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Abstract

This thesis considers the problem of learning the variability in appearance of machine parts
for automated inspection during appliance manufacturing. Product quality is of great importance
to appliance manufacturers. To ensure quality standards are met, manufacturers hire inspectors,
whose role is to perform a manual visual inspection of each product that comes down the assembly
line. If the inspector finds a defect on a given product (e.g. a missing bolt, a loose connector, or
an incorrect label), that product is flagged for repair. This traditional system works well in general;
however, it has two main drawbacks. First, the cost of labor to hire inspectors is significant. Second,
over the course of a given day, the performance of human inspectors tends to decrease.

In recent decades, computer vision systems have been developed to augment or in some
cases completely automate the inspection process. These systems work by “learning” which part
appearances are acceptable and which are not through a process called training. For most inspection
problems, the training process involves taking thousands (usually on the order of 10° or 10°) of
images of the part to be inspected and manually labeling each of those images as “acceptable”
or “unacceptable.” Once labeled, the dataset is run through a classification algorithm, which uses
the labels to produce a reduced set of acceptable images that span the entire range of the part’s
acceptable appearance. Likewise, a reduced set of unacceptable images that spans the entire range
of the part’s unacceptable appearance is also produced. Thus, the variability in part appearance is
learned via labeling and classification.

The process of manually labeling the large image datasets needed to train an inspection
system in this manner is tedious and burdensome, often consuming tens to hundreds of worker-
hours for a single inspection problem. Thus, this thesis proposes a generic method to automatically
learn the appearance variability of any part, eliminating the need to manually label large datasets

for each part.
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Chapter 1

Introduction

This thesis considers the problem of learning the variability in appearance of machine parts
for automated inspection during appliance manufacturing. In the context of this thesis, machine
parts refer to metal or plastic pieces used for the assembly of home appliances. Examples of machine
parts include hose clamps, fasteners (such as screws, bolts, and ties), and electrical connectors.
Examples of home appliances include refrigerators, ovens, stove tops, washing machines, and dryers.
Appliance manufacturing is the process of commercially building home appliances in large scale (at
least several hundred machines per day). This process typically involves tens to hundreds of workers
assembling these units on an assembly line in a manufacturing plant. Product quality is of great
importance to appliance manufacturers. Thus, many of these manufacturers implement inspection
protocols to ensure their products are not defective. An inspection is the process of looking at a
given part (like a hose clamp) and ensuring that it is installed properly (fully seated on the hose).

Traditionally, inspections are performed manually by humans, called inspectors. The inspec-
tor’s role is to perform a manual visual inspection of each product that comes down the assembly
line. If the inspector finds a defect on a given product (e.g. a missing bolt, a loose connector, or
an incorrect label), that product is flagged for repair so that the issue(s) can be fixed before the
product is shipped to a customer. This traditional system works well in general; however, it has two
main drawbacks. First, the cost of labor to hire inspectors is significant. Second, during a given

day, the performance of human inspectors tends to decrease over time due to vigilance decrement!

1In human factors psychology, vigilance decrement is the decline in human performance that occurs after several
hours of repeatedly performing the same task.
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In recent decades, computer vision systems have been developed to augment or in some cases
completely automate the inspection process. The basic idea behind these systems is to compare an
image of a part of a product coming down the assembly line, called a live image, to an image of the
properly installed part, called an inspection template, in real-time. If the live image matches the
template sufficiently well, the product passes the inspection; otherwise, it fails the inspection and is
marked for repair. For a given inspection, the template image is determined through a process called
“training.” In the simplest case, the training process is straightforward as the template is simply
set to an image of a properly installed part. For each product that comes down the assembly line,
it either sufficiently matches this template, in which case it passes, or it does not, in which case it
fails. An example of this type of inspection is a fill-level inspection for soft drink bottles (see Figure
1.1). As in the case of the fill-level inspection, the single template technique only works when the
properly installed part has a unique appearance. In the case of the bottles, a properly-filled bottle
looks the same every time, thus the variability in the appearance of the bottle is sufficiently modeled

by a single template.

Inspection Bottle 1 Bottle 2 Bottle 3 Bottle 4
template

pass fail pass fail
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Figure 1.1: Fill-level inspection on soft drink bottles. Bottles 1 and 3 pass the inspection while
bottles 2 and 4 fail. Notice how a properly-filled bottle has a unique appearance.

The appearance of a properly installed part is not always unique. For example, consider a
hand-written zip code recognizer. For each live image, the system knows that the image represents
one of the 10 digits 0-9. Given that there are now 10 options, a single inspection template is no
longer sufficient. There must be at least one template for each digit. Furthermore, since the digits
are hand-written, not all live images of the same digit will have the same appearance (see Figure

1.2). That is, the part no longer has a unique appearance. In this case, the system is trained (i.e.



the templates are determined) with a technique called supervised learning. In this approach, several
examples of hand-written digits are labeled by humans as “0,” “1,” “2,” and so on. To conduct a
live inspection, then, each unknown digit can be compared against a set of templates for each class
(each digit) to find the best match. In this way, the appearance variability is modeled by a set of

templates for each class.
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Figure 1.2: Variability in appearance of hand-written digits. A visual inspection system looking for
these digits knows that there are only 10 options; however, no two hand-written figures representing
the same digit look the same.

In the context of industrial manufacturing inspections, most inspection problems are even
more complex than the two cases discussed above. In this context, the variability in part appearance
tends to be high. Many factors can cause variability in appearance, such as rotations of the part,
partial occlusions of the part, or positioning of the part. An example of this type of part is shown
in Figure 1.3, which displays 35 different appearances of the same electrical connector within 35
different washing machines. In the images, the connector (white piece) is clipped into its mount
(blue piece). In this case, the cause of high appearance variability is the wire (dark green line) that
runs in between the connector and the camera lens. In no two images does the wire appear the exact
same way.

In general, for an inspection problem with high variability in appearance, the inspection is
conducted by comparing each live image to a set of acceptable templates (templates that demonstrate
an acceptable appearance) and a set of unacceptable templates (templates that demonstrate an

unacceptable appearance, or defect). If the live image matches one of the acceptable templates

3



Figure 1.3: An electrical connector that demonstrates high appearance variability due to partial
occlusion by a wire. Notice how, though the part has many appearances, none of these images are
defects (the connector is fully connected). The numbers in each image are simply identifiers and are
irrelevant in this section.

best, the product passes; if it matches one of the unacceptable templates best, it fails. In this
way, the variability is modeled by two sets of templates—one for acceptable appearances and one for
unacceptable appearances. The training process for this type of inspection must determine the degree
of variability in part appearance. That is, the range of acceptable (and, likewise, unacceptable)
appearances is unknown and must be learned. Furthermore, unlike the hand-written digit example,
the number of inspection templates required to sufficiently capture a part’s range of variability (the
total number of classes) is also unknown, and thus must be learned as well.

Traditionally, part variability is “learned” manually by human analysis and labeling. For
each inspection problem, experts on that specific part determine what the range of variability is
(e.g. this part is acceptable if it is positioned at 10, 30, or 50 degrees and it is unacceptable if it
is positioned at 20 or 40 degrees). Once the range is determined, each image in a large dataset,
perhaps on the order of 10° or 10° images, must be labeled as one of the possible appearances. The
labeled images are then run through a classifier, and the templates for each possible appearance
are produced. There are three main drawbacks to this approach. First, the range of variability is
left to be determined by humans, thus it is prone to error. Humans could easily miss a possible

appearance. Second, the process of manually labeling the large image datasets needed to train an



inspection system in this manner is tedious and burdensome, often consuming tens to hundreds of
worker-hours for a single inspection problem. Finally, this method is problem-specific, and thus
must be repeated for each new inspection problem.

To overcome the shortcomings of manually learning part variability, this thesis proposes a
method to learn part variability automatically. This method not only eliminates the need to label
large datasets, but it also works for any inspection problem, eliminating the need for domain-specific

knowledge on a part to be inspected during the training phase.

1.1 Background

1.1.1 Template Matching

A common method visual inspection systems use to compare images, such as a template
image to a live image, is a process called template matching. Though there are several, the specific
template matching algorithm used in this thesis is known as the normalized cross correlation (NCC).
The NCC is a pixel-by-pixel comparison algorithm that determines the best match location of a
template image inside a search window image, which is generally larger than the template. In
addition to reporting a location, the NCC also reports an associated match score, which ranges
from 0-1. A lower score indicates a worse match, whereas a higher score indicates a better match.
Another byproduct of the NCC is the matched spatial filter (MSF) image, which depicts the score
of the template at all possible locations across the search window. In the MSF, brighter spots
correspond to locations that match better and darker spots correspond to locations that match
worse. The brightest point on the MSF is the location that is returned by the NCC as the best
match location.

The concept of the NCC is often best understood through an example. The following
example will attempt to find the letter ‘e’ in an image of text. The inspection template and inspection
search window for this example can be seen in Figure 1.4.

The MSF image for this match is shown in Figure 1.5. The highest scoring location across
entire window is (282, 35); that is, column 282 and row 35, corresponding to the ‘e’ in “are” on the
second line. The score is a perfect 1.0 since the template was actually cut directly from the search
window in this case.

The equation for the value of the NCC at location (z,y) is given by



Preparation for parenthood is not just a matter of reading books and
decorating the nursery. Here are some tests for expectant Earents to
take to prepare themselves for the real-life experience of being a
mother or father,

Figure 1.4: The inspection template (left, enlarged) and the inspection search window (right). The
NCC looks for the temple inside the window. Clearly, several ‘e’s exist in the window, so the NCC
will find the ‘e’ that most closely matches the one in the template.

