
These are brief notes for the lecture on Monday September 6, 2010: they are not complete,
but they are a guide to what I want to say today. They are not guaranteed to be correct.

2.1. Matrix Operations

Let A be an m × n matrix, that is, m rows and n columns. We’ll refer to the entries of A
by their row and column indices. The entry in the ith row and jth column is denoted by aij,
and is called the (i, j)-entry of A.

a11 . . . a1j . . . a1n
...

...
...

ai1 . . . aij . . . ain
...

...
...

am1 . . . amj . . . amn


The columns of A are vectors in Rm, and are denoted in the book by a1, a2, . . . , an and in
my notes by a1, a2, . . . , an. In order to focus attention on the columns we write

A = [a1 a2 . . . an]

Just as we can add two vectors if they have the same number of rows (and since they only
have one column, the same number of columns!) we can define the sum of two matrices
precisely when they have the same number of rows and the same number of columns. To do
so, add corresponding elements: the (i, j)-entry of A+B is aij + bij. Focusing on the column
vectors of A and B,

[a1 a2 . . . an] + [b1 b2 . . . bn] = [a1 + b1 a2 + b2 . . . an + bn]

Example: 1 2
3 −1
2 4

 +

−1 3
2 −1
−3 4

 =

 
We denote by 0 the matrix all of whose elements are zero.

Theorem 1. Let A, B, C be matrices of the same size, and let r, s be scalars. Then

(1) A + B = B + A
(2) (A + B) + C = A + (B + C)
(3) A + 0 = A
(4) r(A + B) = rA + rB
(5) (r + s)A = rA + sA
(6) r(sA) = (rs)A

Note: observe how similar this is to the corresponding theorem for vector addition.
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Matrix Multiplication In calculus we meet composition of functions, such as f(g(x)): for
example if f(y) = y2 and g(x) = sin(x), then f(g(x)) = (sin(x))2. The main functions we’ve
met so far for vectors are linear transformations from Rn to Rm. We saw last week that
a linear transformation T : Rn −→ Rm corresponds to multiplying a vector x ∈ Rn by an
m× n matrix A.

If we are going to compose functions, then certain things have to match up: if we are
going to compute f(g(x)) then g(x) has to be in the domain of f . Likewise, we can consider
compositions of linear transformations:

Rp U−−→ Rn T−−→ Rm

Here U : Rp −→ Rn, and T : Rn −→ Rm. So, since U(x) is in the domain of T , we can
compute T (U(x)).

We can of course write down matrices B (n× p corresponding to the transformation U) and
A (m × n corresponding to the transformation T ). Then U(x is equal to Bx, and T (v is
equal to Av. Replacing v by Bx, we obtain

T (U(x)) = A(Bx)

Now,
Bx = x1b1 + x2b2 + · · ·+ xpbp

and so

A(Bx) = A(x1b1 + x2b2 + · · ·+ xpbp

= Ax1b1 + Ax2b2 + · · ·+ Axpbp

= x1Ab1 + x2Ab2 + · · ·+ xpAbp

= [Ab1 Ab2 . . . Abp] x

That is, the composition of the transformations U followed by T corresponds to multiplication
by a matrix with column form

[Ab1 Ab2 . . . Abp]

Definition. If A is an m×n matrix, and if B is a n×p matrix with columns b1, b2 . . . , bp,
then the matrix product AB is the m× p matrix whose columns are Ab1, Ab2, . . . , Abp. That
is

AB = [Ab1 Ab2 . . . Abp]
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Row-Column rule. If A is m× n and if B is n× p the (i, j)-entry of AB is given by

(AB)ij =
n∑

k=1

aikbkj

Note: Rowi(AB) = Rowi(A).B.
Define the m ×m identity matrix to be the m ×m matrix with 1’s down the diagonal

and zeros elsewhere.

Theorem 2. With A, B and C appropriately sized matrices and r a scalar

(1) (AB)C = A(BC)
(2) A(B + C) = AB + AC
(3) (B + C)A = BA + CA
(4) r(AB) = (rA)B = A(rB)
(5) ImA = A = AIn

Proof:

Powers of a square matrix

Transpose of a matrix
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