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Abstract—Ultrawideband signals present new opportunities for
indoor position tracking due to their ability to operate in non-
line-of-sight conditions. However, walls and other normal indoor
infrastructure cause a systemic spatial warp in the measurements.
In this paper, we describe methods to manually build a map of
the measurement noise and use it in a particle filter framework to
improve measurement accuracy. We tested our methods in two fa-
cilities, collecting over 5.6 million measurements. Evidence shows
that the measurement noise is multimodal, location dependent,
stable over time, and locally similar. Using the map in a particle
filter framework, we demonstrate an average improvement in
measurement accuracy of 30%.

Index Terms—Indoor ranging, noise model, particle filter,
position estimation, ultrawideband (UWB).

I. Introduction

AN ULTRAWIDEBAND (UWB) positioning system
works by estimating the range and/or angle from multiple

fixed points to a mobile terminal [1]. This set of measurements
is then used to calculate position through multilateration or
multiangulation [2]. The position measurements are subject
to noise caused by several sources including the system
installation geometry, discrepancies in system synchroniza-
tion, non-line-of-sight (NLOS) conditions, and multipath [3].
While many of these noise sources have been studied in-
dependently [4]-[5], the quality of the noise of the final
position estimates has received little attention. In this context,
it is important to note the difference between improving
individual range measurements and improving the overall
position measurement. A position measurement is the output
of multilateration or multiangulation that uses a combination
of multiple range measurements. In this paper, we describe
methods to systematically build a spatial map of position
measurement noise throughout the area in which the UWB
system is operating. We then demonstrate the use of this
map in a particle filter to improve position measurement
accuracy.

Several noise sources for UWB measurements have been
previously investigated. Accuracy has been shown to improve
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by averaging multiple measurements [4], by signal pulsing
[6], and through methods that improve peak detection of
individual range estimates [7], [8]. Multipath interference and
tag synchronization were investigated in [9], and accuracy
was improved through direct down conversion and an iterative
peak subtraction algorithm. Zhou et al. [10] developed a
system that avoids synchronization issues using a fixed, known
locator transmitter along with the target transmitter. NLOS
detection and mitigation techniques have also been developed
[11]–[13]. Minimizing the error caused by sensor geometry
has been previously considered in [14] and [15]. While all
of these methods can improve UWB measurement accuracy,
it is reasonable to assume that some amount of error will
still occur, especially in challenging indoor environments
where multipath and NLOS are the rule rather than the
exception [5]. Fig. 1 illustrates the effect of a systemic
warp in the measurement noise caused by this type of
environment.

Maps are a well-known resource for improving measure-
ment accuracy for a variety of instruments. In indoor tracking,
maps have been used for creating location fingerprints. The
idea is to create a database of measurement properties for
locations as part of the calibration process. Live measure-
ments are then compared against the database and location
is estimated using pattern matching techniques. For example,
a map of magnetic field strength measurements is used in
[16] to perform indoor localization. Steiner and Wittneben
[17] present a method that uses a collection of UWB energy
measurements as a location fingerprint. A similar method is
described in [18] for localization within an area covered by
a wireless local area network. Maps have also been used
as landmark references for improving tracking. For example,
road maps have been shown to improve tracking accuracy for
automobiles [19] and are now commonly used in commercial
GPS systems. A database of terrain distance measures has
been shown to improve surface and underwater ship navigation
accuracy [20]. Building floor plans have been used to constrain
tracks from passing through walls [21], [22].

In this paper, we propose to systematically build a map
of position measurement noise for an indoor UWB system,
and then use that map to improve measurement accuracy. We
describe methods to measure the noise in a grid-like fashion
and mathematically model it. We then develop a particle filter
that uses the map to mitigate the effect of the measurement
noise. Although we demonstrate our methods only on an
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Fig. 1. Illustration of systemic noise on UWB position measurements in an
indoor facility. Sensors are indicated by the black squares and furniture by
the shaded rectangles. (a) Actual motion. (b) Measurement noise. (c) Raw
measurements.

indoor UWB positioning system, we believe they could be
applied to other instruments that exhibit similar systemic
warped measurement noise.

