S = {s1, s2, ..., sN}, the state at time t as qt, and a state sequence as Q = {q1q2, ..., qT }. The

initial state distribution π is computed as:

πi = P (q1 = si), 1 ≤ i ≤ N. (4.2)

The state transition matrix A is computed as:

aij = P (qt+1 = sj |qt = si), 1 ≤ i, j ≤ N, 1 ≤ t ≤ T. (4.3)

The observables O for each gesture g are calculated using two windows w1 and w2, where

w1 is the length of time in which features are calculated and w2 is the step in time between feature

calculations. Formally, we calculate features as in Equations 4.4-4.6:

µg,t =
1

w1

w1∑
i=0

R̃g,t+i (4.4)

σg,t =

√√√√ 1

w1 − 1

w1∑
i=0

(R̃g,t+i − µg,R̃,t)2 (4.5)

sg,t =
(R̃g,t+w1 − R̃g,t)

w1
(4.6)

where R̃g,t is the smoothed sensor reading of gesture g at time t, and µg,t, σg,t, sg,t are the average,

standard deviation and slope. In each window w1, this provides 18 features og,t = [µxg,t
, µyg,t , ...,

σxg,t
, σyg,t , ..., sxg,t

, syg,t , ..., sγg,t ]. The features for each gesture g can be represented as Og =

60



[og,t, og,t+w2 , ..., og,t+l×w2 ], where l depends on the duration of each gesture.

We select w1 and w2 to act as a sliding window with overlap. The classic approach in speech

recognition is to use a 0.5 second window with 50% overlap [65]. Since our data is collected at 15

Hz, we use the odd number of a 9 sample window (0.6 s) with 4 sample overlap (0.3 s). We perform

a z-score independently for each of the 18 features to prevent skew towards large valued features.

Gaussian mixture models (GMMs) are used to describe the emission probabilities B, as

shown in Equation 4.7, where M is the number of Gaussians.

B = P (O|Q) =

M∑
i=1

ciN(O;µi,Σi),

M∑
i=1

ci = 1. (4.7)

Each Gaussian is defined by three parameters ci, µi, and Σi representing weight, mean and covariance

matrix of the ith Gaussian, respectively:

N(O;µi,Σi) =
1

(2π)D/2|Σ|1/2
e−

1
2 (O−µ)T Σ−1(O−µ) (4.8)

We assume features are independent and the off-diagonal entries in Σ are zero. The expectation-

Maximization algorithm is used to calculate the emission probabilities modeled by GMMs [36, 61].

An HMM toolbox was used to build HMMs [81]. We use an architecture of left-to-right

with skip in HMM-S [106], so π is always one for the first state and zero for the other states. The

forward-backward algorithm is used to train an HMM, in other words to learn the A and B matrices

given an observation sequence O.

In HMM-S, five HMMs are built, one for each gesture type. During recognition, observables

O from an unknown gesture are passed into the HMMs as illustrated in Figure 4.1. Each HMM λg

computes the likelihood of this particular observation sequence using the forward algorithm:

P (O|λg) =
∑
Q

P (O,Q|λg) =
∑
Q

P (O|Q,λg)P (Q|λg). (4.9)

Each unknown gesture obtains probability scores from each of the five HMMs. A probability score

indicates how well a model matches the gesture. Therefore, the model which provides the maximum
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Figure 4.2: State transitions in HMM-2. For clarity purpose, 25 transitions starting from bite is
displayed. B = bite, D = drink, R = rest, U = utensiling, O = other.

score determines the gesture type g ∈ {rest, utensiling, bite, drink, other} as

ĝ = arg max
g
{Pg} (4.10)

4.2.3.2 Sequential Dependent HMM-N

We use HMM-N to model a sequence of N previous gestures as context to improve recognition

of the current gesture. For example, a common pattern is to use utensils to prepare a bite of food

(U), consume the bite of food (B), and then rest hands while masticating and swallowing (R). In

HMM-N, each state models a sequence of N gestures. Figure 4.1 illustrates the architecture of

HMM-N. Note that the observables and states in HMM-N are different from those used for HMM-S.

To calculate the state transition matrix, we convert HMM-N to an equivalent first-order

HMM [74, 97]. Figure 4.2 shows a partial example of the equivalent first-order HMM for HMM-2

(for clarity, only state transitions starting from bite are shown). Logically, transitions between some

states are impossible. For example, state BB cannot transition to DB because the former state’s
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most recently recognized gesture is B, which does not match the memory of the latter, which is

D. In total HMM-2 has only 5 × 25 possible state transitions. Formally, each state in HMM-N is

si = {g1g2...gN}. The state transition matrix A is calculated as:

aij = P (sj = g2g3...gN+1|si = g1g2...gN )

=
#transitions from g1g2...gN to g2g3...gN+1 + 1

# g1g2...gN gesture sequences + |S|

(4.11)

where |S| indicates the number of possible state transitions. Laplace smoothing (+1 in numerator,

+|S| in denominator) is used to avoid values of zero in the state transition matrix (cases in which a

sequence does not appear in the training data) [104].

The initial state distribution π is calculated as:

πi = P (si = g1g2...gN )

=
# g1g2...gN gesture sequences + 1

# N-gesture sequences + |S| (4.12)

The observables O of each gesture are the five probability scores from HMM-S. In HMM-N,

we make an assumption that the observables are only dependent on the most recent gesture. For

example, observables from gesture D, gesture sequence UD and UUD are the same (they are all

immediate observations of D). The emission probabilities B are calculated as:

B = P (O|si = g1g2...gN )

= P (O|gN ) =

M∑
i=1

ciN(O;µi,Σi).
(4.13)

We follow the same parameter setting in [97] to use 7 Gaussians.

During training, A and π are calculated using Equations 4.11-4.12 and B is learned using

Equation 4.13. Recognition is defined as finding the most likely state sequence Q = {q1, q2, ...qT }

that explains observables O given model λ = {A,B, π}:

Q = arg max
q1,q2,...,qT

P (Q|O, λ) (4.14)

The Viterbi algorithm [61] is used and the most recent gesture in each qt determines the gesture
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type for each time step.