Figure 1.5: The MSF image for the NCC example. Notice how bright spots occur at the locations
corresponding to the center of all letters that resemble an ‘e’ in the search window.

Y (T t) x I+ 5,y +1)
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where T is the template image, I is the inspection search window image, a is half the width

NCC(z,y) =

of the template (rounded down), and b is half the height of the template (rounded down). The term
in the denominator is a normalizing term that ensures all scores range from 0-1. To compute the

entire NCC, this equation must be computed at each location in the search window.

1.1.2 Gradient Images

When comparing two images of machine parts, it is common to use the gradient images
of the inspection template and inspection window as opposed to the originals. This is because the
gradient images are resistant to changes in lighting and ignore color differences. In addition, machine
parts usually have strong gradients as they are made by humans.

The gradient image is simply an image in which edge pixels (pixels that are different in
intensity to their neighbors) are brighter than non-edge pixels (pixels that are similar in intensity
to their neighbors). The gradient algorithm used in this thesis is known as the Sobel edge detector.

The Sobel edge detector works by finding the horizontal and vertical gradients independently,
then combining the results to produce a final edge image. The horizontal edge image, G, is found
by convolving the input image with the horizontal gradient kernel (matrix) and the vertical edge

image, G, is found by convolving the input image with the vertical gradient kernel. The horizontal



and vertical edge images are given by

-1 0 +1
Ge=|-2 0 42| =1
-1 0 +1
-1 -2 -1

Gy=10 0 o0]|=1
+1 42 +1

where I is the input image and the * operator denotes convolution. The convolution oper-

ation is given by

a b
kxI(x,y) = Z Z E(s,t)I(x — s,y —1)

s=—at=—b
where k is the kernel, I is the input image, x is the row in the input image, y is the column
in the input image, a is half the width of the kernel (rounded down), and b is half the height of the
kernel (rounded down). This equation must be computed at each (z,y) location in the input image.
Once the horizontal and vertical gradients are found, the final gradient image is computed

by taking the square root of the sum of the squares of each intermediate result; that is,

G=,/G2+@2

An example of the Sobel edge detector being applied to an image is shown in Figure 1.6.

Figure 1.6: An input image of a hawk (left) and its Sobel gradient image (right). Notice how edges
appear as brighter than non-edges.



1.1.3 Inspection Process

This section outlines how the inspection process is intended to work while running live on
an assembly line. The inspection process occurs in two phases. The first phase determines whether
or not a product is in front of the camera. If the first phase determines that a product is present,
the second phase performs the actual inspection.

The first phase is called the trigger phase as it employs a process called trigger matching
to determine whether or not a product is present. The idea behind this process is to look for a
trigger, a pattern that is guaranteed to look the same from product to product and to never be
occluded, inside a trigger search window, an area within the camera frame in which the trigger may
appear. Before trigger matching can execute, an example image of the trigger, called the trigger
template, must be stored. During execution, for each live frame that is grabbed from the camera,
the trigger template is matched to the trigger window using the NCC. If the match score is below
some threshold, the trigger is considered not found, and it is assumed that no product is present.
On the other hand, if the match score is above the threshold, the trigger is considered found, and it

is assumed that a product is present. The trigger matching process is illustrated in Figure 1.7.

Trigger match
location
(score = 0.92)

Figure 1.7: Ilustration of the trigger phase on a washing machine. The trigger template is shown
enlarged on the left, while the trigger matching process itself is shown on the right. In this case, the
trigger threshold was set to 0.72, so this frame’s score of 0.92 is high enough to assume there is a
machine present; clearly, this assumption is correct in this case.



If a trigger is found during the trigger phase, the second phase, called the inspection phase,
is executed. The inspection phase is similar to the trigger phase in that it looks for the part to
be inspected inside an inspection window, an area in which the part is expected to appear. The
inspection window is placed at a pre-determined, constant two-dimensional offset from the trigger
match location. The horizontal offset is denoted as dx, and the vertical offset is denoted as dy. Before
the inspection can execute, an example of the properly installed part, the inspection template, must
be stored. During execution, the inspection template is matched against the inspection window
using the NCC. The resulting location from this NCC operation is called the part match location,
and the area to be inspected is defined as the area with top-left corner at the part match location
and size equivalent to that of the inspection template. Unlike the trigger phase, the resulting score
from this NCC operation is irrelevant and not used. To score the part, the NCC is taken between
the gradient image of inspection template and the gradient image of the area to be inspected. The
score resulting from this second NCC operation is called the match score. If the match score is above
some threshold, the part is assumed to be correctly installed, and the product passes the inspection;

otherwise, it fails. The inspection phase is illustrated in Figure 1.8.

Part match

= location
L | (score=0.95)
Inspection | .
window S

Figure 1.8: Illustration of the inspection phase on a washing machine. The inspection template
is shown enlarged on the left, while the inspection itself is shown on the right. In this case, the
inspection threshold was set to 0.85, so this machine’s score of 0.95 is high enough to assume the
part is properly installed.



During the inspection phase, the match location and match score are not computed with
a single NCC. This is because each of the two NCC operations provide its own advantages in
determining its respective result. For locating the part, it was determined that taking the NCC
between the original window and original template is more effective than taking the NCC between
the gradient image of the window and the gradient image of the template, especially when the live
image looks very different from the template (see Figure 1.9). For scoring the part, it was determined
that taking the NCC on the gradient images is more useful than taking the NCC on the original
images. This is for two reasons. First, scores resulting from the NCC operation on the original images
have a condensed range. That is, most live images match the template extremely well with scores
ranging from 0.98 for the worst match to 1.0 for the best match. The NCC operation on the gradient
images, on the other hand, provides a wider range of scores, typically in the range of 0.37-0.98. The
wider score range allows for more discriminability between machines. Second, machine parts tend
to have well-defined edges. Moreover, the most important attributes of a properly installed part are
its shape (is it the right part?) and its position (is it in the right place?). Both of these attributes
are apparent in the gradient image. The less important attributes include surface texture and color.
Neither of these attributes are apparent in the gradient image. Therefore, scoring the gradient
images highlights the attributes that are important to the inspection while subduing those that are

less important.

Original images Gradient images
match location match location

Inspection template

Figure 1.9: Using the original images vs. the gradient images for locating the part. The inspection
template is shown on the left. The middle image is the inspection window with the match location
(overlaid as a rectangle) as determined by the NCC between the original images. The image on the
right is the same inspection window with the match location as determined by the NCC between the
gradient images. The original, rather than the gradient, window is shown here for ease of comparison
with the other window. Clearly, the NCC between the original images is more effective at locating
the part.
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1.1.4 Formalizing Appearance Variability

This section covers the varying degrees of range in the variability of machine part appear-
ance. Several concepts from the opening discussion are revisited and formalized.

The basic idea behind automatic visual inspection systems is to compare an image of a part
of a product on the assembly line, called a live image, to an example image of the properly installed
part, called an inspection template. If the live image matches the template sufficiently well, the
product is considered acceptable; otherwise, the product is considered unacceptable and is flagged
for repair. This process is described in detail in Section 1.1.3.

The situation above describes a single-class inspection problem. That is, only one template
is needed to conduct the inspection. This type of inspection is sufficient when there is a large
difference in appearance before and after the part is installed. A large bolt is an example of this
type of problem. Before installation, there is a small, dark pilot hole. After installation, there is a
large, metal bolt head. The difference between these two appearances is sufficiently large to warrant
a single-class inspection. See Figure 1.10 for an illustration of the concept of a single-class inspection

problem.

_ look very different

>

Appearance when part not installed Appearance when part installed

compare

<4m) - 0.95 match

Training template Product to be inspected Match > 0.80 = pass

Figure 1.10: Single-class inspection problem. Notice how there is a large difference in appearance
before and after the part is installed. In this case, the product passes the inspection as the live
image match score (0.95) is above the pre-determined threshold (0.80).

11



When the difference in appearance before and after installation is small (or when the prop-
erly installed part has two appearances that are similar to each other), the inspection is classified
as a dual-class inspection problem. In this case, two templates are used. One is an example of the
product before the part’s installation, and the other is an example of the part after proper instal-
lation. The live image is compared to both templates. If the properly installed template matches
best, the product is considered acceptable. On the other hand, if the uninstalled template matches
best, the product is considered unacceptable. See Figure 1.11 for an illustration of the concept of a

dual-class inspection problem.

. _ look similar N

Appearance when part not installed Appearance when part installed

\ =»  0.93 match

compare .
good . / é 0.85 match

Product to
Pe inspectEd _

Figure 1.11: Dual-class inspection problem. Notice how there is a small difference in appearance
before and after the part is installed. In this case, the product fails the inspection as the live image
matches the uninstalled template better than the installed template.

bad

Training templates

In the case of a single-class or dual-class inspection problem, there is no need to label
thousands of training images. The system can be trained by simply being provided with either
one or two inspection templates, depending on the class. In practical application to appliance
manufacturing problems, however, few inspection problems fit into one of these two classes. The
appearance of most parts has some degree of variability that cannot be sufficiently captured with
one or two templates. Even relatively simple parts can have a wide range of variability. Variability
is caused by several factors including but not limited to: rotation of the part, partial occlusion of
the part, and, especially for metal parts, optic specularities on the part. Inspection problems that

exhibit variability in appearance are classified as multi-class inspection problems.
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In multi-class problems, several, sometimes hundreds of templates are required to perform an
inspection. Multi-class templates are divided into two sets—acceptable templates and unacceptable
templates. Acceptable templates are those that capture the range of acceptable part appearances.
The acceptable template set is composed of N acceptable templates. Unacceptable templates are
those that capture the range of unacceptable part appearances (defects). The unacceptable template
set is composed of M unacceptable templates. To perform an inspection, the inspection system
compares the live image to all N + M templates. If the live image is most similar to an acceptable
template, the product is considered acceptable. On the other hand, if the live image is most similar to
an unacceptable temple, the product is considered unacceptable. See Figure 1.12 for an illustration

of the concept of a multi-class inspection problem.