II. Methods

A. Test Facilities

Measurements were collected in two different test facilities.
The first is approximately 13 × 10 m, and was built as part of
the Military Operations in Urban Terrain (MOUT) project at
Clemson University [23], [24]. It consists of a painted concrete
slab floor, a number of polyvinyl chloride (PVC) walls, and
an exposed steel roof. Ten UWB receivers are distributed

Fig. 2. Floor plan of the Shoothouse facility. Filled squares indicate sensor
locations. Unfilled squares indicate locations surveyed. Solid lines indicate
walls.

Fig. 3. Floor plan of the Riggs facility.

throughout the test area. A 2-D floor plan of the area is shown
in Fig. 2.

The second test facility encompasses part of a hallway and
an open lab space. The installation was designed so that the
measurement noise would be similar to that of a standard
office environment. It is an approximately 8 × 8 m area of
Clemson University’s Riggs Hall and consists of a concrete
floor covered with vinyl tile or carpet. Eight UWB receivers
are distributed throughout the test area. A block wall runs
through the test area, dividing the main room (upper section)
from the corridor (lower section). A 2-D floor plan of the area
is shown in Fig. 3.

B. UWB System

Our UWB system was developed by Ubisense
(http://www.ubisense.net). Mobile Ubisense tags transmit
UWB pulses that are detected by the fixed sensors. Range
estimates to the tags are determined using angle of arrival and
time-difference of arrival techniques that allow the system
to calculate position estimates with as few as two sensors
reporting measurements [25], [26]. The system is capable of
tracking multiple tags simultaneously using a time-division
multiple access technique similar to that described in [27].
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Fig. 4. Measurements taken at location (480, 540) cm.

The sensors are fixed at known locations in a relative
coordinate system defined within the test facilities. The origin
of each is located in the bottom left corners of Figs. 2 and 3.
The relative location of each sensor was determined using tape
measures, laser squares, and laser distance measurement tools.
These ground truth sensor locations are used by the Ubisense
system to calculate tag location.

C. Measurement Collection

To gain knowledge of the overall measurement noise af-
fecting this type of installation, position measurements were
taken in a dense grid throughout each test facility. The ground
truth positions were determined relative to the coordinate
system and in the same manner as discussed for the sensors in
Section II-B. Based on the methods used to determine these
ground truth locations, the coordinate system is believed to be
accurate to within 1 cm. Figs. 2 and 3 denote the collection
locations with unfilled squares. Measurements were taken at
7931 locations in the Shoothouse facility and 3272 locations
in the Riggs facility. A space of 10 cm separates each col-
lection location and 500 measurements were collected at each
location. A total of approximately 5.6 million measurements
were taken. A number of gaps can be seen in the collection
locations shown in Fig. 3. These are the locations where the
tracking system did not regularly report positions due to the
installation.

Fig. 4 shows an example set of 500 measurements collected
at (480, 540) cm within the Riggs facility. This data forms a
distinct cluster and is largely shifted down and to the left from
the ground truth location denoted by the large cross symbol.
Fig. 5 shows another set of 500 measurements collected at
(620, 430) cm within the Riggs facility. This data is different
from that of Fig. 4 because it clearly forms multiple clusters.
Across both facilities, the majority of locations showed mea-
surement noise similar in quality to that shown in Figs. 4 and
5, with a number of distinct clusters varying from one to as
many as eight.

D. Measurement Noise Model

We assume that each position measurement is corrupted by
measurement noise sampled from a 2 × 1 random vector ν,

Fig. 5. Measurements taken at location (620, 430) cm.

given by

ν =

[
νx

νy.

]
(1)

This assumption leads to the set of measurement equations
g shown in (2) where xt and yt are the actual location and
zx,t and zy,t are the estimates provided by the UWB system at
time t

zt = g(xt , νt) =

[
zx,t = xt + νx,t

zy,t = yt + νy,t .

