These are brief notes for the lecture on Wednesday September 1, 2010: they are not complete, but they are a guide to what I want to say today. They are not guaranteed to be correct.

1.9. The Matrix of a Linear Transformation

Recall from last time: A function $T: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{m}$ is called a linear transformation if for every $\underline{u}, \underline{v} \in \mathbb{R}^{n}$ and $c \in \mathbb{R}$,
(1) $T(\underline{u}+\underline{v})=T(\underline{u})+T(\underline{v})$.
(2) $T(c \underline{u})=c T(\underline{u})$

Example: Suppose $T: \mathbb{R}^{2} \longrightarrow \mathbb{R}^{3}$ is a linear transformation, and that we know

$$
T\left(\underline{e}_{1}\right)=\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right) \quad \text { and } \quad T\left(\underline{e}_{2}\right)=\left(\begin{array}{l}
1 \\
2 \\
3
\end{array}\right)
$$

where $\underline{e}_{1}=\binom{1}{0}$ and $\underline{e}_{2}=\binom{0}{1}$. We can give a complete description of T as follows:

$$
T\binom{x}{y}=T\left(x \underline{e_{1}}+y \underline{e} 2\right)
$$

$=$
$=$

Can you find a matrix A so that $T(\underline{x})$ is the same vector as $A \underline{x}$?
(Hint: $A \underline{x}$ is a linear combination of the columns of A)

Let $\underline{e}_{j} \in \mathbb{R}^{n}$ denote the vector having a 1 in the $j^{\text {th }}$ row, and zeros elsewhere.
Theorem 1. Let $T: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{m}$ be a linear transformation. Then there exists a unique matrix A so that for every $\underline{x} \in \mathbb{R}^{n}$,

$$
T(\underline{x}=A \underline{x} .
$$

In fact, A is the $m \times n$ matrix whose $j^{\text {th }}$ column is $T\left(\underline{e}_{j}\right)$. (i.e.

$$
A=\left(\begin{array}{cccc}
\mid & \mid & & \mid \\
T\left(\underline{e}_{1}\right) & T\left(\underline{e}_{2}\right) & \ldots & T\left(\underline{e}_{n}\right) \\
\mid & \mid & & \mid
\end{array}\right) .
$$

Proof:

Example: find the matrix representing the transformation $T: \mathbb{R}^{2} \longrightarrow \mathbb{R}^{2}$ given by $T(\underline{x})=3 \underline{x}$.

Definition. Recall the definition of onto, 1-1: a linear transformation $T: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{m}$ is said to be

- onto \mathbb{R}^{m} if every $\underline{b} \in \mathbb{R}^{m}$ is the image of at least one $\underline{x} \in \mathbb{R}^{n}$. (T is onto provided that $\forall \underline{b} \in \mathbb{R}^{m}, \exists \underline{x} \in \mathbb{R}^{n}$ so that $T(\underline{x})=\underline{b}$.)
- one-to-one (or 1-1) if every $\underline{b} \in \mathbb{R}^{m}$ is the image of at most one $\underline{x} \in \mathbb{R}^{n}$. (That is, if $T(\underline{x})=T(\underline{y})$ then $\underline{x}=\underline{y}$.)

Example: T is the linear transformation with matrix

$$
\left(\begin{array}{llll}
1 & 2 & 5 & 6 \\
0 & 1 & 3 & 4 \\
0 & 0 & 0 & 2
\end{array}\right)
$$

(1) If $T: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{m}$, what are m and n ?
(2) Is T 1-1? What do you have to check?
(3) Is T onto? What do you have to check?

Theorem 11. A linear transformation $T: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{m}$ is $1-1$ if and only if $T \underline{x}=\underline{0}$ has only the trivial solution.

Proof:

THEOREM 12. Let $T: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{m}$ be a linear transformation and let A be its matrix.
(1) T is onto if and only if the span of the columns of A is all of \mathbb{R}^{m}.
(2) T is 1-1 if and only if the columns of A are linearly independent.

Proof:

As a consequence of this theorem we can check whether T is $1-1$ or onto by row-reducing its matrix A : if there is a pivot in every row, then T is onto: if there is a pivot in every column, then T is 1-1.
Example: Let $T\binom{x_{1}}{x_{2}}=\left(\begin{array}{c}3 x_{1}+x_{2} \\ 5 x_{1}+7 x_{2} \\ x_{1}+3 x_{2}\end{array}\right)$. Is T 1-1, onto?