4.2.4 Model Complexity and Training Data

To study the amount of motion variability within each gesture type, we varied the number

of states N and the number of Gaussians M for HMM-S. Specifically we built every combination of

HMM-S with N = 3...25 and M = 1...7. The value for N can be considered to correspond to the

number of different sub-motions expected in a gesture type. The value for M can be considered to

correspond to the number of observed variations of each expected sub-motion. During training, we

randomly selected 650 gestures of each type to train the 5 HMMs. During recognition, we selected

another set of 650 gestures per type, excluding those used in training, to test the accuracy. Due to

the Monte Carlo nature of HMM training, each model was run 5 times and the average is reported.

To study the effect of the quantity of training data, we varied the amount of gesture samples

used to train each HMM. The values for N and M were held constant according to the best values

found from the model complexity experiment. We varied the number of training samples per gesture

type from 65 to 650 by randomly selecting from the full data set. During recognition, the same set

of testing data as above was used. To reduce the variance introduced in the process of random

selection of training data, each model was run 30 times and the average is reported.

4.3 Results

The total data set consists of 51,614 manually labeled gestures, with 14,761 rest, 14,861

utensiling, 18,462 bite, 2,182 drink and 1,348 other. This data set, along with a visualization tool,

is being made publicly available at http://www.cecas.clemson.edu/tracking.

4.3.1 HMM-S

Figure 4.3 shows recognition accuracy vs HMM complexity. Accuracy plateaus at M = 5

and N = 13, indicating that 5 Gaussians and 13 states are needed to capture the motion variability.

Figure 4.4 shows recognition accuracy vs number of training gestures, with model complexity

fixed at M = 5 and N = 13. Accuracy plateaus at 500 training samples per gesture type, indicating

that while 65 training samples per gesture type are the minimum needed to train HMMs of this

complexity, an additional 8% accuracy is achieved by training with 500 samples per gesture type.
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Figure 4.3: Recognition accuracy with model complexity: the number of states N and mixture
components M .
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Figure 4.4: Recognition accuracy with the quantity of training data.
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Figure 4.5: Accuracy of models trained on different amount of data.

4.3.2 HMM-N

Figure 4.5 shows the accuracy for HMM-N as different amounts of previous gestures (S=0,

N=1...6) are incorporated into the classifier. The figure compares our results for 51,614 gestures for

training vs the same model trained on a smaller data set of 2,786 gestures from 25 meals [97]. The

accuracy of HMM-1 is improved by 1.8% by having more training data, although part of this can be

explained by the simultaneous 0.9% increase in accuracy in HMM-S that produces the inputs used

for HMM-1. However, the accuracies for HMM-2 and higher are not improved by more training

data. One reason is that building HMM-N requires converting high-order HMMs to first order

by enumerating every possible combination between current and previous gestures. This requires a

large amount of parameters in states and transition matrices, as shown in Table 4.2. In HMM-N, the

number of states is 5N and possible state transitions is 5× 5N . Emission probabilities are modeled

by mean µ and covariance Σ of GMMs, as shown in Equation 4.13. Given M mixture components

and D-dimensional observables, the amount of emission probability parameters are 5×D×M for µ

and Σ, respectively. Based on the one in ten rule in building models [40, 41, 91], it is necessary to

build models with a quantity of training data at least 10 times the number of parameters. Therefore,

the inadequate training data in [97] caused overfitting for models from HMM-3 to HMM-6. It is

worth noting that even with the large data set of 51,614 gestures, we still do not have adequate data

to train HMM-5 and HMM-6. Another reason is that the transition matrix of testing data in [97]

was included during training to avoid cases where gesture sequence in training data does not exist
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#Params. HMM-1 HMM-2 HMM-3 HMM-4 HMM-5 HMM-6
Prior 5 25 125 625 3,125 15,625

Transition 25 125 625 3,125 15, 625 78,125
Emission 350 350 350 350 350 350

Total 380 500 1,100 4,100 19,100 94,100

Table 4.2: #Parameters in HMM-N . Note: observable is 5-dimensional vector and 7 GMMs are
used.

Model All Rest Utensiling Bite Drink Other
(%) (%) (%) (% ) (%) (%)

HMM-S 85.2 86.8 86.9 83.7 96.1 52.6
HMM-1 89.5 89.0 91.2 91.9 91.2 52.2

Table 4.3: Recognition accuracy for HMM-S and HMM-1.

in testing data, but this biased the results. Here we used Laplace smoothing instead.

Finally, Table 4.3 summarizes the accuracies of HMM-S and HMM-1 trained and tested

on all data using five-fold cross validation. Overall, HMM-S achieves 85.2% accuracy and HMM-1

achieves 89.5% accuracy. For each gesture, the improved accuracy for rest, utensiling and bite is

2.2%, 4.3%, 8.2%, respectively. We observe that drink and other decrease in accuracy from HMM-S

to HMM-1, suggesting that there is not enough sequencing consistency in their occurrence in a large

data set to warrant modeling their sequencing in an HMM.

4.4 Discussion

In this chapter, two models were built: HMM-S which models the sequence of actions

within a gesture, and HMM-N which models the sequential dependence between gestures. A total

of 51,614 gestures with 5 different gesture types were labeled from 269 subjects eating a single

meal in a cafeteria environment. Sign language HMMs constructed with only 3-4 states and 1-3

Gaussians achieved more than 90% accuracy [30, 58], whereas we found that eating gesture HMMs

needed 13 states and 5 Gaussians to achieved 85.2% accuracy. For training data, in contrast to

sign language in which only 24-60 training samples per word were sufficient, we found that 500

training samples per gesture type were required. These findings demonstrate that the variability

of motion patterns in eating gestures are much larger than the variability in motion patterns in

sign language, and that more complex models and more training data are required. For HMM-N,

the effect of model complexity was explored by studying the sequential dependence of N previous
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gestures to improve recognition of the current gesture. Results show that accuracy was improved

by 4.3% when one previous gestures was studied as context, but was not improved when additional

previous gestures were studied. This demonstrates that word/gesture sequencing, commonly used

to improve speech/sign language recognition accuracy, may have less applicability to eating gesture

recognition.