]
. (2)

Based on our 5.6 million observations, we adopted a
weighted mixture of Gaussians as the model for measurement
noise [28]. The measurement noise ν is assumed to be a
bivariate, mixture of Gaussian random variables (RV). The
probability density function (PDF) of this type of RV is made
up of weighted PDFs of multiple unimodal, bivariate Gaussian
RVs and described by (3). This PDF is often referred to as a
mixture of Gaussians [29]. This equation has five parameters
for each mode: the means, μx,i and μy,i, the standard devia-
tions, σx,i and σy,i, and the correlation coefficient, ρx,y,i

pi(zx, zy|x, y) =
1

2πσx,iσy,i

√
1 − ρ2

x,y,i

exp

(
−1

2(1 − ρ2
x,y,i)

[
(zx − μx,i)2

σ2
x,i

+
(zy − μy,i)2

σ2
y,i

−2ρx,y,i(zx − μx,i)(zy − μy,i)

σx,iσy,i

])
. (3)

By defining a 2 × 1 measurement vector z as shown in (4),
(3) can be written in matrix notation as shown in (5), where
μx,i is the 2 × 1 mean vector and �x,i is the 2 × 2 covariance
matrix shown in (6). Note that the symbol | · | represents the
matrix determinant

z =

[
zx

zy

]
(4)

pi(z|x) =
1

2π
√|�x,i|

e− 1
2 (z−μx,i)

T �−1
x,i (z−μx,i) (5)
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Fig. 6. Model generated from example measurements collected at (480, 540)
cm. The ellipses show one, two, and three standard deviations from the mean
for each cluster.

�x,i =

[
σ2

x,i ρx,iσx,iσy,i

ρx,iσx,iσy,i σ2
y,i.

]
. (6)

Using 3, the PDF of ν can be defined as shown in (7)
where Ix,y is the number of modes and ωx,y,i is the weight
value associated with the ith mode. The ωx,y,i values must
sum to one for pν(zx, zy|x, y) to be a valid PDF

pν(zx, zy|x, y) =
Ix,y∑
i=1

ωx,y,i · pi(zx, zy|x, y). (7)

This can be written in matrix notation as shown in (8),
where ωx,i is the weight and Ix is the number of modes

pν(z|x) =
Ix∑
i=1

ωx,i · pi(z|x). (8)

E. Generating the Measurement Noise Map

We assume that there exists a PDF, pν(z|x), described by
(8), for each possible location within the trackable area of a
test facility. To approximate the continuous distribution, we
collected measurements at discrete locations as described in
Section II-C. We assume local similarity of the measurement
noise between discrete locations. The model parameters that
are calculated for each location make up the measurement
noise map.

Equation (8) requires that four parameters be calculated
from the collected measurements: Ix, μx,i, �x,i and ωx,i.
We determine these values using the density-based spatial
clustering for applications with noise (DBSCAN) algorithm
[30]. This algorithm was selected because it does not require
the number of clusters to be specified a priori, as is the case for
other common data clustering algorithms, such as K-means.
DBSCAN requires two parameters: ε, the neighborhood size
and k, the minimum number of points necessary to be consid-
ered a cluster.

DBSCAN automatically determines Ix, the number of clus-
ters present in the data at the location given by x. The cluster
mean vector, μx,i is calculated for each cluster i = 1, 2, . . . , Ix

found by DBSCAN using (9), where x and y are the location

Fig. 7. Model generated from example measurements collected at (620, 430)
cm. The ellipses show one, two, and three standard deviations from the mean
for each cluster.

components of the state space variable x, zn
i is the nth 2 × 1

measurement vector assigned to cluster i from the estimates
collected at location (x, y) cm. Nx,i denotes the number of
measurements collected at location (x, y) cm that are assigned
to cluster i

μx,i =

[
μx,i

μy,i

]
=

1

Nx,i

(
Nx,i∑
n=1

zn
i

)
. −

[
x

y

]
. (9)

�x,i is the 2 × 2 unbiased covariance matrix for cluster i at
the location given by x and is calculated as shown in

�x,i =
1

Nx,i − 1

Nx,i∑
n=1

(zn
i − μx,i)(z

n
i − μx,i)

T . (10)

The final parameter, ωx,i, is a weight value associated with
cluster i at the location given by x. It is calculated by dividing
the number of measurements assigned to the cluster by the
total number taken at that location, N, as shown in

ωx,i =
Nx,i

N
. (11)

Contour plots of the measurement noise model generated
for the example set of position estimates shown previously in
Figs. 4 and 5 are shown in Figs. 6 and 7, respectively. The
contour lines are at one, two, and three standard deviations
from the mean.

