
These are brief notes for the lecture on Wednesday August 25, 2010: they are not com-
plete, but they are a guide to what I want to say today. They are not guaranteed to be
correct.

1.4. The Matrix Equation Ax = b

Definition. If A is an m × n matrix with columns a1, a2, /dots, an, and x ∈ Rn, then
the product of A and x, which we denote by Ax, is defined to be

Ax =

 | | . . . |
a1 a2 . . . an

| | . . . |




x1

x2
...

xn


= x1a1 + x2a2 + · · ·+ xnan

Note: Ax ∈ Rm.
Example:  1 2

−1 3
3 0

( 1
−1

)
=

Theorem 3. If A is an m × n matrix with columns a1, a2, . . . an, and if b ∈ Rm, then
the matrix equation Ax = b has the same set of solutions as the vector equation

x1a1 + x2a2 + · · ·+ xnan = b

which in turn has the same set of solutions as the linear system with augmented matrix | | . . . | |
a1 a2 . . . an b
| | . . . | |


Proof This follows from our definition of the product of a matrix and a vector.

Theorem. The equation Ax = b has a solution if and only if b is a linear combination
of the columns of A.

Example: For which vectors b is the equation Ax = b solvable, where

A =

 1 3 −2
7 2 3
−2 13 −13

?
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Theorem 4. Let A be an m× n matrix. The following statements are equivalent:

(1) For each b ∈ Rm, the equation Ax = b has a solution.
(2) Each b ∈ Rm is a linear combination of the columns of A.
(3) The columns of A span Rm.
(4) In the row reduction process, A has a pivot position in every row

(Note: part 4 refers to the coefficient matrix A, not the augmented matrix [A b]
Proof: statements 1, 2 and 3 are equivalent by definition. So if we show that 1 and 4 are
equivalent, we will be done.

Suppose that U is the reduced echelon form of A: then

[A b] ∼ · · · ∼ [U d]

for some d. If statement 4 is true, then since U has a pivot in every row, we clearly don’t
have a row of zeros in U with a non-zero element in d. Hence the equation is solvable. Thus,
if statement 4 is true, then 1 is true. Conversely, if 4 is false, U has a zero row: let d be
the vector with a 1 in that row, and zeros elsewhere. Reversing the row reduction process
we obtain a vector b for which Ax = b has not solution. Hence if statement 4 is false, so is
statement 1.
Computing Ax: 

a11 . . . a1n
...

...
ai1 . . . ain
...

...
am1 . . . amn




x1
...
...

xn

 =


b1
...
bi
...

bm


We see that bi is given by ai1x1 + ai2x2 + . . . ainxn.
Example:  1 3 5

2 4 −1
−1 2 2

11
1
3

 =

 
Theorem 5. If A is an m × n matrix and u, v are vectors in Rn and c ∈ R is a scalar

then

(1) A(u + v) = Au + Av
(2) A(cu) = c(Au)

Proof:
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1.5. Solution sets of linear equations

Definition. A system of linear equations is called homogeneous if it can be written as
Ax = 0.

Note: x = 0 is always solution to Ax = 0. It is called the trivial solution.
Fact: The homogeneous equation Ax = 0 has a non-trivial solution if and only if it has free
variables.
Proof:

Example: Determine if the following homogeneous system has non-trivial solutions:

2x1 + 3x2 + x3 = 0
5x2 − x3 = 0

−x1 + x2 − x3 = 0

Example (continued) Describe the solution set.

Note: The solution set of Ax = 0 can always be written as Span(v1, . . . , vp) for some vectors
v1, . . . , vp.

Definition. An equation of the form

x = s1v1 + s2v2 + · · ·+ skvk

is said to be in vector parametric form.
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Example: Describe all solutions to Ax = b where

A =

 3 5 −4
−3 −3 4
6 1 8

 b =

 7
−1
−4



Theorem 6. Suppose that the equation Ax = b has a solution p. Then all solutions to
the equation have the form

w = p + vh

where vh is a solution to the corresponding homogeneous equation Ax = b.

That is, if p is any solution to Ax = b, and the solution set of Ax = 0 is Span(v1, . . . , vk),
then the solution set of Ax = b is

p + Span(v1, . . . , vk)

Proof:
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1.6. Applications

Read this section in the book on your own.
Sample application: balance the chemical equation

KMnO4 + MnSO4 + H2O −→MnO2 + K2SO4 + H2SO4

(that is, determine the proportions of potassium permanganate, manganese sulphate, water,
manganese dioxide, potassium sulphate and sulphuric acid molecules so that the number of
atoms of each element are preserved in the above chemical reaction).

1.7. Linear Independence

Definition. An indexed set of vectors {v1, . . . , vp} in Rn is linearly independent if the
vector equation

x1v1 + · · ·+ xpvp = 0

has only the trivial solution (x = 0).
Otherwise if there exist c1, . . . , cp ∈ R not all zero, so that

c1v1 + · · ·+ cpvp = 0

then the set is linearly dependent.

Example: Are the vectors v1 =

1
2
3

, v2 =

−1
1
5

, v3 =

−1
7
21

, linearly independent? If

not, find a dependence.
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Note: The columns of the matrix A are linearly independent if and only if the equation
Ax = 0 has only the trivial solution.

Example: Are the columns of A =

0 0 1
1 2 2
5 3 3

 linearly idependent?

Note:
(1) A set containing a single vector v is linearly independent if and only if v 6= 0.
(2) A set containing two vectors is linearly independent if and only if neither vector is a
multiple of the other.
Proof:

Theorem 7. An indexed set S = {v1, . . . , vp} is linearly dependent if and only if one of
the vectors in S is a linear combination of the others. In fact, S is linearly dependent if and
only if either v1 = 0, or there is a j so that vj is a linear combination of v1, v2, . . . , vj−1.

Proof:
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Example: Let u =

3
1
0

, v =

1
0
0

. Describe Span(u, v). For this particular u, v we have

w ∈ Span(u, v) if and only if {u, v, w} is linearly dependent. Explain.

Theorem 8. If a set contains more vectors than there are entries (that is, rows) in the
vectors, then it is linearly dependent.

Proof:

Theorem 9. If 0 ∈ S = {v1, . . . , vp} then S is linearly dependent.

Proof:
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