One of the key challenges for eating gesture recognition is to translate models built with

laboratory data to models built with free-living data. Most previous works have trained models

with data in a limited amount of subjects, time collected and laboratory environment [7, 117, 129].

However, a large variability exists in eating gestures during free-living and models that are developed

in a controlled setting will potentially be brittle in a natural setting. For example, people typically

gesticulate when talking to others or place a phone call while eating, which do not happen in a

laboratory environment. Recently, several studies have been investigating the differences between

performance in laboratory and real-world environments. Study in [118] trained models using 10

hours of data collected in laboratory from 20 subjects and tested on 31 hours of data collected in

free-living from 7 subjects, and 422 hours of data collected in free-living from 1 subject, achieved 76%

and 71% F-score, respectively. Another study [79] trained models using 59 hours of data collected

in the laboratory from 6 subjects and tested on 113 hours of data collected in free-living from

the same group of subjects, achieved 88% precision and 87% recall. A third study [132] detected

chewing events on 122 hours of data collected in free-living from 10 subjects, achieved 79% recall

and 77% precision, respectively. However, it is difficult to directly compare with our work. First,

different sensing modalities are investigated, e.g. sensing of wrist motion, chewing and swallowing.

Second, while these works focus only on eating detection, our work also recognizes some eating

related activities, such as utensiling. Finally, the purpose of our work is to explore the quantity of

training data for the model to adequately capture the motion variability in a large population.

One limitation is that data was collected only one meal per subject, which might not be

adequate to capture variability within individuals. Another limitation is that data was collected

only in a cafeteria location, which might not capture the full motion variability of free-living eating

behaviors. In future work we would like to collect free-living data from individuals over a longer

duration (e.g., a week or more) and in multiple locations.
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Chapter 5

Recognizing Eating Gestures Using

Contextual Dependent Hidden

Markov Models

5.1 Introduction

This chapter considers the problem of recognizing eating gestures by studying contextual

variables using HMMs to capture motion variations. Specifically, we examined if foreknowledge

of the demographics (gender, age, ethnicity, BMI, handedness), meal level variables (utensil being

used, types of foods being eaten), language variations (variations of bite, utensiling and other),

and clustering based method could improve recognition accuracy. Improvement in accuracy was

measured by comparing to the non-HMM baseline algorithm in Chapter 2, as well as HMM-S and

HMM-N proposed in Chapter 4.
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5.2 Methods

5.2.1 Data

The data set from Chapter 3 is used here. We provide the demographics and food infor-

mation for the clarity of the contextual variables. Participants were free to choose any foods and

beverages available. In total, 380 different food and beverage types were chosen, for example stir fry

vegetables, pasta, shoestring French fries, salad bar, water, soda, etc. Four different utensils were

used: fork, spoon, chopsticks and hand. Tables 5.1-5.5 list the gender, age, hand used, ethnicity,

and BMI distributions of participants that were tested as contextual variables in this work.

Gender #Participants
Male 129

Female 140

Table 5.1: Gender distribution of participants.

Age #Participants
18-30 188
31-40 27
41-50 33
51-75 21

Table 5.2: Age distribution of participants.

Hand used during eating #Participants
Right 248
Left 21

Table 5.3: Hand used distribution of participants.

5.2.2 Context Dependent HMMs

To study the contextual variables, two methods have been investigated: top-down and

bottom-up. In the top-down approach, contextual variables are defined first and then used to cap-

ture motion variations. For example, the demographics, meal-level variables, language variables are

the top-down contextual variables. In the bottom-up approach, contextual variables are unknown

and determined based on the motions participants take during eating.
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Ethnicity #Participants
African American 26
Asian or Pac. Isl. 29

Caucasian 188
Hispanic 11

Other 15

Table 5.4: Ethnicity distribution of participants.

BMI #Participants
< 25 164
25-30 66
>=30 39

Table 5.5: BMI distribution of participants.

5.2.2.1 Top-down approach

In the top-down approach, demographics of participants (gender, age, ethnicity, BMI, hand-

edness), meal-level variables (utensil being used, types of foods being eaten) and language variables

(bite sub-vocabulary, utensil sub-vocabulary and other sub-vocabulary) were studied to determine

if they provide increased recognition accuracy compared to HMM-S. Each contextual variable was

test independently.

Demographics HMMs

Gender HMMs. HMMs were trained independently for females and males using the same steps

described for the HMM-S. This yielded 10 total HMMs (2 genders × 5 gesture types). During the

recognition process, it is assumed that the gender of the participant is known a priori and thus can

be used to determine which set of HMMs to use to recognize gestures. Figure 5.1 shows the process.

After selecting gender, observbles of the unknown gesture are passed into 5 HMMs and the HMM

which provides the maximum score determines the gesture type.

Age HMMs. HMMs were trained independently for each age category listed in Table 5.2. This

yielded 20 total HMMs (4 age groups × 5 gesture types). During the recognition process, it is

assumed that the age of the participant is known a priori and thus can be used to determine which

set of HMMs to use to recognize gestures. This selection process is similar to the one outlined in

Figure 5.1. After selecting age group, observbles of the unknown gesture are passed into 5 HMMs
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Figure 5.1: Gender HMMs gesture recognition.

and the HMM which provides the maximum score determines the gesture type.

Hand HMMs. HMMs were trained independently for each category listed in Table 5.3. This

yielded 10 total HMMs (2 hand groups × 5 gesture types). During the recognition process, it is

assumed that the hand used by the participant is known a priori and thus can be used to determine

which set of HMMs to use to recognize gestures. This selection process is similar to the one outlined

in Figure 5.1. After selecting hand group, observables of the unknown gesture are passed into 5

HMMs and the HMM which provides the maximum score determines the gesture type.