Training . . .

templates

Range of appearances when part installed

. \ =3  0.94 match
compare
gOOd . H é 0.78 match

good

/ Product to
=  0.86 match

bad Be inspected

OK

Figure 1.12: Multi-class inspection problem. Notice how this part exhibits multiple appearances. In
this case, the product passes the inspection as the live image matches an acceptable template best.

To illustrate the concept of a multi-class problem, consider the electrical connector shown
in Figure 1.3. The wire leading to this particular connector tends to run in between the inspection
camera and the connector itself. In this case, the inspection should not fail simply because there
is a wire running across the view of the connector; rather, there should be a template capturing
that appearance and classifying it as acceptable. In fact, there should be an acceptable template for
when the wire runs across the upper part of the connector, the middle part of the connector, the

bottom part of the connector as well as when the wire crosses at 10 degrees, 20 degrees, 30 degrees,
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etc. Likewise, there should be unacceptable templates for when the connector is loose on one side,
loose on the other side, loose on both sides, not present, etc.

The large number of templates required by multi-class inspection problems is often generated
by a classification algorithm, such as the k-nearest neighbors (k-NN) algorithm, which classifies each
image based on its assigned label. Through the classification process, the original dataset on the
order of hundreds of thousands or millions of images is reduced to tens or hundreds of images, called
classes, each labeled as either acceptable or unacceptable. Together, all class images span the entire
range of the part’s appearance that was captured in the training data. After classification, each
class image can be used as an inspection template by the visual inspection system to conduct live
product inspections. The lableing and classification process is considered to be a supervised learning

method. That is, the machine training process is aided by human interaction.

1.2 Related Work

An early example of an automatic visual inspection system was developed by Perkins in 1983
[2]. In 1986, Tsatsoulis and Fu developed a similar system that improved on Perkins’ system by
inspecting complex assemblies step by step rather than all at once [3]. This project also produced the
Simple Assembly Inspection Language (SAIL), which is a primitive C-based programming language
used to program inspection algorithms.

Since the creation of these early inspection systems, much progress has been made in this
domain. Overall progress is well-documented by literature surveys [8, 9]. In addition, several specific
proposals have been made to improve the base technology that supports inspection systems. Aksoy et
al. proposed a method that eliminates the need for inspection templates and the NCC computation
[7]. This method works best for parts with well-defined edges that intersect at right angles. Killing
et al. proposed a fuzzy neural network as opposed to the classic simple threshold-based system
[6]. The team found that the fuzzy neural network outperformed the simple threshold system when
a live image was not similar to any of the training images. Choi et al. proposed a method to
automatically determine an optimal inspection template for a given inspection problem [4]. Fouda
and Ragab proposed a fast-NCC algorithm that computes the NCC score more efficiently than the
traditional algorithm by utilizing a pyramid data structure [5].

Many industries rely on visual inspection systems. The semiconductor industry relies on
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automatic inspection technology to verify the proper construction of the small, complex assemblies
common to that industry [16]. The semiconductor industry also leverages systems that can automat-
ically detect the quality of solder joints [13]. The automotive industry relies on inspection systems to
verify the proper assembly of fasteners [14] and weld joints [17]. Though not manufacturing based,
the railroad industry uses automatic inspection technology to detect cracks in the rail surface [10]
and missing fasteners [11, 12].

The most relevant work to this thesis is a patent by Cognex Corporation [15]. In this patent,
the authors describe a semi-supervised method for determining the variability in part appearance.

Again, one of the main advantages of the method explored in this thesis is that it is generic,
and thus can be applied to any part. All of the works here are tailored to a specific part (or family

of parts) and would have to be reprogrammed to work on new parts.

1.3 Novelty

As opposed to the supervised method discussed above in Section 1.1.4, this thesis proposes
the use of an unsupervised learning approach, which does not require human intervention, to learn
the variability in machine part appearance. The method takes the unlabeled training image dataset
as input and produces a set of inspection templates, each template representing a cluster of similar-
looking images in the original dataset as determined by the NCC score. In addition, this method
(henceforth, the clustering algorithm) is generic and can be applied to any part.

Since no labels are required by this algorithm, the produced template set is not automatically
separated into an acceptable set and an unacceptable set. Thus, once the templates are produced,
each must be labeled by a human as acceptable or unacceptable in order to be usable by an inspection
system. Though the labeling task is not completely eliminated in this sense, the number of images
that must be labeled is reduced by several orders of magnitude (tens or hundreds as opposed to
hundreds of thousands or millions).

Specifically, the goal of this thesis is to evaluate the following four conjectures:

1. Given a large set of unlabeled images of a machine part, is it possible to automatically cluster

them into groups that represent the range of variability of appearance?

2. How does the number of clusters vary depending on the total variability of appearance?
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3. Can the clustering algorithm separate defects into one or more clusters that are distinct from

the clusters modeling the range of variability of appearance?

4. Can the range of variability of appearance be characterized as Gaussian? Where do defects lie

within the distribution?
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Chapter 2

Methods

2.1 SEHA Plant

The data used for this thesis was gathered from the Samsung Electronics Home Appliance
America (SEHA) plant in Newberry, SC (Figure 2.1). This 450,000 square foot plant, which employs
over 700 people, began production in January 2018 [18]. The plant currently produces front-load
and top-load washing machines. The plant’s output is approximately 1,500 washing machines per

day.

Figure 2.1: Aerial view of the SEHA plant in Newberry, SC [18]. This is the data collection site for
all data used in this thesis.
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The SEHA plant has two main assembly lines, one for top-load washing machines and
another for front-load washing machines. All of the data collected for this thesis was collected on
the front-load line (see Figure 2.2). In reference to Figure 2.2, washing machines move down the
line from right to left. On the far right side of this view, the tub is placed into the frame. As the
machine proceeds down the line, workers install components that further connect the tub to the
frame. For example, many hoses are installed that lead from components on the frame to the tub.
In the center of the view in the figure, inspectors perform an 11-point inspection that verifies the
proper assembly of these connecting components. As the machine moves into the left portion of the
view, final inspections and tests are performed before the machine comes off the line and is ready to

ship.

Figure 2.2: Overhead panoramic view of front-load washing machine assembly line at SEHA plant.

Before the data collection process began, the assembly line was studied and a handful of
candidate collection (camera) locations were identified. These candidate locations were selected
based on the number of inspectable parts visible from the position and the quality of the view of
those parts. The quality of the view of a given part was determined primarily by the amount of
occlusion and the view angle. Clearly, less occlusion was preferred to more. The preferred view
angle was not the same for every part. For example, the ideal view angle for an electrical connector
would be a head-on view, whereas the ideal view angle for a bolt would be a side view. These
two views most facilitate the visual inspection of each respective part. It would be difficult (if not
impossible), for example, to inspect a bolt from a head-on view. Each candidate location was fixed
with a camera and recorded for 30 minutes. Each video was analyzed and and ranked based on the

number of components that reasonably met the aforementioned occlusion and view criteria. The
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highest ranking location was chosen as the final data collection location for this thesis (henceforth,
the collection site).

The collection site, pictured in Figure 2.3, immediately follows a late-stage manual inspec-
tion station. The washing machine is nearly completely built at this point; in fact, final inspections
begin only a couple of stations ahead. The collection camera was mounted to a metal crossbar that
was installed to the tops of the safety walls (yellow bars) on either side of the assembly line. This
positioning allowed the camera to capture the washing machines at a straight-on angle with the
washing machine passing through the middle of the camera frame (as opposed to the angled view
provided by mounting the camera on top of one of the safety walls, for example); see Figure 2.3.
The camera used for data collection is the Basler acA2500-14gc [19], which is an industrial area scan
camera built for computer vision applications. This camera records a 2590x1942 pixel frame at a

maximum of 14 frames per second.

< mart Inspection ]

Smi:M,i,. Host PO

Figure 2.3: Camera installation at the collection site (left) and an example camera frame captured
from this position (right). When the assembly line is in motion, the washing machines enter the
frame from the bottom, move upwards, and exit the frame at the top.

2.2 Inspection Problems

The manual visual inspection performed immediately before the collection site is an 11-point
inspection. From these 11 inspection problems, three were chosen for analysis in this thesis; that is,
images of these problems will be run through the clustering algorithm, which is described in detail

in Section 2.5. In terms of the goals of this thesis, the resulting clusters from these three problems
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will aid in the evaluation of the first conjecture presented in Section 1.3. These three problems are

highlighted in the camera frame shown in Figure 2.4.

Water valve
connector

Figure 2.4: The three inspection problems chosen for analysis in this thesis.

2.2.1 Water Valve Connector

The first problem is an electrical connector that powers a water valve (Figure 2.5). To be
properly installed, the connector must be fully inserted so that it is flush against the mount (green
piece). This problem was chosen due to its low appearance variability. The goal of analyzing this
part is to determine whether the proposed method can detect a defect, thus aiding in the evaluation
of the third conjecture. Given this problem’s low appearance variability, the method should be able

to filter out any defects in the dataset and assign them to their own clusters.