F. Dynamic Model

For tracking purposes, we use a 2-D constant velocity
dynamic model. Equation (12) shows the state space variable
xt for this type of model. It has four components: the 2-D
position at time t, xt , and yt , and the 2-D velocity at time t,
ẋt , and ẏt

xt =

⎡
⎢⎢⎣

xt

ẋt

yt

ẏt .

⎤
⎥⎥⎦ . (12)

Equation (13) gives the function f that governs state transi-
tions for this model, where δt is the sensing interval and σd is
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the standard deviation of the zero mean, normally distributed
dynamic noise. Throughout this paper, the sensing interval is
assumed to be 1. From f , the state space equations for this
model can be written as shown in (14)

f =

⎡
⎢⎢⎣

xt = xt−1 + δt · ẋt−1

ẋt = ẋt−1 + N (0, σd)
yt = yt−1 + δt · ẏt−1

ẏt = ẏt−1 + N (0, σd)

⎤
⎥⎥⎦ (13)

xt = f(xt−1, σd). (14)

G. Basic Particle Filter

The particle filter is a technique for implementing recursive
Bayesian estimation through Monte Carlo approximation [31],
[32]. It has become a popular alternative to the Kalman and
extended Kalman filters for applications with non-Gaussian
noise [33]. We use a particle filter framework that incorporates
a map of pre-observed measurement noise. This allows the
filter to adapt to local variations.

The basic particle filter (BPF) approximates complex distri-
butions using a set of particles. A set of particles is a collection
of M state space variables with a weight assigned to each [31].
A distribution is approximated by a set of particles χ, shown
in 15, where M is the number of particles, xm

t is the state of
particle m, and wm

t is the weight assigned to particle m, both
at time t

χ = {xm
t , wm

t }Mm=1. (15)

The particle states are updated according to the state transi-
tion equation f as shown in (13). The prior importance function
is chosen to simplify the sequential importance sampling
weight update equation to that shown in (16) where wm

t−1 is the
weight of particle m at time t−1 and p(zt|xm

t ) is the probability
of the position estimate, zt , given the state of particle m, all
at time t

wm
t = wm

t−1 · p(zt|xm
t ). (16)

A 2-D normal distribution with mean at μxm
t

and covariance
matrix, �n, is used as the measurement noise model and is
calculated as shown in (17). In the BPF, the mean vector, μxm

t
,

is simply the current particle state. The covariance matrix, �n,
is 2 × 2 and is calculated based on the overall variance of the
data collected in the x and y directions. It is assumed that the
correlation is 0

p(zt|xm
t ) =

1

2π
√|�n|e

− 1
2 (zt−μxm

t
)T �−1

n (zt−μxm
t

)
. (17)

Next, the particle weights are normalized and the expected
value is computed using (18) and (19), respectively. Finally,
the coefficient of variation (CV) and effective sample size
(ESS) are computed [34] and resampling is performed if
necessary. The sampling method that we have chosen is
referred to as select with replacement by Rekleitis in [35]

wm
t =

wm
t∑M

m̂=1 wm̂
t

(18)

E(xt) =
M∑

m=1

wm
t · xm

t . (19)

The CV and ESS are calculated according to (20) and (21).
Throughout this paper, resampling is performed when the ESS
is determined to be less than 0.5 ×M, i.e., half of the particle
weights have gone to zero

ESS =
M

1 + CV
(20)

CV =
1

M

M∑
m=1

(
M · wm

t − 1
)2

. (21)

H. Measurement Noise Map Augmented Particle Filter

This paper proposes the use of a measurement noise map,
described in Section II-E, within the weight update phase
of the BPF. We will refer to this as the measurement noise
map augmented particle filter (MNMAPF). The use of a
weighted sums of Gaussians to approximate multimodal noise
distributions in a particle filter was previously considered
in [29], where examples were shown for both dynamic and
measurement noise. Our filter is similar to this approach
in that it uses weighted sums of Gaussians to approximate
multimodal measurement noise distributions. However, our
approach uses a facility-wide map to account for location-
dependent differences in measurement noise. It is important
to note that our map-based method can be used with measure-
ment noise models other than sums of Gaussians. Furthermore,
our method could be applied to problems other than UWB
position tracking. The key is to capture location-dependent
differences in measurement noise in the map prior to filtering
and then apply it as shown here.

The measurement noise model used in the weight update
step of the MNMAPF is selected from the measurement noise
map based on the location components of the mth particle’s
state. More simply stated, the model parameters for the map
position nearest to the particle location are used in the weight
update step. Equations (22) and (23) show analytically how
p(zt|xm

t ) is generated using our map-based measurement noise
model where pi(zt|xm

t ) is the unimodal Gaussian PDF for each
cluster at the map location nearest xm

t

p(zt|xm
t ) = pν(zt|xm

t ) =
Ix∑
i=1

ωxm
t ,i · pi(zt|xm

t ). (22)

pi(zt|xm
t ) =

1

2π
√|�xm

t ,i|
e
− 1

2 (zt−μxm
t ,i)

T �−1
xm
t ,i

(zt−μxm
t ,i). (23)

I. Error Metric

The metric that will be used to compare filter performance
throughout this paper is referred to as the average error e and is
calculated using the Euclidean distance between a ground truth
location and the corresponding filter output. The calculation
is performed as shown in (24), where xn and yn are the nth
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Fig. 8. Plot of the ranges covered by tracks 1–4.

Fig. 9. Plot of the ranges covered by tracks 5 (top left), 6 (top right), 7
(bottom left), and 8 (bottom right).

filter output, and x̂n and ŷn are the corresponding ground truth
location

e =
1

N

N∑
n=1

√
(xn − x̂n)2 + (yn − ŷn)2. (24)

J. Dynamic Track Collection

Eight tracks were defined within the trackable area of the
Riggs facility. Figs. 8 and 9 show plots of each track within
the Riggs facility. There are five recordings of tracks 1, 2,
and 4 and four of track 3. Tracks 3 and 4 cover the same
ground truth coordinates; track 3 runs northwest and track 4
runs southeast.

Tracks 1 and 2 were collected by dragging the UWB tag
across the top of a saw horse. It was placed at a known ground
truth location within the trackable area. Tracks 3 and 4 were
collected by placing the UWB tag on a cart. The cart was
then moved along a known ground truth path. Tracks 5–8
were generated by randomly pulling position estimates from
the dense collection data. This was done to increase the overall

Fig. 10. Contour plot of the number of clusters determined by the DBSCAN
algorithm at each measurement location within the Shoothouse facility; ε =
30 cm and k = 10.

number of recordings considered, but due to changes to the
Ubisense system configuration in the intervening months to
support an additional research project on installation optimiza-
tion, no further recordings could be made. These tracks are
much longer and more complicated than tracks 1–4. They all
help to demonstrate the proposed method.

III. Results

A. Measurement Noise

Figs. 10 and 11 show maps of the number of clusters
determined by the DBSCAN algorithm at all measurement
locations within the test facilities. It can be seen that the
measurement noise sometimes contains only one cluster but
that multiple clusters occur near walls and the boundaries of
the trackable area. More specifically, 68% of the locations
surveyed have a single cluster. This type of measurement noise
behavior is taken into account by the use of a multimodal
Gaussian model.

Figs. 12 and 13 show the average error vector for every
fourth collection location in each facility. It can be seen
that measurements taken at different areas are biased away
from the ground truth location in different directions and with
different magnitudes. The proposed map-based measurement
noise model accounts for this location-dependent bias.

B. Stability Over Time

The validity of the measurement noise model developed in
this paper depends on the assumption that the measurement
noise remains relatively constant over time. If the noise
changes significantly from hour to hour or day to day, the
model calculated from measurements collected at a specific
time will no longer be valid at a later date. To test for stability
over time, we took measurements in a subset of the trackable
area of the Riggs facility over two months to compare the
measurement noise models over time. Measurements were
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Fig. 11. Contour plot of the number of clusters determined by the DBSCAN
algorithm at each measurement location within the Riggs facility; ε = 30 cm
and k = 10.