Ethnicity HMMs. HMMs were trained independently for each ethnicity category listed in Table

5.4. This yielded 25 total HMMs (5 ethnicity groups × 5 gesture types). During the recognition

process, it is assumed that the ethnicity of the participant is known a priori and thus can be used

to determine which set of HMMs to use to recognize gestures. This selection process is similar to

the one outlined in Figure 5.1. After selecting ethnicity group, observables of the unknown gesture

are passed into 5 HMMs and the HMM which provides the maximum score determines the gesture

type.

BMI HMMs. HMMs were trained independently for each BMI category listed in Table 5.5. This
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Utensil #Meals
Fork 153

Spoon 47
Hands 149

Chopsticks 5
Mixed 134

Table 5.6: Utensil distribution of meals.

yielded 15 total HMMs (3 BMI groups × 5 gesture types). During the recognition process, it is

assumed that the BMI of the participant is known a priori and thus can be used to determine which

set of HMMs to use to recognize gestures. This selection process is similar to the one outlined in

Figure 5.1. After selecting BMI group, observables of the unknown gesture are passed into 5 HMMs

and the HMM which provides the maximum score determines the gesture type.

Meal level HMMs

We investigated the utensil used and the food consumed in each meal to build sub-gesture HMMs.

In each meal, the dominant utensil used and the food consumed was determined beforehand. If

there were no dominant utensil types or food, then the type of that meal was determined as mixed.

Utensil HMMs. Four utensil types were available in our data set: fork, spoon, hands and chop-

sticks. However, utensil use is not necessarily unique throughout an entire meal. For example, a

participant may use a fork for some bites and hands for other bites. Therefore, we defined a fifth

category as mixed utensil. If no single utensil type was used for more than 65% of bite gestures by

a participant, then their utensil type was considered mixed. Table 5.6 lists the totals.

This yielded 25 total HMMs (5 utensil types × 5 gesture types). During the recognition

process, it is assumed that the utensil type of each meal is known a priori and thus can be used

to determine which set of HMMs to use to recognize gestures. This selection process is similar to

the one outlined in Figure 5.1. After selecting utensil type, observables of the unknown gesture are

passed into 5 HMMs and the HMM which provides the maximum score determines the gesture type.

Food HMMs. In total 380 foods were available in our data set. Table 5.8 lists the frequencies

of food and beverage of which participants consumed greater than 100 bites. In each meal, one or

multiple food types may be consumed. Therefore, we determined the dominant food type if the
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Food accuracy #Meals
High accuracy 137

Middle accuracy 66
Low accuracy 16

Mixed 269

Table 5.7: Food distribution of meals.

frequency of food was consumed more than 55% within each meal. If there was no dominant food,

then it was determined as mixed. Based on the accuracy of detecting food using the algorithm in

Chapter 2, four groups were generated: food accuracy larger than 75% (high accuracy), between

60% and 75% (middle accuracy), less than 60% (low accuracy) and mixed food type. Table 5.7 lists

the totals.

This yielded 20 total HMMs (4 food types × 5 gesture types). During the recognition

process, it is assumed that the food type of each meal is known a priori and thus can be used to

determine which set of HMMs to use to recognize gestures. This selection process is similar to the

one outlined in Figure 5.1. After selecting food type, observables of the unknown gesture are passed

into 5 HMMs and the HMM which provides the maximum score determines the gesture type.

Language variations HMMs

Originally, five gestures were defined to capture eating activities. However, a large variety of pat-

terns resides in the existing gestures. For utensiling, stirring food and cutting food contain different

patterns, where stirring involves more rotational motions while cutting involves periodic horizontal

motions. Other actions such as peeling a fruit or vegetable or mixing food are also typical in utensil-

ing. For bite, different utensils can be used to perform: fork, spoon, hands or chopsticks. Therefore

in this section, we investigated extending the current vocabularies of bite, utensiling and other to

capture detailed information.

Bite variational HMMs. Based on the utensils used for each bite, we divided bite gestures into

five variations: bite with fork, bite with spoon, bite with both hands, bite with single hand and bite

with chopsticks. Table 5.9 lists the amount of each gesture.

This yielded 9 total HMMs. During the recognition process, each gesture was passed into

9 HMMs, with gesture type determined by the model with max score. This selection process is
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Food #Frequency
Salad bar 3986

Shoe string french fries 1791
Water 976

Pasta tour of italy 756
Sweet tea 714
Ice cream 484
Stir fry 426

Pepperoni pizza 377
Ice cream cone 314
Cheese pizza 273
Diet coke 246

Signature chips 218
Cantaloupe 214

Homestyle chicken sandwich 205
Pad thai shrimp station 195

Veggie pizza 183
Hamburger 181

Custom sandwich 171
Cherry coke 168
Coca cola 165
Apple 165

Hunan chicken 160
Bread 160

Cereal apple jackse 157
Baked honey bbq lemon chicken 151

Apple juice 151
Oven fried chicken 149

Frozen yogurt 148
Garlic breadsticks 146

Baked rotisserie chicken 140
Fried shrimp 138

Yogurt 132
Chicken caesar wrap 131

Pita bread 127
Coke zero 121
Grapefruit 119

Kiwi strawberry juice 117
Waffle bar 114

Pork chop suey with white rice 110
Hunan chicken and rice 106

Brownie 105
Lemonade 103

Table 5.8: Frequency for foods of which participants consumed greater than 100 bites.
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Gesture type #Gestures
Rest 14761

Utensiling 14861
Drink 2182
Other 1348

Bite-fork 9724
Bite-spoon 2507

Bite-both hands 1376
Bite-single hand 4291
Bite-chopsticks 564

Table 5.9: The number of gestures of bite variations.

Gesture type #Gestures
Rest 14761
Bite 18462

Drink 2182
Other 1348

Utensiling-fork 7416
Utensiling-spoon 1585

Utensiling-both hands 302
Utensiling-single hand 1402
Utensiling-chopsticks 294

Utensiling-other 3862

Table 5.10: The number of gestures in utensiling variations.

outlined in Figure 5.2. Notice that if the gesture was recognized as one of the five bite variations, it

was then determined as “bite”.

Utensiling variational HMMs. In total there are 5 utensil types in our data set: fork, spoon,

both hands, single hand and chopsticks. The variations of the gesture utensiling is categorized based

on the following gesture: if the following gesture is bite, then the utensiling type is determined by

the utensil used for that bite, otherwise it is categorized as “utensil-other”. As a result, utensiling

variations include: utensiling-fork, utensiling-spoon, utensiling-both hands, utensiling-single hand,

utensiling-chopsticks and utensiling-other. Table 5.10 lists the amount of each gesture.

This yielded 10 total HMMs. During the recognition process, each gesture was passed into

10 HMMs, with the gesture typed determined by the model with max score. This selection process is

similar in Figure 5.2. Notice that if the gesture was recognized as one of the six utensiling variations,

it was then determined as “utensiling”.
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Figure 5.2: Recognition of bite variational HMMs.
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(a) Log scores from rest model. (b) Log scores from utensiling model.

(c) Log scores from bite model. (d) Log scores from drink model.

Figure 5.3: Log scores of other compared with rest, utensiling, bite and drink.

Other variational HMMs. A lot of variations exist in gesture “other” based on its definition.

For example, other can include using napkin, gesturing while talking, playing the mobile phone, etc.

Some gestures of other share similar motions with rest, utensiling, bite and drink. To reduce the

ambiguity, we investigate dividing other based on its log score from HMMs: if the log score of other

is very different from the scores of the rest 4 gestures, then it is considered as dissimilar with any

gestures, otherwise it has some similar motions and can be misclassified. Figure 5.3 displays the

log scores of other compared with 4 gestures. For example, in Figure 5.3a, the scores of other and

rest are computed from the model “rest” and are compared. Other with log scores under -500 are

considered as dissimilar with rest. Others with log scores under -500, -1500, -500 and -1000 from

rest model, utensiling model, bite model and drink model are considered as dissimilar with all 4

gestures, otherwise categorized as similar with any 4 gestures. Table 5.11 lists the total.
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Gesture type #Gestures
Rest 14761

Utensiling 14861
Bite 18462

Drink 2182
Other-dissimilar with all four gestures 404

Other-similar with any gestures 944

Table 5.11: The number of gestures in other variations.

This yielded 6 total HMMs. During the recognition process, each gesture was passed into 6

HMMs, with the gesture typed determined by the model with max score. This selection process is

similar in Figure 5.2. Notice that if the gesture was recognized as one of the two other variations, it

was then determined as “other”.

5.2.2.2 Bottom-up approach

In the bottom-up approach, contextual variables are determined by a clustering method

to capture motion variations. Specifically, we investigate extending the sub-vocabularies of bite by

kmeans and log probability scores from HMM-S to improve recognition accuracy.

Log-score clustered HMMs. In log-score clustered HMMs, gesture “bite” is grouped into eight

clusters based on the log scores from HMMs. Specifically, the HMM for bite is built and the log

scores of each bite is computed. Log score indicates how well HMM captures the bite motions, where

the higher the score the better the model characterizes that bite. Then bites are divided into two

groups, where one group contains bites with top 50% score and the other group contains bites with

bottom 50% score. In total the same procedure is performed three times and eight bite clusters are

generated. Figure 5.4 displays the log score distribution of eight bite clusters. Table 5.12 lists the

amount of each gesture.

This yielded 12 total HMMs. During the recognition process, each gesture was passed into

12 HMMs, with gesture type determined by the model with max score. This selection process is

similar in Figure 5.2. Notice that if the gesture was recognized as one of the eight bite clusters, it

was then determined as “bite”.

Kmeans clustered HMMs. In kmeans clustered HMMs, bite clusters are generated by kmeans
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(a) Log score distribution from 1st bite cluster. (b) Log score distribution from 2nd bite cluster.

(c) Log score distribution from 3rd bite cluster. (d) Log score distribution from 4th bite cluster.

(e) Log score distribution from 5th bite cluster. (f) Log score distribution from 6th bite cluster.

(g) Log score distribution from 7th bite cluster. (h) Log score distribution from 8th bite cluster.

Figure 5.4: Log scores of eight bite cluster HMMs.
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Gesture type #Gestures
Rest 14761

Utensiling 14861
Drink 2182
Other 1348

Bite-1st cluster 2309
Bite-2nd cluster 2308
Bite-3rd cluster 2308
Bite-4th cluster 2307
Bite-5th cluster 2309
Bite-6th cluster 2307
Bite-7th cluster 2308
Bite-8th cluster 2306

Table 5.12: The number of gestures in log-score clustered approach.

Gesture type #Gestures
Rest 14761

Utensiling 14861
Drink 2182
Other 1348

Bite-1st cluster 4101
Bite-2nd cluster 3756
Bite-3rd cluster 2361
Bite-4th cluster 2427
Bite-5th cluster 2701
Bite-6th cluster 789
Bite-7th cluster 930
Bite-8th cluster 1339

Table 5.13: The number of gestures in kmeans clustered approach.

approach. Kmeans clustering partitions N data into k clusters where each data belongs to the

nearest cluster [42]. Each vector here is the bite with 6 second duration of roll motion. Figure 5.5

displays the roll motion of eight clusters using kmeans. It can be seen that roll motions from these

clusters are quite different. For example, bites from the second, fourth and fifth clusters contain

larger motions while bites from the third, sixth and eighth clusters contain relatively small motions.

Table 5.13 lists the amount of each gesture.

This yielded 12 total HMMs. During the recognition process, each gesture was passed into

12 HMMs, with gesture type determined by the model with max score. This selection process is

similar in Figure 5.2. Notice that if the gesture was recognized as one of the eight bite clusters, it

was then determined as “bite”.
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(a) Roll motion of 1st bite cluster. (b) Roll motion of 2nd bite cluster.

(c) Roll motion of 3rd bite cluster. (d) Roll motion of 4th bite cluster.

(e) Roll motion of 5th bite cluster. (f) Roll motion of 6th bite cluster.

(g) Roll motion of 7th bite cluster. (h) Roll motion of 8th bite cluster.

Figure 5.5: Roll motion of bite from eight clusters. Black curve indicates the averaged roll motion
and the standard deviation, gray curves indicate the instances in each cluster.
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5.2.2.3 Contextual HMMs with one gesture history.

We investigate the contextual variables along with one gesture history to further improve

recognition accuracy. Specifically, a history of one gesture HMM (HMM-1) and bite HMMs (bite

variational HMMs, log-score clustered HMM and kmeans clustered HMMs) are combined together.

For example, since 9 gestures are determined in the bite variational HMMs, when combined with

one history HMM, there are 9 states in total, where each state represents one single gesture. As a

result, the prior probability is 9× 1 and state transition matrix is 9× 9, which are computed as in

Equation 4.11 and 4.12. The combinational HMMs of one history with log-score clustered HMM

and kmeans clustered HMMs follow the similar protocol.

5.3 Results

Table 5.14 presents the accuracy of the different contextual HMMs. For the baseline clas-

sifiers, the accuracy of intake gestures in HMM-S is 85.0% and is improved by 10.0% over the

non-HMM algorithm. This demonstrates the effectiveness of temporal dependency of eating ges-

tures. For contextual HMMs, the highest accuracy of all gestures and intake gestures are 86.4%

and 91.7%, respectively, with 6.7% and 1.2% improvement over HMM-S. It can also be seen that in

the top-down and bottom-up approaches, bite variational HMMs achieve the highest intake gestures

accuracy while contain the minimum vocabulary size. This indicates that bite gestures using the

same utensil share more similar patterns across the data set. The demographics and meal level

HMMs show comparable all gestures accuracy while improving intake gestures accuracy over the

HMM-S, ranging between 0.4% and 2.0%.

Table 5.15 presents the accuracy of contextual HMMs with one gesture history. The baseline

classifier is the one history HMM (HMM-1) developed in Chapter 4, where each state represents one

gesture. The highest intake gestures accuracy of contextual HMMs with one history is 93.0%, with

1.5% improvement over HMM-1. However, the all gestures accuracy is decreased by 0.6%. Most of

the decreases exist in rest and utensiling and are failed to recognize as a bite. This can be explained

that in the contextual HMMs with one gesture history, there are 12 states in total and 8 states

characterize bite. Some of these states represent bites with vigorous motions and are easily confused

with utensiling, while some represent bites with small amount of motions and are confused with

rest. Although the recognition accuracy of bite is improved, the accuracy of rest and utensiling
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decreases. Table 5.16 illustrates the recognition accuracy of each gesture by the different classifiers.

The maximum improvements of rest, utensiling, bite, drink and other are: 1.4%, 5.2%, 9.7%, 0.6%

and 9.3%, respectively.

It is shown that the all gestures accuracy in contextual HMMs do not improve much. This

can be explained by two reasons. One reason is that the recognition accuracy of other ranges only

between 40.4% and 61.9%, which drops down the general accuracy. Because of the definition, any

motions that do not belong to rest, utensiling, bite and drink are all considered as other, which

results in a large motion varieties. For example, other includes gesturing while talking, cleaning

with napkin, reaching food, switching plates or containers, adjusting body while eating, etc. Another

reason is that some gestures can be confusing. We observe that in many cases a bite involves more

head-towards-plate motions when a food is prone to spillage, so a participant positions their head

over the container to facilitate delivery of the food to the mouth. These bites are easily confused

with rest, because of the small amount of wrist movements caused by head-towards-plate motion.

We also observe that it is challenging to recognize gestures with short duration. For example, some

participants tend to take quick bites when consume French fries, and the short duration results in

inadequate information for the model to recognize that gesture. Figure 5.6 illustrates the number

of gestures that are failed to recognize with respect to the amount of contextual HMMs. As the

amount of contextual HMMs grows, the number of gestures that are failed to recognize decreases

and then reaches the plateau when 7 contextual HMMs are applied, with around 7,000 gestures

failed to recognize, which shows the accuracy bound that contextual HMMs could achieve.

5.4 Conclusion

This chapter considers the problem of using contextual variables to improve gesture recogni-

tion. We developed hidden Markov models to capture variations in motion patterns using top-down

and bottom-up approaches. Specifically, we examined if foreknowledge of the demographics (gen-

der, age, ethnicity, BMI, handedness), meal-level variables (utensil being used, types of foods being

eaten), language variables (bite sub-vocabulary, utensil sub-vocabulary and other sub-vocabulary)

and clustered based approaches could improve recognition accuracy. Improvement in accuracy was

measured by comparing to a non-HMM algorithm and HMM-S that were trained on all participants.

The highest accuracy of all gestures and intake gestures in contextual HMMs is 86.4% and 91.7%,
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Classifier Vocabulary size (#HMMs) All gestures (%) Intake gestures (%)
Baseline
Non-HMM baseline 1 - 75.0
HMM-S 5 85.2 85.0

Top-down approach
Demographics
Gender HMMs 10 85.1 86.8
Age HMMs 20 84.9 86.1
Handedness HMMs 10 86.0 86.0
Ethnicity HMMs 25 84.6 85.4
BMI HMMs 15 84.4 85.8
Meal level
Utensil HMMs 25 85.6 87.0
Food HMMs 20 85.0 86.0
Language variations
Bite variational HMMs 9 86.1 91.7
Utensiling variational HMMs 10 85.5 83.6
Other variational HMMs 6 82.6 83.1

Bottom-up approach
Log-score clustered HMMs 12 86.3 91.3
Kmeans clustered HMMs 12 86.4 91.2

Table 5.14: Recognition accuracy of contextual HMMs. The highest accuracy is highlighted.