2.2.2 Hose Clamp

The second problem is a hose clamp (see Figure 2.6). To be properly installed, the hose
clamp but be secure and fully seated on the hose. This problem was chosen due to its obvious

natural appearance variability. That is, this problem exhibits several acceptable appearances due to
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Figure 2.5: Collage of water valve connectors from 28 washing machines. Notice how the connector
has low appearance variability. The numbers in each image are simply identifiers and are irrelevant
in this section.

the angle of the clamp, which is unrelated to whether the product is defective or not. The goal of
analyzing this problem is to determine how many clusters are needed to model the natural variability

in this part.

Figure 2.6: Collage of hose clamps from 32 washing machines. Notice how the angle of the clamp
varies from machine to machine. The numbers in each image are simply identifiers and are irrelevant
in this section.
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2.2.3 Pressure Sensor

The third problem is a pressure sensor (see Figure 2.7), which is housed inside a white
connector. To be properly installed, both prongs of the connector must be fully snapped into the
mount (blue piece). This problem was chosen due to its high natural appearance variability. In
this case, the variability is caused by the wire passing in front of the connector (dark green line).
Similar to the hose clamp, this wire does not make the part defective, it simply adds to the number
of possible appearances of the part. Compared to the hose clamp, the pressure sensor has much
higher appearance variability'. In the case of the clamp, the clamp is free to rotate about a single
axis. In the case of the pressure sensor, since the wire is unconstrained, it is able to rotate about
any axis, bend at any point, and cross in front of the connector at any angle. The goal of analyzing
this part is to determine whether the proposed method is capable of modeling such high appearance

variability.

Figure 2.7: Collage of pressure sensors from 35 washing machines. Notice how the sensor has high
appearance variability due to the wire passing in front of it. The numbers in each image are simply
identifiers and are irrelevant in this section.

1This statement is quantified in Section 2.6.
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2.3 Data Collection

2.3.1 Method

A data collection program?, S, was written to manage the camera and save data (see Ap-
pendix A). Rather than recording and saving continuous video, it was decided that still images of
each washing machine would be captured and stored. In order to programmatically determine when
a machine was in front of the camera, and thus when a picture should be taken, trigger matching
(see Section 1.1.3) was used.

For the data collection program, the chosen trigger was a corner of the washing machine
frame (see Figure 1.7). The trigger threshold used in this program was 0.72. For each frame grabbed
from the camera, the trigger template was matched to the trigger search window to determine
whether or not a machine was present. If the trigger was found in a given frame, that frame was
saved. It should be noted that, in this case, the trigger search window was sufficiently long enough
and the camera’s frame rate was sufficiently fast enough to capture multiple frames per washing
machine. In fact, about 10 frames were collected per machine with each subsequent frame showing

the washing machine slightly higher in the frame.

2.3.2 Collection Summary

Using the data collection program described in the previous section, data was collected at

the collection site for about three months. A summary of the collected data is shown in Table 2.1.

’ Dataset \ No. of Machines \ Start Date \ End Date \ Notes

Pilot 3,437 12/6/2018 | 12/10/2018 | First collection test.
Largest dataset. After collection,
it was determined that the cam-

Low Gain 19,634 /1172019 | 1/20/2019 | e too low (the images
were dark).
High Gain 3,378 2/11/2019 | 2/12/2019 | Adiusted gain and exposure time

to increase image brightness.
New washing machine model.
New Model 4,520 2/12/2019 | 2/21/2019 | Production slow (about 1 ma-
chine/10 minutes).

Table 2.1: Data collection summary.

2The author acknowledges and thanks Surya Sharma as the lead software developer for this data collection program.
The source code and a user manual are available at http://cecas.clemson.edu/~ahoover/samsung/.

23


http://cecas.clemson.edu/~ahoover/samsung/

2.3.3 Inspection Problem Cropping

Once images of washing machines were captured, the inspection windows of the the three
specific inspection problems of interest had to be cropped from these frames. To accomplish this
task, a cropping program, cropIW, was developed (see Appendix A).

For each frame captured from the given dataset on the given date, the program starts by
running a trigger match on the frame. The match returns the location of the trigger in the frame.
This location may or may not be the same for each frame as the washing machine does not always
appear in the same exact place. The inspection window is placed at a constant horizontal and
vertical offset from the trigger match location. This inspection window is the portion of the frame
that is cropped and saved. It is assumed that that component of interest is somewhere within this
window. The cropping process is identical to the first part of the inspection phase of the inspection

process (see Section 1.1.3). Figure 2.8 demonstrates the cropping process.

Inspection
window

Figure 2.8: An example of the cropping procedure on the hose clamp. The inspection window is
placed at a constant horizontal offset (dx) and constant vertical offset (dy) from the trigger match
location. The inspection window is cut and saved.

To test the clustering algorithm, the three inspection problems of interest were cropped
from the frames captured on December 6", which is part of the Pilot dataset, for a total of 1,052

windows per problem.
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2.4 Theory of Modeling Variability

This section describes the theory behind appearance variability and the assumptions made
therein. First, it is assumed that the distribution of the acceptable appearances of a given problem
(as determined by the NCC score of each window against an “average” appearance of the problem)
is roughly Gaussian. That is, most acceptable parts look similar to each other. This is represented
by the high point in the Gaussian curve. Second, it is assumed that the vast majority of parts are
not defects, thus the average appearance should be an acceptable appearance. Third, it is assumed
that unacceptable appearances (defects) appear as small blips far below the mean of the Gaussian
as defects should not match the average appearance well at all. These assumptions are displayed

graphically in Figure 2.9.

Theoretical Appearance Distribution
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Figure 2.9: Theoretical model of appearance variability. In this model, defects are less numerous
than acceptable appearances and score low against the average appearance.

Under these circumstances, defects like those highlighted in the figure should be easy to
detect. The more difficult problem is if any defects lie within the score range of acceptable parts,
which corresponds to roughly 0.55-0.80 in the figure. In this difficult case, the defects tend to blend
in with the acceptable appearances, and are thus much more difficult to filter out using the NCC
score against the average appearance. The clustering algorithm will test this theory to see whether

defects tend to lie far from or well within the acceptable appearance distribution.
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2.5 Clustering Algorithm

2.5.1 Overview

The goal of the clustering algorithm is to separate the set of input inspection windows into
multiple clusters based on appearance. That is, after execution, each cluster should contain windows
that look like each other. The basic idea behind the algorithm is to start by assuming each inspection
window belongs to a single default cluster. Each cluster, including the default, has a special window
called the seed, which represents the appearance of the cluster as a whole and is used to compare
the appearance of other windows against the appearance of the cluster. Once the default cluster is
created, the algorithm finds that cluster’s worst match, which is the window within the cluster that
has the least similar appearance to the seed. Next, a new cluster is created and seeded with the

worst match in the default cluster (see Figures 2.10-2.13).

cluster 1 (default)

Figure 2.10: First, the default cluster (cluster 1) is populated with all available inspection windows.
In this case, there are six total windows.
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cluster 1

Figure 2.11: Second, the seed of the default cluster is assigned. The seed is outlined in green. In
this case, the seed is set to window 1.

cluster 1

Figure 2.12: Third, the worst match is found. The worst match is outlined in red. In this case, the
worst match is window 54.



cluster 1

cluster 2 (new)

Figure 2.13: Fourth, a new cluster (cluster 2) is seeded with the worst match from the default cluster.

After seeding the new cluster, the algorithm then compares each non-seed window to the
seeds of the default cluster and the new cluster. Each window is assigned to the cluster whose seed

it matches best (see Figure 2.14).

cluster 1 cluster 2

Figure 2.14: After seeding the new cluster, the algorithm reassigns all non-seed windows. In this
case, both clusters end up with three members. Notice how similar-looking windows are members
of the same cluster.



After reassigning the windows, a variability score is computed for each cluster. A higher
variability score indicates higher appearance variability among the members of that cluster. The
worst match in the cluster with the higher score is used to seed a new cluster (see Figure 2.15),
the windows are reassigned, and the process repeats. This is the general idea behind the clustering

algorithm; the algorithm is explained in detail in the section below.

cluster 1 (var=0.032) cluster 2 (var=0.028)

cluster 3 (new)

Figure 2.15: In subsequent iterations, the algorithm computes an appearance variability score (var)
for each cluster. A new cluster is seeded with the worst match in the cluster with the highest
variability score. In this case, cluster 1 has the highest variability, so a new cluster (cluster 3) is
seeded with the worst match in cluster 1, window 84. After seeding, the windows will be reassigned
and the process will repeat.
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2.5.2 Formal Description

Before explaining the clustering algorithm in detail, the concept of a cluster must be for-
malized. A cluster is defined by the following attributes: its id, its seed, and its members. The id is
an integer that uniquely defines the identity of the cluster; no two clusters have the same id. The
seed is a special member of the cluster that represents the appearance of the entire cluster. Finally,
the members are the windows other than the seed that belong to the cluster. Each member has an
associated match location and score (discussed below).

Furthermore, when comparing appearances, this algorithm does not compare entire windows
to each other. Rather, the seed of each cluster has an associated inspection template that captures
the portion of the window that matters (similar to the inspection phase of the inspection process
described in Section 1.1.3). There are two main reasons for this strategy. First, for most parts,
it is not likely that the entire window contributes to whether the part is properly installed or not.
For example, when inspecting a connector, it is unnecessary to look at the entire connector and
the surrounding area. The only area that actually needs attention is the area where the end of the
connector meets its mount. The use of an inspection template allows the unimportant areas to be
ignored and not contribute to the overall NCC score. Second, the use of an inspection template
allows the area of interest to appear at any location within the window. A part may not always be
located at the exact same offset from the trigger, thus the position of the area of interest may shift
slightly from window to window. The use of an inspection template prevents these slight changes in
location from affecting the NCC score.

