These are brief notes for the lecture on Wednesday September 8, 2010: they are not complete, but they are a guide to what I want to say today. They are not guaranteed to be correct.

2.2. Matrix Operations, continued

Transpose of a matrix

Recall that the transpose of a $m \times n$ matrix A is the matrix A^{T} having (i, j)-entry $a_{j i}$.
For example, $A=\left(\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6\end{array}\right)$ has transpose $A^{T}=\left(\begin{array}{ll}1 & 4 \\ 2 & 5 \\ 3 & 6\end{array}\right)$. Thus the rows of A become the columns of A^{T} and vice versa.
Theorem 3. Let A and B be matrices whose sizes are appropriate for the following sums and products to be defined
(1) $\left(A^{T}\right)^{T}=A$
(2) $(A+B)^{T}=A^{T}+B^{T}$.
(3) For any scalar $r,(r A)^{T}=r A^{T}$.
(4) $(A B)^{T}=B^{T} A^{T}$

Note: The transpose of $A B$ reverses the order of the product of the transposes: in general, if the product $A B$ exists, then it means that the number of columns of A is equal to the number of rows of B : however, usually the product $A^{T} B^{T}$ will not exist! Even when it does exist, it is usually not equal to $(A B)^{T}$.
For example: if $A=\left(\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right)$, and $B=\left(\begin{array}{ccc}5 & 1 & -1 \\ 1 & 2 & 2\end{array}\right)$ then

$$
A B=\left(\begin{array}{ccc}
7 & 5 & 3 \\
9 & 11 & 5
\end{array}\right) \quad(A B)^{T}=\left(\begin{array}{cc}
7 & 9 \\
5 & 11 \\
3 & 5
\end{array}\right)=B^{T} A^{T}
$$

but A^{T} is 2×2 and B^{T} is 3×2, so $A^{T} B^{T}$ isn't even defined.
Let's look at this further: if A and B are such that $A B$ exists, and $A^{T} B^{T}$ exists, and A is $m \times n$ then B has n rows (since $A B$ exists) and m columns (since $A^{T} B^{T}$ exists). Now, $A B$ is an $m \times m$ matrix, so $(A B)^{T}$ is $m \times m$, whereas $A^{T} B^{T}$ is $n \times n$.

Even when A and B are both square matrices and have the same sizes (so it could be possible that $(A B)^{T}=A^{T} B^{T}$) it usually doesn't happen. Almost any random example you write down of two 2×2 matrices will have $(A B)^{T} \neq A^{T} B^{T}$.
Example

2.3. The Inverse of a Matrix

Suppose we have a linear transformation $T: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{m}$: we will say that the linear transformation has an inverse transformation if for every $\underline{b} \in \mathbb{R}^{m}$ there is exactly one $\underline{x} \in \mathbb{R}^{n}$ so that $T(\underline{x}=\underline{b}$. Note that if T is invertible, this means that T is onto (every equation can be solved: hence $m \leq n$) and T is 1-1 (every equation has at most one solution: hence $n \leq m$).

Hence an invertible linear transformation has a matrix which must be square. Which square matrices are invertible? What does it mean for a square matrix to be invertible?

Suppose that $T: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{n}$ is an invertible linear transformation: then we can define $S: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{n}$ so that $T \underline{x}=\underline{u}$ if and only if $\underline{x}=S \underline{u}$. Furthermore, for every vector $\underline{x} \in \mathbb{R}^{n}$, $S(T(\underline{x}))=\underline{x}$, and for every $\underline{u} \in \mathbb{R}^{n}, T(S(\underline{u}))=\underline{u}$.

It turns out that S must also be linear: we'll assume that $T(\underline{x})=\underline{u}$ and $T(\underline{y})=\underline{v}$. Then $S(\underline{u})=\underline{x}$ and $S(\underline{v})=\underline{y}$.

We'll show that $S(r u)=r S(\underline{u})$. Indeed, $S(T(r \underline{x}))=r \underline{x}$, so we get

$$
S(r \underline{u})=S(r T(\underline{x}))=S(T(r \underline{x}))=r \underline{x}=r S(\underline{u})
$$

so that S commutes with scalar addition.
Likewise,

$$
S(\underline{u}+\underline{v})=S(T(\underline{x})+T(\underline{y}))=S(T(\underline{x}+\underline{y}))=(\underline{x}+\underline{y})=S(\underline{u})+S(\underline{v})
$$

so that S commutes with addition.
So we see that if T is an invertible linear transformation from \mathbb{R}^{n} to \mathbb{R}^{n}, so is S. Hence we can represent T by a square matrix A and S by a square matrix B.

Then $S(T(\underline{x}))=\underline{x}$ for all \underline{x} means that $B A \underline{x}=\underline{x}$ for every \underline{x}. In particular, if $C=B A$, then we have $C \underline{e}_{j}=\underline{e}_{j}$, so that we obtain that C must be the identity matrix I_{n}.
Similarly, $T(S(\underline{u}))=\underline{u}$ for every \underline{u}, and hence $A B=I_{n}$ is also the identity matrix.
Definition. An $n \times n$ matrix is invertible if there exists a $n \times n$ matrix B so that $A B=I_{n}=$ $B A$. B is called the inverse of A and is denoted by A^{-1}. A matrix which is not invertible is said to be singular.

For 2×2 matrices we have a very simple form for the inverse.
Definition. Let $A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$. We define (and this only works for 2×2 matrices) the determinant of A to be the quantity $\operatorname{det}(A)=a d-b c$.
Theorem 4. Let $A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$. Then A is invertible if and only if $\operatorname{det}(A)$ is non-zero, in which case

$$
A^{-1}=\frac{1}{\operatorname{det}(A)}\left(\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right) .
$$

If $\operatorname{det}(A)=0$ then A is singular.
Proof:

Theorem 5. If A is an invertible $m \times m$ matrix, then for every $\underline{b} \in \mathbb{R}^{n}$, the equation $A \underline{x}=\underline{b}$ has a unique solution, namely $\underline{x}=A^{-1} \underline{b}$.

Proof:

Theorem 6.

(1) If A is invertible, then so is A^{-1}, and its inverse is given by

$$
\left(A^{-1}\right)^{-1}=A
$$

(2) If A and B are invertible $n \times n$ matrices (that is, they are both invertible and they are the same size) then $A B$ is invertible, and

$$
(A B)^{-1}=B^{-1} A^{-1}
$$

(3) If A is invertible, then so is A^{T}, and its inverse is given by

$$
\left(A^{T}\right)^{-1}=\left(A^{-1}\right)^{T} .
$$

Proof:

