These are brief notes for the lecture on Monday August 30, 2010: they are not complete, but they are a guide to what I want to say today. They are not guaranteed to be correct.

1.7. Linear dependence and independence

Recall from last time: the vectors $\underline{v}_{1}, \underline{v}_{2}, \ldots, \underline{v}_{k}$ are said to be

- linearly dependent if we can express $\underline{0}$ as a non-trivial linear combination

$$
\underline{0}=c_{1} \underline{v}_{1}+c_{2} \underline{v}_{2}+\cdots+c_{k} \underline{v}_{k}
$$

(that is, in which at least one c_{j} is not zero).

- linearly independent if $\underline{0}$ is only representable in the trivial way:

$$
\underline{0}=0 \underline{v}_{1}+0 \underline{v}_{2}+\cdots+0 \underline{v}_{k} .
$$

Equivalent to this: $\underline{v}_{1}, \underline{v}_{2}, \ldots, \underline{v}_{k}$ is

- linearly independent if every vector in $\operatorname{Span}\left(\underline{v}_{1}, \underline{v}_{2}, \ldots, \underline{v}_{k}\right)$ can be represented in exactly one way
- linearly dependent if every vector in $\operatorname{Span}\left(\underline{v}_{1}, \underline{v}_{2}, \ldots, \underline{v}_{k}\right)$ can be represented in at least two ways.

Definition. If we have a set of vectors $\underline{v}_{1}, \underline{v}_{2}, \ldots, \underline{v}_{k}$ which spans \mathbb{R}^{n}, and which is linearly independent, we call the set a basis.

A basis enables us to represent every vector in \mathbb{R}^{n} uniquely. It gives us a finite way to deal with every vector in the space at once: all infinitely many of them. Note: the book doesn't actually introduce the concept of a basis until much later. Regard this as useful foreshadowing.

1.8. Linear Transformations

We are going to talk about special kinds of functions from \mathbb{R}^{n} to \mathbb{R}^{m} (note: n comes before m here!)
First: what is a function? We write $f: A \longrightarrow B$ to denote that f is a function from the set A to the set B. What this means is that f is a rule, which assigns, for each element $a \in A$, a unique element $b \in B$ so that $b=f(a)$. We refer to A as the domain of f, and to B as the co-domain. The set

$$
\{f(a): a \in A\}
$$

of values taken by the function is called the image or range of f.

However, this concept is too broad: there are lots and lots of functions (if A is a finite set, with n elements, and B is a finite set, with m elements, then there are already m^{n} functions from A to B : if A or B is \mathbb{R}, or \mathbb{R}^{n} then things are much much more complicated!) When we think of functions on the reals, we tend to think of functions which have nice graphs. For \mathbb{R}^{n}, and important class of functions is the set of linear transformations. These are the functions which interact really nicely with vector addition and scalar multiplication:

Definition. A linear transformation from \mathbb{R}^{n} to \mathbb{R}^{m} is a function $T: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{m}$ which satisfies the following two properties: whenever $\underline{u}, \underline{v} \in \mathbb{R}^{n}$ and $c \in \mathbb{R}$, then
(1) $T(\underline{u}+\underline{v})=T(\underline{u})+T(\underline{v})$
(2) $T(c \underline{u})=c T(\underline{u})$.

Note: We've already encountered examples of this type of function! If A is a $m \times n$ matrix, then we can multiply a vector in $\underline{v} \in \mathbb{R}^{n}$ by A, obtaining a vector $A \underline{v} \in \mathbb{R}^{m}$. Hence multiplication by A is a function from \mathbb{R}^{n} to \mathbb{R}^{m}. And we've seen that it satisfies both conditions, and hence it is a linear transformation.
Example: Let

$$
A=\left(\begin{array}{cc}
1 & 2 \\
2 & 3 \\
5 & -1
\end{array}\right)
$$

Define $T: \mathbb{R}^{2} \longrightarrow \mathbb{R}^{3}$ by $T(\underline{x})=A \underline{x}$.

1. $T\left(\binom{1}{1}\right)=$
2. Find all $\underline{x} \in \mathbb{R}^{2}$ so that $T\left(\underline{x}=\left(\begin{array}{l}3 \\ 5 \\ 4\end{array}\right)\right.$.

Example: Let

$$
A=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right)
$$

Then $T: \mathbb{R}^{3} \longrightarrow \mathbb{R}^{3}$ given by $T(\underline{x})=A \underline{x}$ is called a projection:

$$
T\left(\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)\right)=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right) \cdot\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=(\quad)
$$

Example: Shear transformation: $A=\left(\begin{array}{ll}1 & 2 \\ 0 & 1\end{array}\right)$

Note: If T is a linear transformation, then
(1) $T(\underline{0}=\underline{0}$.
(2) $T(c \underline{u}+d \underline{v})=c T(\underline{u})+d T(\underline{v})$.
(3) $T\left(\sum_{i=1}^{p} c_{i} \underline{v}_{i}\right)=\sum_{i=1}^{p} c_{i} T\left(\underline{v}_{i}\right)$

Proof:

Example: define a map $T_{r}: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{n}$ by $T \underline{x}=r \underline{x}$. If $0<r<1$, the map is called a contraction. If $r>1$ it is called a dilation. Show that T_{r} is a linear transformation.