The clustering algorithm begins by loading the inspection windows of interest from file.
Each window is smoothed with a 7x7 Gaussian kernel to reduce noise. After smoothing, the gradient
images of each window are computed. Next, the default cluster, DC, which is assigned id 1, is created.
By convention, the seed of this cluster is set to the window with id 1. For DC, the inspection template
of the seed, ST, is manually cropped and saved before the algorithm executes. Once the seed is set,
the gradient image of ST is computed. Next, the cluster is “built.” The building process occurs as

follows: For each remaining inspection window, IW, the steps below are completed.

1. Match ST to IW. The location of this match is the location associated with IW in this cluster.

2. Crop an inspection template, IT, from IW whose top-left corner is the location of the seed

match and whose size is the same as ST.
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3. Compute the gradient image of IT.

4. Take the NCC of the gradient image of ST and the gradient image of IT. The score of this

match is the score associated with IW in this cluster.

The location of the part is determined by the original images while the score of the part is
determined by the gradient images for the same reasons laid out in Section 1.1.3. Once the default
cluster is built, it is added to the list of clusters (it is the only cluster in the list thus far).

After the default cluster is built, the algorithm enters an iterative stage that creates one

new cluster per iteration. During each iteration, the following steps are taken:

1. Compute the appearance variability score of each cluster, which is the standard deviation of

the member’s scores (not including the score of the seed with itself).

2. Find the cluster with the highest appearance variability, HC, and seed a new cluster, NC, with
the lowest scoring member in HC. ST in NC is set to the IT that was cropped for this IW during

the last (re)building stage.
3. Add NC to the cluster list.

4. Rebuild all clusters.

The rebuilding process is similar to the process of building the default cluster. During
rebuilding, each cluster starts with only one member—its seed. For each inspection window that
is not a seed, that window is matched against the ST of each cluster using the same location and
scoring schemes as the initial building phase. The window is then added as a member to the cluster
whose ST it matches best.

The iterative stage terminates when either the cluster with the maximum appearance vari-
ability falls below the maximum cluster variability threshold, MCVT, or the maximum number of
clusters is reached. The program developed to run this algorithm, cluster?2, takes these two num-
bers as command line arguments (see Appendix A). Once the iterative stage is complete, the program

writes the details of each cluster to file so they can be analyzed.

2.5.3 Psuedocode
Psuedocode for the entire algorithm is given below.
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// create default cluster
cluster_t DC

DC.id = 1

DC.seed =1

DC.members = {1}

// build default cluster
for each inspection window IW:
loc = match(DC.ST, IW)
IT = crop(IW, {loc.x,loc.y,DC.ST.width,DC.ST.height})
IT_edges = sobel(IT)
score = match(DC.ST_edges, IT_edges)
DC.addMember (IW)

// add default cluster to cluster list
list clusters
clusters.add(DC)

// cluster loop
loop:
// check for maximum number of clusters
if maximum number of clusters reached:
break

// find cluster with highest appearance variability
max = 0
for each cluster C:
if standardDeviation(C.scores) > max:
max = C.scores
HC = C

// check for acceptable maximum cluster variability
if max < MCVT:
break

// find lowest scoring member in HC
min = 1.0
for each member M in HC:
if M.score < min:
min = M.score
minMember = M

// create new cluster

cluster_t NC

NC.id = clusters.getlLast().id + 1
NC.seed = minMember
clusters.add(NC)

// clear all clusters

for each cluster C:
C.removeAllMembers ()
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// rebuild all clusters
for each inspection window IW:
maxScore = 0.0
for each cluster C:
loc = match(C.ST, IW)
IT = crop(IW, {loc.x,loc.y,C.ST.width,C.ST.height})
IT_edges = sobel(IT)
score = match(C.ST_edges,IT_edges)
if score > maxScore:
maxScore = score
MC = C
MC.addMember (IW)
end loop

// write results to file
for each cluster C:
C.write()

2.5.4 Manual Selection of Default Cluster Seed Templates

As discussed in Section 2.5, the seed template for the default cluster must be cropped
manually before the algorithm executes. The details of these templates for each inspection problem
of interest are shown in Figure 2.16. Each template was chosen on the basis of being the smallest

area of its respective inspection window that could be used to differentiate itself from other windows.

2.5.5 Manual Tuning of MCVT

As mentioned in Section 2.5, the clustering algorithm terminates when either the maximum
number of clusters is reached or the variability score of the cluster with the highest appearance
variability falls below the maximum cluster variability threshold, MCVT. The ideal value of MCVT may
change from problem to problem. This is for two reasons. First, not every problem has the same
amount of natural appearance variability. In general, problems with less appearance variability
require a lower (more strict) value of MCVT. Second, the size of the inspection template for a given
problem is proportional to the value of MCVT. In general, larger templates do not require as strict
of a value of MCVT as smaller ones. This is because the scores computed with larger templates, as
opposed to smaller ones, tend to vary more since it is less likely that all pixels of the part to be
inspected will line up directly with those in the seed template.

In order to determine the ideal value of MCVT for any given problem, hundreds of inspection
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(a) Water valve connector template (size=80x80).

(b) Hose clamp template (size=332x172).

(c) Pressure sensor template (size=75x105).

Figure 2.16: Manually cropped default cluster seed templates for the three inspection problems of
interest.

problems would have to analyzed and a function would have to be fit to the inherent variability and
template size variables. The fitting of this function is out of the scope of this thesis. In order to
determine the values of MCVT to use for each of the three problems of interest in this thesis, a manual
tuning process was performed.

The manual, brute force tuning process was completed as follows: For each inspection prob-
lem, the clustering algorithm was run without the MCVT stopping condition. That is, the algorithm
was terminated based on the number of clusters created rather than the variability score of the
cluster with the highest appearance variability. The algorithm was run repeatedly with each run
allowing one more cluster than the previous. The initial run allowed only a single cluster. After
each run, the resulting clusters were visually inspected. The repeated runs were stopped once, by

visual inspection, each cluster contained no within-cluster visual dissimilarities. That is, the mem-
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bers of each cluster looked sufficiently like the other members of that cluster®. The number of runs
required meet this condition (thus, the number of clusters required for that problem) was noted.
After determining the number of required clusters, the clustering algorithm results were analyzed
to determine which value of MCVT would have produced the same number of clusters. The results of

the manual tuning process for each problem are shown in Table 2.2.

] Problem | No. of Clusters | MCVT |
Water valve connector 8 0.0150
Hose clamp 22 0.0550
Pressure sensor 37 0.0232

Table 2.2: Manual tuning of MCVT for each problem of interest.

The values of MCVT presented in the table are the values of MCVT used by the clustering
algorithm to produce the final clustering results for each problem. These results are discussed in the

next chapter.

2.6 Quantifying Appearance Variability

In Section 2.2, it is mentioned that the goal of analyzing each respective part is to see how
many clusters are generated by the clustering algorithm given the specific attributes of each part.
This is idea is somewhat related to the second conjecture presented in Section 1.3; however, in order
to directly evaluate this conjecture, the appearance variability of each problem must be quantified.

The variability of a given problem was quantified by computing the average intensity dif-
ference per pixel across all templates, p. This value was computed by first generating a difference
accumulation image (DAI) for each problem. The DAI keeps track of the sum of the differences
between subsequent templates. For example, to compute the DAI for a given problem, first, tem-
plate 1 is subtracted from template 0, and the results are added into the DAI. Next, template 2 is
subtracted from template 1, and the results are added into the DAI. This process continues for all
templates. Once the DAI is computed, the normalized DAT (NDAT) is computed by dividing each
number in the DAI by the total number of templates. The average value in the NDAI is equivalent

to u, which is the quantification of the variability of the given problem. The resulting p values for

3The author acknowledges that this process is subjective; however, it is necessary to ground truth the value of
MCVT used for the three inspection problems of interest.
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the three problems of interest are given in Table 2.3.

’ Problem \ I \ Rank ‘
Water valve connector | 4.96 Low
Hose clamp 5.73 | Medium
Pressure sensor 8.54 High

Table 2.3: Quantification of appearance variability for each problem of interest. Each problem is
assigned a relative rank.

Visualizations of the NDAI of each problem of interest are shown in Figure 2.17. Qualitative
analysis of these images agree with the quantitative measures computed above. The variability of
each problem is proportional to the percentage of pixels in the NDAI visualization that are bright
(near white). By inspection, it is clear that bright pixels take up the largest proportion of the
pressure sensor’s NDAI, the smallest proportion of the water valve connector’s NDAI, and the hose

clamp’s NDAI lies somewhere in the middle.

(a) Water valve connector.

f‘

(b) Hose clamp.

(c) Pressure sensor.

Figure 2.17: Visualization of the NDAIs of the three inspection problems of interest.
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2.7 Cluster Analysis

In order to facilitate the analysis of the clusters produced by the clustering algorithm, a
visualization program, clusterViewer, was developed (see Appendix A). This program displays the

members of each cluster and lists the attributes of each cluster (see Figure 2.18).

Figure 2.18: Screenshot of clusterViewer. The current view is showing the first 24 windows in
cluster 1 (page 1 of 7). As seen in the title bar, the program is reporting the cluster’s attributes: its
seed is 1, its size is 165, and its variability score (sigma) is 0.045.

In addition to the features described above, this program also allows the user to view the
windows in several configurations. First, by pressing ‘E,” the gradient images of the smoothed
windows are displayed in place of the original windows (see Figure 2.19). This is because the
clustering program smooths each inspection window with a 7x7 Gaussian kernel before clustering
in order to minimize noise. The original windows are not shown as smoothed because they would
be harder to analyze with the human eye, whereas the gradient images are shown as smoothed so
that, given scoring is based on gradient images, the images being scored by the clustering algorithm
can be viewed directly. Second, by pressing ‘L,” the seed match location and score are overlaid
on top of each window (see Figure 2.20). When this feature is activated, the area outlined in red
represents the inspection template of that window. The template location can differ from window
to window, as seen by the different locations of the red rectangles in the figure. The gradient image

and score/location features can be toggled independently of each other.
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1, sigma 0.045391) [page 1/7]

Figure 2.19: Screenshot of clusterViewer. Edge mode is toggled on.

igma 0.045391) [page 1/7]

Figure 2.20: Screenshot of clusterViewer. Location and score mode is toggled on. The rectangle
on each window corresponds to the match location of the seed template; that is, each rectangle
outlines the inspection template associated with that window.
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Chapter 3

Results

3.1 Clustering Algorithm Output

This section presents the resulting clusters produced by the clustering algorithm for each
of the three inspection problems of interest. In this section, the entire inspection window of each
cluster member is shown. As discussed in Section 2.5, the clustering algorithm only accounts for each
member’s inspection template, the sub-area of the inspection window that is important. Therefore,
for each window shown, its template is outlined in red. In other words, when comparing different
members for similarities and differences, only the portion of the windows within the red rectangles
are relevant. In addition, although only a sample of the 1,052 clustered windows for each problem
are shown, the author visually verified that—across all 1,052 windows for each problem—mno cluster

contained significant within-cluster visual dissimilarities.

3.1.1 Water Valve Connector

The clustering algorithm produced eight clusters for this problem. For illustration, Figure
3.1 shows the eight clusters. For each cluster with more than six members, the seed plus five other
random members are displayed. For clusters with six members or fewer, the entire cluster is shown.
For this problem, the clustering algorithm was able to generate a defect cluster; that is, a
cluster whose seed is a defect. It is clear that cluster 5 is a defect cluster since, in window 988 (the

seed), the connector is not completely flush against the mount.
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(a) Cluster 1 (size=469, var=0.014) (b) Cluster 2 (size=55, var=0.014)

(c) Cluster 3 (size=180, var=0.013) (d) Cluster 4 (size=2, var=0.000)

(e) Cluster 5 (size=4, var=0.013) (f) Cluster 6 (size=130, var=0.014)

Figure 3.1: The eight water valve connector clusters produced by the clustering algorithm (continued
on next page). Each seed is outlined in green. For each window, the template is outlined in red and
the score of that template against the seed template is shown in the lower portion of the window.



) Cluster 7 (size=64, var=0.012) ) Cluster 8 (size=148, var=0.014)

Figure 3.1: The eight water valve connector clusters produced by the clustering algorithm (continued
from previous page). Each seed is outlined in green. For each window, the template is outlined in
red and the score of that template against the seed template is shown in the lower portion of the
window.

3.1.2 Hose Clamp

The clustering algorithm produced 22 clusters for this problem. For illustration, Figure 3.2
shows eight of the 22 clusters. For each cluster shown with more than six members, the seed plus
five other random members are displayed. For clusters with six members or fewer, the entire cluster

is shown. For details on all 22 clusters produced for this problem, see Appendix B.

) Cluster 1 (size=120, var=0.051) ) Cluster 4 (size=7, var=0.030)

Figure 3.2: Eight sample hose clamp clusters produced by the clustering algorithm (continued on
next page). Each seed is outlined in green. For each window, the template is outlined in red and
the score of that template against the seed template is shown in the lower portion of the window.
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(c) Cluster 5 (size=60, var=0.043) (d) Cluster 6 (size=2, var=0.000)

(e) Cluster 9 (size=12, var=0.044) (f) Cluster 11 (size=17, var=0.049)

(g) Cluster 15 (size=115, var=0.039) (h) Cluster 17 (size=25, var=0.042)

Figure 3.2: Eight sample hose clamp clusters produced by the clustering algorithm (continued from
previous page). Each seed is outlined in green. For each window, the template is outlined in red and
the score of that template against the seed template is shown in the lower portion of the window.



3.1.3 Pressure Sensor

The clustering algorithm produced 37 clusters for this problem. For illustration, Figure 3.3
shows 10 of the 37 clusters. For each cluster shown with more than six members, the seed plus five
other random members are displayed. For clusters with six members or fewer, the entire cluster is

shown. For details on all 37 clusters produced for this problem, see Appendix B.

) Cluster 1 (size=363, var=0.023) ) Cluster 4 (size=3, var=0.016)

) Cluster 5 (size=36, var=0.015) ) Cluster 8 (size=2, var=0.000)

) Cluster 13 (size=32, var=0.021) ) Cluster 19 (size=33, var=0.022)

Figure 3.3: Ten sample pressure sensor clusters produced by the clustering algorithm (continued on
next page). Each seed is outlined in green. For each window, the template is outlined in red and
the score of that template against the seed template is shown in the lower portion of the window.
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) Cluster 22 (size=13, var=0.015) ) Cluster 27 (size=7, var=0.020)
) Cluster 28 (size=24, var=0.023) ) Cluster 31 (size=15, var=0.018)

Figure 3.3: Ten sample pressure sensor clusters produced by the clustering algorithm (continued
from previous page). Each seed is outlined in green. For each window, the template is outlined in
red and the score of that template against the seed template is shown in the lower portion of the
window.

3.2 Evaluation of Conjectures

3.2.1 Conjecture 1: Viability of the Algorithm

It is clear from the results shown in the previous section that, given an inspection problem,
the clustering algorithm is capable of grouping the problem’s set of inspection windows into clusters
that sufficiently capture the range of appearance variability. As the appearance variability of the
problem increased!, the resulting clusters had a higher degree of within-cluster visual dissimilarity.
For example, the members of the pressure sensor clusters look slightly less like each other than those
of the hose clamp clusters. Likewise, the members of the hose clamp clusters look slightly less like
each other than those of the water valve connector clusters. This result is due to the fact that
problems with higher variability are more difficult to cluster. Even so, the degree of the observed
within-cluster visual dissimilarity for all three of these problems—even the pressure sensor—is still

acceptable.

1 As discussed in Section 2.3, the relative variability levels of the water valve connector, hose clamp, and pressure
sensor are low, medium, and high, respectively.
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3.2.2 Conjecture 2: Degree of Variability vs. Number of Clusters

The evaluation of this conjecture is straightforward when comparing the relative degrees

of variability of the three inspection problems against the number of clusters produced for each

problem. This comparison is shown in Table 3.1.

] Problem | Variability Rank | No. of Clusters |
Water valve connector Low 8
Hose clamp Medium 22
Pressure sensor High 37

Table 3.1: Degree of variability and number of clusters produced.

Clearly, the higher the appearance variability of a given problem, the more clusters that are

required to sufficiently capture the range of appearance. In other words, problems with relatively low

variability reach sufficiently low levels of variability with a fewer number of clusters than those with

relatively high variability. This effect can be observed when the average p value? across all clusters

is plotted against the number of clusters. This curve is plotted for all three inspection problems of

interest in Figure 3.4.

Variability vs. No. of Clusters
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Figure 3.4: Average cluster variability vs. number of clusters. Problems with lower initial (single
cluster) variability reach sufficiently low levels of variability in fewer clusters than those with higher

initial variability.

2As discussed in Section 2.3, this value, which is the average value of a cluster’s NDAI, is a quantification of the

appearance variability of that cluster.
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3.2.3 Conjecture 3: Ability to Detect Defects

Given the results for the water valve connector problem, it is clear that the clustering
algorithm is able to detect defects. This fact is apparent when directly comparing the seed windows
of clusters 1 and 2 (non-defect clusters) against the seed window of cluster 5 (a defect cluster);
see Figure 3.5. The fact that the clustering algorithm was able to detect a defect is particularly
interesting given the images collected for this thesis were taken immediately after a human-performed

inspection that checked for the proper installation of this part (among 10 others).

Figure 3.5: Seed template of non-defect clusters 1 and 2 (left and middle, respectively) vs. seed
template of defect cluster 5 (right). It is clear that the part shown on the right is not properly
installed since the connector is not flush against the mount.

3.2.4 Conjecture 4: Accuracy of Appearance Distribution Theory

In order to evaluate this conjecture, the theoretical appearance distribution (discussed in
Section 2.4) is compared to the actual appearance distribution of the water valve connector problem
(see Figure 3.6). The actual distribution of the water valve connector problem is computed by
comparing the seed template of the default cluster (template 1) against all other templates.

Upon analysis, it is clear that these two distributions are not similar. Specifically, the
actual distribution has positive skew and contains no obvious outliers. This suggests that, in reality,
there is not one single acceptable appearance that dominates the distribution. Rather, there exist
multiple acceptable appearances that score similarly—but not quite as high as—the most common
acceptable appearance, which in this case scores around 0.93 against the default cluster’s seed. In
order to gain more insight into this effect, it is useful to analyze the distribution of cluster sizes
for all three problems (see Figure 3.7). It is clear from this distribution that the vast majority

of clusters are relatively small. Given that only one of these small clusters is a defect (specifically,
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cluster 5 from the water valve connector problem), this distribution indicates that there exist several
infrequent examples of acceptable appearances that do not look similar to each other in any given
problem. Thus, the appearance distribution theory does not predict the shape of actual appearance

distributions accurately.

Theoretical Appearance Distribution
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(a) Theoretical appearance distribution (originally presented in Section 2.4).

Appearance Distribution: White Water Valve
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(b) Actual appearance distribution of the water valve connector problem.

Figure 3.6: Theoretical vs. actual appearance distribution. The actual distribution has positive
skew and contains no obvious outliers.
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Cluster Size Distribution: All Problems
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Figure 3.7: Distribution of cluster sizes for the clusters of all three inspection problems (67 clusters
total). The vast majority of clusters are relatively small, indicating that there exists much more
than a single acceptable appearance for any given problem.

In addition to shape, the distribution theory also predicts that defects are low-scoring out-
liers against the average appearance. Given that the actual distribution of the water valve connector
problem contains no outliers, this prediction does not hold. In fact, the defects (the four members
of the defect cluster) lie much closer to the mean than anticipated (see Figure 3.8). The practi-
cal significance of this finding is that defects, at least for this problem, are particularly difficult to
spot because they look very similar to properly installed parts. This could explain why four out of
the 1,052 (about 0.4%) were missed by the operator of the manual inspection station immediately
preceding the collection site.

Given the appearance distribution theory did not accurately predict the general shape of
the appearance distribution nor the location of defects, it should be revised to account for mul-
tiple acceptable appearances (most of which occur infrequently) and defects that lie within those

acceptable appearances.
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Appearance Distribution: White Water Valve
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Figure 3.8: Actual appearance distribution of the water valve connector problem with defect scores
highlighted in red. The defects tend to “blend in” with the acceptable appearances.
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Chapter 4

Conclusion

4.1 General Discussion

Overall, the clustering algorithm proposed by this thesis performed reasonably well. For
three different inspection problems of varying appearance variability, the algorithm was able to
separate the 1,052 examples of each problem into viable clusters.

Problems with a higher degree of appearance variability tended to require more clusters in
order to sufficiently capture the problem’s full range of appearance. This is evident in the fact that
the clustering algorithm produced 8, 22, and 37 clusters for the water valve connector (low variabil-
ity), hose clamp (medium variability), and pressure sensor problems (high variability), respectively.
It is expected that this pattern would continue for future inspection problems.

In addition to producing viable clusters, the clustering algorithm was also able to identify
a defect by producing a defect cluster (namely, cluster 5 for the water valve connector problem).
Given the collection site immediately follows a manual inspection station, the fact that a defect was
found at all is surprising initially. However, upon analysis of the appearance distribution of defects
for the water valve connector problem (see Figure 3.8), it is clear that defects are difficult to spot
because they look very similar to acceptable appearances. This explains why about 0.4% of the
water valve connector samples were defects. This finding also has implications on the difficultly of
the clustering problem in general (in terms of being able to conduct reliable inspections with the
results). Since defects lie within the range of acceptable appearances, it will take a larger number of

clusters to filter those defects out of the non-defect clusters. In order to perform reliable inspections,
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as many defect clusters as possible should be produced to ensure no unacceptable appearances are
overlooked.

The appearance distribution theory developed in Section 2.4 did not hold for two reasons.
First, the theory inaccurately predicted the shape of the appearance distribution. This is because
the theory predicted a single acceptable appearance, resulting in a Gaussian distribution. In reality,
there are many acceptable appearances, most of which are infrequent, thus the actual shape of the
distribution is a Gaussian with significant positive skew. Second, the theory inaccurately predicted
the location of defects within the appearance distribution. The theory predicted that defects would
score the lowest; however, in reality, the scores of defects tended to blend in with those of acceptable

appearances.

4.2 Limitations

One limitation of this study is the number of example images used for each inspection
problem. As mentioned in Chapter 1, many problems require at least an order of magnitude greater
than 1,000 test images to sufficiently capture the problem’s range of appearance. Therefore, the
1,052 samples used in this study may not be sufficient to capture the entire range of appearance
exhibited by the three problems of interest. This does not mean that the clustering algorithm itself
is insufficient; rather, this means that, in order to perform a reliable inspection with the clusters
produced by this algorithm, a larger dataset is advised. As presented in Section 2.3.2, a dataset of
approximately 19,000 images was collected from the SEHA plant. This dataset was not processed
by the clustering algorithm due to time constraints. The data organization, cleaning, and cropping
processes require substantial amounts of time to complete for a dataset of such size.

Another inherent limitation of the data used in this study is the low illumination caused
by improper collection camera settings. For all images analyzed in this thesis, the camera settings
were not ideal, resulting in relatively dark images. These settings were adjusted for later datasets.
Dark images tend to have gradient images with less prominent edges than bright ones. Therefore,
brighter images would result in more accurate template comparisons, ultimately resulting in better
clustering behavior.

Finally, it is not advisable to run an actual inspection system with the results produced in

this thesis for two reasons. First, as mentioned above, the dataset size is probably not large enough
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to sufficiently capture the range of appearances of these parts. This is especially true for the hose
clamp and pressure sensor problems, the two problems with higher appearance variability. Second,
the angles at which the parts were captured may not be ideal for inspections. This is especially true
for the hose clamp problem. The top-down view of the hose clamp used here would not be an ideal
angle at which to judge whether or not the clamp is fully seated, and, by extension, whether or
not it is properly installed. The top-down view is appropriate, however, for observing the different
positions of the clamp. Thus, given the purpose of this thesis is to group images based on differences
in appearance, the top-down view is ideal for testing the clustering algorithm, but it is not necessarily

ideal for performing reliable inspections.

4.3 Future Work

The most obvious next step for this work is to run the clustering algorithm on a dataset
an order of magnitude larger than the size 1,052 one analyzed in this thesis. It would also be
recommended to ensure the collected images have proper lighting to enhance the results of the
algorithm.

Besides better data, there are also several improvements that could be made to the core
algorithm to increase performance. First, the seed of the default cluster should be picked more
intelligently than simply assigning it to the first window. Ideally, the seed of the default cluster
would be set to the template that best represents the average appearance of all windows in the
dataset. This window could be found by cross-comparing every window to every other window and
determining which window scores highly (above some threshold) against the most other windows.

Second, more inspection problems should be analyzed so that a function can be fit in order
to automatically determine the value of MCVT. The algorithm becomes much more powerful if this
value can be chosen automatically so that the number of clusters does not have to be determined
brute force like it was in this thesis. As mentioned in Section 2.5.5, the value of MCVT depends on
the natural variability of the problem and the chosen template size. After brute forcing hundreds of
inspection problems, a function could be fit to the variability and template size variables to reliably
predict the value of MCVT for new problems.

Third, the algorithm should compare templates more intelligently. As presented in this

work, when comparing two windows, the algorithm compares the entire template of one window to
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the entire template of the other. This is an issue for problems whose ideal inspection area does not
take up the entire template. For some inspection problems, the solution to this issue is to simply
reduce the size of the template. For others, the solution is not so simple. For example, consider the
hose clamp problem. For any given template, the clamp itself only takes up a small proportion of the
whole template; however, the template size cannot reduced or else other possible appearances of the
clamp would be clipped. In other words, the large template size is need to fully capture any possible
appearance that the clamp could exhibit. In order to solve this problem, the algorithm should be
able to learn which parts of the template are important (that is, those that should contribute to the
NCC score) and those that are not. This could be accomplished by implementing a dynamic mask

that only takes the important parts of each template into account.
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Appendix A Software Details

This appendix details the four pieces of software that were developed to support this thesis.
All software is written in C4++ and utilizes the OpenCV library. An overview of the programs is

given in Table A.1.

’ Program \ Description
S Collects data at the SEHA plant.
Crops inspection windows for a specific inspection problem from
the frames captured by S.

cluster2 Clusters the inspection windows generated by cropIW.
clusterViewer | Visualizes the clusters produced by cluster?2.

cropIW

Table A.1: Software overview.

A.1 File Structure

In order to fully understand the the inputs and outputs of the programs described in this
appendix !, it is necessary to understand the file structure used by these programs. The file structure

is organized as follows:

~/ // base
data/
pilot/ // frames collected from pilot dataset
decb/
dec6/

// other dates
- // other datasets
IWs/ // inspection windows

pilot/
hose/
IW__1.]jpg
IW__2.jpg

ce // other inspection windows
count.txt
filelist.txt
// other parts
// other datasets
programs/
cropIW/
configurations/
pilot/

1The information in this section applies to all programs except S, which was developed on a separate operating
system.
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hose/
config.ini

tt.jpg
// other parts
. // other datasets
Makefile
config.h // class that handles configurations
config.cpp
cropIW.cpp // main file for crop program
cluster2/
ITs/ // inspection templates
pilot/
hose/
IT_1.jpg // manually cut template
// automatically generated templates
// other parts
- // other datasets
Makefile
cluster.h // class that defines a cluster
cluster.cpp
cluster2.cpp // main file for cluster2 program
clusterViewer.cpp // main file for clusterViewer program

As shown above, each source code directory contains a Makefile that will compile the
program in that directory. In the cluster2/ directory, the Makefile must be manually changed to
either compile cluster2 or clusterViewer. These programs share a directory since they operate

on similar data.

A2 S

This program is a GUI-based Windows application that was developed in Visual Studio on
Windows 10. The purpose of this program is twofold. First, the program collects data. Second,
the program displays the details of the inspection process as it runs live. This is accomplished via
a GUI that displays the live camera view and overlays rectangles over the trigger window, trigger
match location, inspection window, and part match location when a washing machine passes the
camera. The GUI-related operations of this program were required by a separate project, and are

not directly relevant to this thesis.

A.2.1 Inputs

As this program is a desktop application, it does not take any command line arguments.

This program does rely, however, on a configuration file that details the size and locations of the

56



trigger and inspection windows, the paths of the trigger and inspection templates, and other minor
settings. As most of the options in this file deal with the GUI-related operations, and thus are not

relevant to this thesis, the format of this file will not be discussed in detail.