Classifier Vocabulary size (#HMMs) All gestures (%) Intake gestures (%)
Baseline (HMM-1) 5 89.5 91.5
Bite variational HMM-1 9 88.9 93.0
Log-score clustered HMM-1 12 86.3 92.0
Kmeans clustered HMM-1 12 88.9 92.0

Table 5.15: Recognition accuracy of contextual HMMs with one gesture history. The highest accu-
racy is highlighted.
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Classifier Rest Utensiling Bite Drink Other
(HMMs) (%) (%) (%) (%) (%)
HMM-S 86.8 86.9 83.7 96.1 52.6
Gender 84.5 86.1 85.7 96.3 51.3
Age 85.1 86.8 85.2 93.8 43.2
Hand 88.2 86.7 84.9 96.2 54.2
Ethnicity 84.6 87.5 84.7 91.5 40.4
BMI 83.9 86.0 84.9 93.8 51.8
Utensil 84.8 87.9 86.2 93.1 48.7
Food 86.5 85.7 85.2 92.9 46.1
Bite variational 86.0 82.2 91.2 95.5 47.4
Utensiling variational 85.3 92.1 82.1 96.1 46.2
Other variational 83.3 83.1 81.5 96.7 61.9
Log-score clustered 84.4 83.5 91.2 94.9 46.2
Kmeans clustered 86.2 83.3 90.9 95.0 51.1
Bite variational HMM-1 85.5 90.0 93.4 90.1 53.0
Log-score clustered HMM-1 79.5 88.0 92.5 87.9 55.0
Kmeans clustered HMM-1 87.4 89.6 92.3 89.8 51.9

Table 5.16: Recognition accuracy for five gestures. The highest accuracy of each gesture is high-
lighted.

Figure 5.6: Gestures that are failed to recognize with respect to the amount of contextual HMMs.
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improved by 1.2% and 6.7%, over HMM-S. In the contextual HMMs with one gesture history, the

highest intake gestures accuracy is 93.0% and improved by 1.5% while the all gestures accuracy is

88.9% and decreased by 0.6%, when compared with HMM-S with one gesture history. We also in-

vestigate the relation between the number of gestures that are failed to recognize and the amount of

contextual HMMs. Result shows that around 7,000 gestures that are consistently failed to recognize,

which illustrates the accuracy bound that contextual HMMs could achieve.
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Chapter 6

Conclusions

This dissertation is motivated by recent advances in body-worn sensors for automatic mon-

itoring of energy intake [35, 63, 102]. Our group has been investigating using a wrist-worn config-

uration of sensors to detect periods of eating [27] and track hand-to-mouth gestures [26, 97]. One

benefit of wrist-mounted sensors is that they can be embodied in a device that resembles a common

watch. This makes the monitoring inconspicuous which helps promote long-term daily use [107].

Wrist-worn wearable devices containing accelerometers and gyroscopes can be used to rec-

ognize eating related gestures [10, 26, 52, 107]. Gesture recognition has been widely studied in

the domain of sign language recognition [30, 130], motivating a similar approach for eating gesture

recognition [97]. However, the variability in motion of an eating gesture is much larger than the vari-

ability in motion of a sign language gesture. Eating gestures are a result of a physiological activity

(eating) and their execution varies depending on many variables including the subject, utensil, and

food or beverage consumed. This dissertation considers the problem of recognizing eating gesture

by tracking wrist motion. Eating gestures can have large variability in motion depending on the

subject, utensil, and type of food or beverage being consumed. However, it is challenging to build

a generic HMM to capture all the variability. This dissertation attempts to build different HMMs

of many variables, including demographics (gender, age, ethnicity), utensil being used, or types of

foods being eaten, to reduce variations in the wrist motions while eating.

In Chapter 2, a baseline model of a non-HMM method was described to only detects one

type of gesture (called bites but includes any food or liquid intake). The method was tested on 276

people eating a meal in a cafeteria and was evaluated on 24,088 bites. It achieved 75% sensitivity and
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89% positive predictive value. In Chapter 3, a segment-based method was described to label eating

gestures in a large data set. The set of gestures include taking a bite of food (bite), sipping a drink

of liquid (drink), manipulating food for preparation of intake (utensiling), and not moving (rest).

All other activities such as using a napkin or gesturing while talking are grouped into a non-eating

category (other). A total of 18 human raters labeled the same data used described above. Inter-rater

reliability was 92.5% demonstrating reasonable consistency of gesture definitions. In Chapter 4, a

work was described to explore the complexity of HMMs and the amount of training data needed

to adequately capture the motion variability across the large data set introduced in Chapter 3.

Results found that HMMs needed a complexity of 13 states and 5 Gaussians to reach a plateau in

accuracy, signifying that a minimum of 65 samples per gesture type are needed. Results also found

that 500 training samples per gesture type were needed to identify the point of diminishing returns

in recognition accuracy. Overall, it achieved 85.2% all gestures accuracy for HMM-S that models a

single gesture as a sequence of sub-gestures. It also achieved 89.5% all gestures accuracy for HMM-1,

where a sequence of one previous gesture was studied as context. In Chapter 5, a work was described

to investigate contextual variables to recognize gestures using top-down and bottom-up approaches.

Specifically, we consider if foreknowledge of the demographics (gender, age, hand used, ethnicity,

BMI), meal level variables (utensil used for eating, food consumed), language variables (variations

of bite, utensiling and other), and clustering based method can improve recognition accuracy. We

investigated this hypothesis by building HMMs trained for each of these contextual variables. Results

show that the highest accuracy of all gestures and intake gestures in contextual HMMs is 86.4% and

91.7%, improved by 1.2% and 6.7% over HMM-S, respectively. We also investigate the contextual

variables along with one gesture history. It achieved all gestures accuracy up to 88.9% and intake

gestures accuracy up to 93.0%.

6.1 Future Work

Future work includes automatically classifying and segmenting eating gestures from a con-

tinuous wrist motion signal in real-time; estimating the intake calories given the segmented gestures;

publishing data set to provide other researchers the opportunity to apply their algorithms; collect-

ing free-living data from individuals over a longer duration (e.g., a week or more) and in multiple

locations. This section mainly discusses a tentative method for automatically detecting bite using a
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HMM.

6.1.1 Eating and non-eating labels

The first to determine is the start and end time index of each meal, where bites are only

detected during that time range. Start index is defined as 10 s prior the first bite while end index

is defined as 10 s after the last bite. A sliding window with a step of 1 index is moving and a ±1

s window centered at each time index is created, where the type of eating activity is determined:

eating or non-eating. If the ground truth of gesture type within the window is bite and its duration

is more than 70%, it is determined as eating; otherwise it is determined as non-eating. Observables

in the ±1 s window are computed using the same method in Chapter 4.2.3.1.

6.1.2 Training and Testing

Two HMMs are built for eating and non-eating, each with 13 states and 5 Gaussians. We use

an architecture of left-to-right with skip and forward-backward algorithm is used to train the models.

During testing, observables of each ±1 s window are passed into HMMs. Each HMM computes

the likelihood of this particular observation sequence, indicating how well a model matches the

observables. Each unknown activity obtains probability scores from each of the 2 HMMs. Therefore,

it is expected that the ratio of eating to non-eating will be high for cases where eating happens within

the window, otherwise the ratio will be low. Figure 6.1 shows an example for the ratio of the log

score of eating to the log score of non-eating, where a high score indicates high probability of eating

activity. It is evident that the peak of ratio appears when the ground truth of “bite” takes place.

This demonstrates the potential ability of HMM for eating detection in real-time.
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Figure 6.1: Ratio of log score of bite to log score of non-bite. High score indicates high probability
of eating activity. Red box indicates groud truth of gesture bite.
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Appendix A Instructions of using HMM toolbox

We use the MATLAB toolbox developed by Kervin Murphy and his group to build HMM

[81]. In this appendix, we introduce the instructions to build a continuous HMM.

A.1 Notation

Q indicates the number of states, O indicates the dimension of observables, M indicates the

number of Gaussians, T indicates time duration and nex indicates the number of input sequences.

Prior is the prior probability of a HMM, transmat is the state transition matrix. Since continuous

HMM is considered here, the emission probability is represented by the µ, Σ and mixmat of the

observables.

The prior, transmat,µ, Σ and mixmat are illustrated in Equation 1.

prior(i) = P (Q(1) = i)

transmat(i, j) = P (Q(t+ 1) = j|Q(t) = i)

µ(:, j, k) = E[Y (t)|Q(t) = j,M(t) = k]

Sigma(:, :, j, k) = Cov[Y (t)|Q(t) = j,M(t) = k]

mixmat(j, k) = P (M(t) = k|Q(t) = j)

(1)

If there is only 1 Gaussian, then there is no mixmat matrix.

A.2 Data preparation

First, each input sequence should be the observables with O× T . Second, to make a batch

of data containing multiple input sequences, a cell data structure in MATLAB can be use, with the

size nex, where the length of each input sequence is variable, and notated as data. Besides, a matrix

format of data notated as data mtr is also prepared for later use, with dimension O × Ttot, Ttot is

the total length of the batched input observables.

A.3 Initialization

In this toolkit, EM algorithm is used to optimize the paramaters in HMM, which only finds

a local optimal, thus it is important to choose a good initialization. What we did is to initialize the
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µ and Σ of the observables by the estimation from K-means clustering.

cov_type = ’diag’;

init_method = ’kmeans’;

[mu0, Sigma0] = mixgauss_init(Q*M, data_mtr, cov_type, init_method);

mu0 = reshape(mu0, [O Q M]);

Sigma0 = reshape(Sigma0, [O O Q M]);

mixmat0 = mk_stochastic(rand(Q,M));

For the simplicity, covariance matrix is constrained to be diagonal, as illustrated as “cov type” in

the snippet above.

A.4 HMM training

EM is used to optimize the parameters of HMM:

[LL, prior1, transmat1, mu1, Sigma1, mixmat1] = ...

mhmm_em(data, prior0, transmat0, mu0, Sigma0, mixmat0, ’max_iter’, 2);

where prior0, transmat0, mu0, Sigma0, mixmat0 are the initialized value and prior1, transmat1,

mu1, Sigma1, mixmat1 are the values after training, ‘max iter’ is the number of iterations EM run

on the training data and LL is the score indicating how well the input sequences match the trained

models.

A.5 Evaluating observable sequence on trained models

In our work, multiple HMMs were built for gestures within different contextual groups.

During testing, each observable sequence is passed into these HMMs and the log scores are calculated

indicating how well the input matches the model. Gesture type of the input is determined by the

model with max log score. For example, 5 HMMs were built for rest, utensiling, bite, drink and

other, then five log scores are calculated as:

rest = mhmm_logprob(data, rest_prior, rest_transmat, rest_mu, rest_sigma, rest_mixmat);

uten = mhmm_logprob(data, uten_prior, uten_transmat, uten_mu, uten_sigma, uten_mixmat);

bite = mhmm_logprob(data, bite_prior, bite_transmat, bite_mu, bite_sigma, bite_mixmat);

drink = mhmm_logprob(data, drink_prior, drink_transmat, drink_mu, drink_sigma, drink_mixmat);
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other = mhmm_logprob(data, other_prior, other_transmat, other_mu, other_sigma, other_mixmat);

where prior, transmat, mu, sigma and mixmat are the trained parameters in each HMM. Model with

the max score determines gesture type of the test sequence.

A.6 Computing the most probable sequence

Viterbi algorithm is used to find the optimal states of the observable sequence, given the

model.

obslik = mixgauss_prob(data, mu, Sigma, mixmat);

[pred_state] = viterbi_path(prior, transmat, obslik);

where mu, Sigma and mixmat are the trained parameters.
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