Fig. 12. Plot of error vectors in the Shoothouse facility.

collected in 10-cm intervals as described in Section II-C in
the range of (310–470, 540–630) cm on three consecutive
days and then again two months later. Fig. 14 is a plot of
the model generated for measurements collected at (470, 590)
cm on these four days. It can be seen from this figure that all
cluster means (+, *, x and diamond symbols) are south and
west of the ground truth location, denoted by the large cross
symbol in the upper right. The ellipses shown are each three
standard deviations from the respective mean according to the
sample covariance matrices and can be seen to significantly
overlap one another. Fig. 14 is representative of the type of
change in model that we observed across the area surveyed.
The average change in cluster mean over time was 3.7 cm
with a standard deviation of 3.1 cm. This is small compared
to the average error, which is approximately 20 cm.

C. Local Similarity

Local similarity refers to the differences in measurement
noise from one position to another within a small area. We

Fig. 13. Plot of error vectors in the Riggs facility.

Fig. 14. Zoomed-in plot of model data collected on three consecutive days
and then again two months later. The cluster means are indicated by the +,
*, x and diamond symbols.

use the model for the collection location closest to the state
as the model for that state because we do not have model data
for all possible states. We assume that the measurement noise
does not change significantly across a small area, i.e., within
10 cm. To test this assumption, we took measurements at 1-cm
intervals in a subset of the Riggs facility and compared them
to determine the validity of the local similarity assumption.
Fig. 15 is a plot of four sets of model data. The model
indicated by the small cross symbol is the one measured at
the given location. The model indicated by the asterisk is the
model from the nearest collection location on the measurement
noise map. It can be seen that the means from all four locations
are close to each other and that there is significant overlap of
the ellipses. While this is a limited test, it does provide some
confidence in the assumption of local similarity.

D. Filtering Results

Table I shows the average error for ten iterations of the
BPF and MNMAPF for each of the eight tracks. The tracks
show a range of velocities and as has been shown previously,
cover much of the facility. The MNMAPF has an average
error approximately 30% less than the average raw and BPF
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Fig. 15. Zoomed-in plot of the measured model (small cross) and adjusted model (asterisk) at (381, 610), (399, 610), (390, 609), (390, 611) cm in the top
left, top right, bottom left and bottom right, respectively.

TABLE I

Comparison of Length, Velocity, Average Raw Error,

Average BPF Error, and Average MNMAPF Error

for All Eight Recordings

Trial Length Velocity # Points Raw Error BPF Error MNMAPF Error
(cm) (cm/s) (cm) (cm) (cm)

1 140 20 68 10 9 6
2 140 16 73 14 11 7
3 210 76 43 35 35 29
4 210 70 43 28 29 18
5 3800 90 380 35 35 19
6 1520 90 152 18 19 10
7 2320 90 232 20 20 17
8 1090 90 188 24 24 19

measurement errors for all tracks. Because the particle filter
is based on Monte Carlo simulation, single applications of the
BPF and MNMAPF do not give a good indication of the type
of results that can be achieved. Therefore, the error is averaged
over ten iterations.

IV. Conclusion

This paper presented methods for building a map of UWB
measurement noise and using it in a particle filter framework
to improve indoor position tracking accuracy. Through two
collection campaigns, UWB measurement noise was shown
to be location dependent and multimodal. To account for this
multimodality, noise at a specific location was modeled using a
sum of Gaussians. Evidence was shown that the measurement
noise was stable over time and locally similar. Finally, a 30%
reduction in tracking error was shown through the use of the
measurement noise map in the context of a particle filter.

A limitation of our method is the requirement that the mea-
surement noise map be re-calculated after a significant change
to the positioning system installation or environment occurs.
Because of this, it is expected that this type of map would
be generated for a system once and used for a long period of
time. Furthermore, we acknowledged that a significant time
commitment was required to generate the measurement noise
map. The development of more automated methods to generate
the measurement noise map could significantly reduce this
time commitment and allow for the measurement noise model
to be recalculated on a more frequent basis if necessary. It may
be that floor plan and sensor geometry information could be
used to semi-automate this process similar to the techniques
shown in [36] and [37]. This is a subject of future work.
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