A.2.2 OQutputs

All frames captured in a single day are stored in the same directory. For example, all frames
collected on January 26, 2019 are stored in 1-26-19/. Each frame is named according to the date,
time, and machine number. For example, a frame captured at 11:27:08.0256 on January 26, 2019 from
the 5" machine to pass the camera that day would be named 2019-01-26__11_27_08_0256__5. jpg.
Different frames captured from the same machine are differentiated by the time stamp, which is

precise to 1/10 of a millisecond.

A.3 cropIw

This program is a Unix-based executable developed in Visual Studio Code on macOS Mo-
jave. The purpose of this program is to crop inspection windows from the frames captured by S. An

example usage of this program is given by
./cropIW pilot dec6 hose

which crops the hose clamp from all frames captured on December 6", which is part of the pilot

dataset.

A.3.1 Inputs

The three command line arguments taken by this program are the dataset, the date, and
the part. As discussed in section 2.3.2, the collected frames are organized by dataset, which is a set
of frames grouped by common properties.

Several additional details needed by this program are are stored in a configuration file, “con-
fig.ini,” which is located at ~/programs/crop/configurations/{DATASET}/{PART}/config.ini.
There is no reason other than cleanliness (keeping the number of command line arguments to a
minimum) that these inputs are read from file. The contents and format of the configuration file are

defined in Table A.2.
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Line No. \ Symbol \ Description
1 TW_X | Trigger window x-coordinate (top left corner).
2 TW.Y | Trigger window y-coordinate (top left corner).
3 TW_W | Trigger window width.
4 TW_H | Trigger window height.
X-offset from trigger match location (top left corner) to inspection
5 IW_DX . 5
window x-coordinate (left edge).
Y-offset from trigger match location (top left corner) to inspection
6 IW.DY . :
window y-coordinate (top edge).
7 IW_W | Inspection window width.
8 IW_H Inspection window height.
Frame number to crop (l-indexed). Multiple frames of each ma-
9 FRAME | chine may be captured. Only one frame (specifically, the one with
the most ideal view of the part) should be cropped.

Table A.2: config.ini contents and format.

An example configuration file is given below.

1640
350
400
1500
-375
225
200
200
5

This file indicates the following: The trigger window is located at (1640,350) (top-left
corner) and has size 400x1500. The top-left corner of the inspection window is located 375 pixels to
the left of and 225 pixels down from the trigger match location. The size of the inspection window
is 200x200. The inspection window is cropped from the 5" frame captured of this washing machine.

The final input needed by this program is the trigger template to be used for the trig-

ger match, “tt.jpg,” which is located at ~/programs/crop/configurations/{DATASET}/{PART}/

tt.jpg.

A.3.2 OQutputs

Each cropped inspection window is stored in a directory unique to its dataset-part pair.
For example, the hose clamp inspection windows cropped from the pilot dataset are stored in

~/data/IWs/pilot/hose/. Within the dataset-part directory, each window is assigned an id, which
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is unique to each window. The id assigned to the first window is 1, and subsequent windows are
assigned 2,3, ...,n, where n is the total number of windows in the directory.

In addition to the inspection windows, this program generates two extra files in the dataset-
part directory, “count.txt” and “filelist.txt.” The former contains a single integer indicating the
total count of windows in the directory. The program reads this number during setup to determine
the next window id to assign in the case the program is run for multiple dates in the same dataset.
The latter generates a complete list of all windows in the directory. This file is needed by cluster2

to read in the windows for a given dataset-part pair.

A.4 cluster2

This program is a Unix-based executable developed in Visual Studio Code on macOS Mo-
jave. The “2” in the name simply denotes that this program is the successor of an earlier, unsuccessful
attempt at implementing the clustering algorithm (not discussed in this thesis). As the main driver
of the work in this thesis, the purpose of this program is to separate a set of inspection windows

into clusters. An example usage of this program is given by
./cluster2 pilot hose 0.025 32
which executes the clustering algorithm on the inspection windows of the hose clamp cropped from
the pilot dataset.
A.4.1 Inputs

The four command line arguments taken by this program are the dataset, the part, the
maximum allowable variability, and the maximum allowable number of clusters.
This program reads in the available inspection windows for the given dataset-part pair by

referencing the list in the “filelist.txt” document generated by cropIW.

A.4.2 OQOutputs

Immediately before termination, this program outputs the information about each resulting
cluster to a cluster file, “Nclusters.txt,” where N is the number of clusters generated. The format

of this file is given below.
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DATASET PART // dataset and part

1 SIZE SEED VARIABILITY // first cluster id and stats
MEMBER_ID MATCH_LOC_X MATCH_LOC_Y SCORE // member list and details
2 SIZE SEED VARIABILITY // second cluster

MEMBER_ID MATCH_LOC_X MATCH_LOC_Y SCORE

// more clusters

An example (abbreviated) cluster file is given below.

pilot hose

134 1 0.023 // first cluster
1 123 237 0.99

32 125 241 0.93

2 45 17 0.034 // second cluster
17 124 232 0.99
51 123 239 0.91
// more clusters (omitted)

This file indicates the following: Cluster 1 has size 34, seed 1, a variability score of 0.023,
and members 1,32,.... Cluster 2 has size 45, seed 17, a variability score of 0.034, and members
17,51, .... The match results for each member of each cluster. For example, the seed template of
cluster 1 matches window 32 at location (125,241) with a score of 0.93.

This cluster file is needed by clusterViewer to visualize clusters.

A.5 clusterViewer

This program is a Unix-based executable developed in Visual Studio Code on macOS Mo-
jave. The purpose of this program is to visualize the clusters generated by cluster2. An example

usage of this program is given by
./clusterViewer 20clusters.txt 4 6 0.5
which displays the clusters stored in “20clusters.txt,” which is a cluster file generated by cluster?2,
in 4 rows and 6 columns.
A.5.1 Inputs

The four command line arguments taken by this program are the cluster file path, the

number of rows to display per page, the number of columns to display per page, and the scale factor.
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The scale factor is applied to the windows before being displayed. For example, a scale factor of 0.5
indicates that the original windows will be scaled to 50% of their original size before being displayed.
This is essentially a zoom option.

This program is interactive. It continuously grabs input from the user to decide which

commands to execute. The full list of commands is given in Table A.3.

’ Key \ Command \ Description

ESC Quit Terminates the program.
SPACE | Forward Go to the next page of this cluster. If currently on the last page,
go to the first page of the next cluster.
Go to the previous page of this cluster. If currently on the first

B Back page, go to the last page of the previous cluster.
N Next Go to the first page of the next cluster.
P Previous | Go to the first page of the previous cluster.

Go to the first page of the indicated cluster. For example, to go
G Go to to cluster 12, type ‘G,” ‘1, ‘2,7 then ‘G’ again. The command
executes once the second ’G’ is pressed.
Loc/Score | Toggle the seed match location and score overlay.

Edges Toggle gradient images.

Save Save the current page to file.

w| - =

Table A.3: Listing of clusterViewer commands.

A.5.2 Qutputs

The only output generated by this program is the visual cluster display.
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Appendix B Cluster Details

This appendix lists the full details of each cluster produced by the the clustering algorithm

for the three inspection problems of interest.

B.1 White Water Valve

The results for this problem are shown in Table B.1.

’ ID \ Size \ Seed \ Variability Score ‘

1 | 469 1 0.014
2 95 196 0.014
3 | 180 | 1021 0.013
4 2 702 0.000
5 4 988 0.013
6 | 130 | 983 0.014
7 64 218 0.012
8 | 148 | 747 0.014

Table B.1: Water valve connector cluster details.

B.2 Hose Clamp

The results for this problem are shown in Table B.2.

B.3 Pressure Sensor

The results for this problem are shown in Table B.3.
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’ 1D \ Size \ Seed \ Variability Score ‘

1 ] 120 1 0.051
2 9 23 0.046
3 | 169 | 530 0.051
4 7 858 0.030
) 60 821 0.043
6 2 18 0.000
7 1 42 0.000
8 68 960 0.044
9 12 37 0.044
10 3 95 0.027
11 | 17 38 0.049
12 5 1046 0.040
13 ) 856 0.048
14 8 976 0.037
15 | 115 | 838 0.039
16 4 32 0.049
17 | 25 116 0.042
18 | 288 | 653 0.054
19 | 11 178 0.022
20 | 118 | 412 0.041
21 2 54 0.000
22 3 44 0.014

Table B.2: Hose clamp cluster details.
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’ 1D \ Size \ Seed \ Variability Score ‘

1 | 363 1 0.023
2 12 907 0.013
3 13 746 0.020
4 3 610 0.016
) 36 | 1037 0.015
6 2 969 0.000
7 19 927 0.018
8 2 420 0.000
9 61 23 0.018
10 2 988 0.000
11 | 16 956 0.018
12 6 463 0.012
13 | 32 508 0.021
14 | 47 864 0.021
15 2 924 0.000
16 | 115 | 510 0.021
17 9 830 0.016
18 | 19 819 0.020
19 | 33 770 0.022
20 | 10 487 0.017
21 | 10 903 0.019
22 | 13 103 0.015
23 5 883 0.018
24 | 13 981 0.011
25 1 724 0.000
26 | 99 844 0.023
27 7 212 0.020
28 | 24 987 0.023
29 1 857 0.000
30 2 861 0.000
31 ] 15 388 0.018
32 2 938 0.000
33 6 887 0.017
34 | 12 902 0.019
35 | 13 482 0.012
36 | 24 926 0.021
37 | 43 870 0.017

Table B.3: Pressure sensor cluster details.
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